PhytGn

CPI2-B1

INn-System Device Programmers

© 2021 Phyton, Inc. Microsystems and Development Tools

© 2021 Phyton, Inc. Microsystems and Development Tools

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written
permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective
owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or
from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable
for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this
document.

Printed: May 2021 in (whereever you are located)

Contents 3

Table of Contents

Foreword 0
Part | Introduction 17
N =T 02T T] T Yo SRS 17
2 CPI2-B1 device programmer
FEALUIES OVEIVIEW ottt ettt sttt et et e s ae st e e b e e st eae e st et e besae et e eaeeseease s enbesaeebeebeeasessensessebesaeebeeseeseenseseetenaens
HArAWare CRATACTEIISTICS wuoviiiiciiiiictecece ettt ettt b e s e e et se bt ebe st eaeebe e ebeebeseebese et et ebeseeneebeseesesesessensatenes
SOFEWAIE FEALUIES ettt s ettt et e e e beseeebesaeeheeasessenbesaesbeebeeaeessensensesesaeebeeaeeaeensensenbesaears
COMMUNICALION INLEITACES ..ottt ettt s aeebe et e e e e s e e beebeeseebs et essebesaeebeeneeseensensentesaenten
[©f] gL aT=Tod (o T i 17N 2 (= SRRSO
CONNECTON CONTROL oottt ettt et e s e et b e s ae et e e e e s s e besbeebesaeebeeasessenbesseebeebesseessensensesesreebeeneeseensensenbesaenrs
Single- and Gang-Site PrOgIrAMIMINGccciciierirerieeriee ettt e sttt e e s se e besaesesbeseebestesesbesesbesebeseenesbenesbensnsessans 26
Part Il Installation and Launching 28
I T Yo NS] =T o = SRS 28
2 Hardware iNSTAllAtionN.........c.ueiie i s e e e e re e e e s st e e e e san e e e e e annae e e e e anrnee s 29
TS V] =T 0 (T =0 T L =T 1= o S 32
4 SOftWAre INSTAIALION......eeieieiie e e e e e e e e s e et be e e e e e e e e e e sesanararaees 32
5 Launching deViCe ProgramiMErS.. ... e it eieesiee st steesiee et e seeesbe s beesaeeebeesbeesbeesaeesseeenee 36
6 Setup Wizard and Startup DialOg......ccoeieiiiieiee ettt se e 38
Part Ill Control Interfaces 46
O E 1T T o o T[] £ SRS 47
2 Graphical USer INTEITACE.cccii ettt e e et e e e te e e enree e 48
USEI INTEITACE OVEIVIEW ...ttt ettt et s et et e e aeeae et et e besaeebeeaeeas e st e ssanbesaesbeeaeeasessensesenbesreebeessereensesnesesseas 48
Toolbars
Menus
TRE FlE MEBINU oottt r et ettt et e e et e sbesbeebeeaeess e s e s esbesaeebeeaeessensesantesbeeteebeeasensensesenbesnenteans 51
CoNFIQUIALION FIIES bbbttt b bt re bbbt 52
TRE VIEBW MENU oottt ettt et s r e et et eae et e s et e sbesbeebeeaeessensessenbesaeebeeaeeReense s enbessesbeebeeaeensensensenbesrentenns 52
TRE PrOJECTIMEBNU ..ttt b bbbkt b bbbkttt b et 52
The Project OPtiONS DIIOQccorrieiiiriiiiciiirrieie ettt b ettt b et 53
The OPEN ProjECE DIAI0G eiveeiuiirieieictrit ettt b et b et b bt b et s bbbt 54
Export and IMpPort ProjeCt DIAIOGScuiiieiiriieiecir ettt 54
PrOJECEREPOSIIONY ettt b bbb bttt b bbbt 56
THE CONTIGUIE IMENU....c.ieit ettt b bt h et e bkt e bbb bbbt bbb 57
The SeleCt DEVICE DIBIOGcuiiiiiieiiiriie ettt ettt 58
The BUFFErS DIAIOG oottt bbbttt b bttt b bt 61
The Buffer Configuration Dialog... .. 61
The Serialization, Checksum, and LOG DIialOg.......ccoeiriirinirenieeries e 63
SNAGOW AFBAS ittt et e st e b s ae b e e ae e s e et e st e et e s beebeebe e At e st e s e beabesreebeeaeeae et eseresreerens 64
GENEIAI SEHINGS et b bbbkt 68
DEVICE SEHAlIZALION oot sttt et a et s ae s beeae e s e s e b et e e beeaeeae e s e s e resrenrens 69
Checksum

Signature string

© 2021 Phyton, Inc. Microsystems and Development Tools

CPI2_MODEL Device Programmers - CPI2-B1

Custom Shadow Areas..

LOG fIlE bbb
The Sata Caching, Standalone... DIAl0G.......ccorieiriere e 74
IP Address Setting Dialog.......... .74
Simplified USer INterface EQItOr. ...ttt 77

The Preferences Dialog
The Environment Dialog
Fonts
Colors
Mapping Hot Keys
Toolbar
Messages
Miscellaneous Settings.. .
The Editor OtIONS DIAI0G vttt bbbttt h bttt eb et b bt
The General Tab
The Key Mappings Tab

The Edit Key COMMaNd DIAlOG.......c.cciriiriiiririeictriseie ettt 86
THE COMMEANTS MENU......oiuiiiitiiitie ittt h b bt b bttt e bkt e bbbt b ettt b b e e 86
Calculator
The Script Menu
THE WINAOW IMENU ..ottt b bbbt b ket s b bt bbbttt bbb e s 89
The Help Menu ..o .90
License Management DIGlOG.......c.coiiuiuiirieieitriei ettt btttk 90
WINGOWS ettt e b bt e b h e bbb e e h b e et E b b e e s e b bt e e A b s et s e b b eb et e s bt er et 92
The Device Information Window............c..ccceeuee .92
The Device and Algorithm Parameters WINGOW.........oiveeiiririeicininsereereseeie st 93
The BUfer DUMP WINGOW. ...ttt ettt b e
The 'Configuring a Buffer' dialog. .
The 'BUffer SETUP' IBI0G.ottt
The 'Display from addreSs' di@lOg.. ..ottt 100
The 'Modify Data' dialog...... ... 100
The 'MemMOry BIOCKS' QIal00.....c.uiiiiiiiiieiieec sttt 100
THE 'LOAA FlE" QIAI0QG ..ottt bbbttt b et e 102

File Formats
The 'Save File' dialog

THE CONSOIE WINUOW......cuiiiiitiiiiiteiee sttt stttk b st b et e bbbt e s bbbkt e s b e nn e
The Program Manager Window... ... 105
The Program Man@ager taD ...t 107
AULO PTOGIAMIMING oottt bbbt e bbbt s b bttt benens 108
The Options tab
Split data
THe STALISTICS 18D ot b ettt bbb 111
The Memory Card Window.... .. 113
WINAOWS FOF SCHIPES. ...ttt h e bbbt e bbb bt e b b e e 113
3 SIMPlified USEr INTEITACE ...oi it e e sneee s 113
Settings of SIMPlIfied USEr INTEITACE ..ottt 116
Operations with SIMPlfied USEr INTEITACE ..o sttt 120
4 CommaNnd LiNe INTEITACE ..ottt ene s 120
COMMANG LINE OPLIONS ...uuiiirteiiiririeteieese sttt sttt ettt sttt e e s e s s e b e se s e s e se e s e R e ae £ e b e b e b e st se s b e bese st esebebese e et et ebase s sbebesenennas 120
Command Line Option Files . .. 125
5 On-the-Fly Control INTEITACE........uui i e e e e e srare e e e e neees 126
On-the-FAy ComMMand LiNE OPLIONSccoiiiiiriiiiieieiee sttt sttt ettt se e s b e bese st e s st et e se st st e bebase s sbebeseneanas 127
ON-the-FY ULIlITY FEIUIM COUES ..ottt b bt b b st bbb e et ee e b e b e se s b ebesene e 131

© 2021 Phyton, Inc. Microsystems and Development Tools

Contents 5

Part IV
1

Part V

o OB~ WN

Part VI

Part VIl
1

ON-the-FY CONrOl EXAMPIESciiiiiiiiiie et bbbttt bbbttt eb b 132
Standalone Operation Mode 132
Preparing Standalone MoOde JODS........oooiiiiiiis e 133

DaAta CAChING it h b s bbb R bRt R R bR e e bR st e bbb b e

StANAAIONE JODS e et b e e R b e A et b et R e ee e e be et e e benenten

Standalone mode settings

[N oY =Y T 2= L[] o[RS

Permissions and SEtiNG HMILS ...ttt bbb 141

ST I o= Yo ATV T s o [1 OSSPSR 142
Switching to StaNdaloNe MOGEcuueiiiiee e e e s e e snree e e 143
StandalonNe MOAE MONITOT ..c.uii it sb et e e st e e sbe e e sabeeesareee e 145
Example of Setting Up Standalone MOAE.........ccvuiviiiiiiiie e 147
Software Development Kit (SDK) 158
O I o oo o 1 1 =1 1 = S EPPPRR 158
L0171 o N TSP PP PR 159
F V@ I Yo T o SO RUPP 160
F O IS 1 VLo {01 =TT RPRTR 164
e E= 10] 0] 1= SRR 165
F N I =g o] (o = SO R PR 166
Integration with NI LabVIEW 168
LabVIEW Integration Using Command LiNE........cccciiuiiiiieiiiee et 169
LabVIEW INtegration USING ACH......ci ettt ettt e e snbeeennees 172

LabVIEW INtEQration EXAMIPIEScooiiiiieiiiiiieeie ettt b e b et s et b e st e bbb et b et e b ane et es 173
Scripting
S Tod g1 o LT Lo B AV A=Y VAT

SIMPIE EXAMPIE ettt et b et E £ e bR e R £ E £ e AR £ £ b b e b e £ e A e bR e £ bbb e Re et bebeRe et ebenene e
RIS = L a AU oS Tod o] o] A PSR TOUR PP
RUNNING SCIIPTS ettt b e s bt sttt e st et e sabe e e s nbe e e snbeeeenbeeeanrs

The Script Fles Dialog

The User Window ..o

THe /O Sre@m WINAOW ...ttt nenen e
(DI=T o 10 o o T g o =TS o] 1 o SRR

The Script Window ccccceenee

Menu and Toolbar
The AUOWALICNES PANE.........ooiiiccce et
THE WALCNES WINUOW ..ot en s
The Display Watches Options Dialog
The Add WELCH DIBIOG. ... ittt bbb bbbt bbbt b b e st
Yol g o) Sl =T T (o | SRR USRS

JLILLEETE 5 1T=0 1Y =T T OSSPSR

The Edit Menu e

Block Operations ..o

[@re g To =T g T =To [1Y oL [OOSR

© 2021 Phyton, Inc. Microsystems and Development Tools

6 CPI2_MODEL Device Programmers - CPI2-B1

Syntax Highlighting
AUtOMALIC WO COMPIELION ..ttt bbbttt b bt e ettt ben s
The QUICK WALCH FUNCTION ..ottt bbbttt b s
Dialogs
The Search fOr TEXE DIBIOG.c.couriiueuieiiriieeietrie ettt bbbt e bttt b ket n b nn e
The REPIACE TEXE DIAIOGiv vttt bbbt b bt b e nn e
The Confirm Replace Dialog.............. .
The Multi-File Search RESUIS DIAlOg......ciiriiiiiiriiciii sttt bbb
Search for REGUIAT EXPIESSIONS. ...ttt b bbbt b bt s bt
The Set/Retrieve Bookmark Dialogs....
The Condensed Mode SEtUP DIGlOG........ciiiriiiririei ittt bbbttt nn e
The Displayfrom Line Number Dialog

Part VIl Reference

N o [)11V o T PP 194
HOW t0 CheCK if AEVICE IS BIANKc.oeiiiieeceeeee ettt st a et e s ae st e e beeaeesae st estesbesreereens 194

HOW 10 EFASE @ AEVICE ..ottt bbb e E bttt b ket e bbbt b et s b b n e 195

HOW t0 read data frOM GEVICE ..ottt b e 195

HOW 10 PrOGram @ GEVICEuiuiiiiieiciiieieiet sttt b bbbt b ket ee b bt bbb e et b bbbt e 195

How to [0ad @ file INT0 @ DUFFEE.......oiee bbb 195

How to edit data before programmMiNg.......ccc ettt 196

HOW 10 CONfIGUIE TArgET AEVICEoviiiiiictec ettt bbbkt 196

How to write information into the AEVICE...........c.c i 196

HOW 10 VETITY PrOGIaMIMING ..ottt bbbt b ket b bt e ettt s b e 197

HOW 10 SAVE ALA 10 QIS C ...ttt bbbt bbbt b bt b bbb s b b e e 197

[oL Ir= Vo T A oo | = Va1 SRR 197

A = oY g |V [T T o To [PP PP 198
EITOr LOAA/ SAVE FIE ...ttt et b et b e e stk e st e b et b e e e bt s b et e b et e se st e ne st et nbees 198

EFrOr AQOIESSES oottt b e st e £ £ e st e £ e b e b e b e e s b e b e Re e b e b e b e Rt et s ek e b e sttt et e b et e b ebebane e nees 198

ETTOr SIZES ettt E bR A e £ £ R e £ bR e R e e b A e b e R et £ e ke b e Rt etk R e Rttt et b ettt bebene et eee 199

Error COmMmMaNd-IiNE OPLION ..ot bbbttt b bt 199

Error Programming OPTION ..ottt b e e sa e bt e b e s e b e b e ke s e s e b e b e se e et et e b e et bebebane e nses 199

EITOF DL ettt ettt b e e bt h AR Ao e R e Ao R e R e R £ e Ao £ eR £ eE e E e R e ARt b e R e A e e e b e A e Rt eEe e ebe e Rt bene et et eae s 200

[o] L] 2 SO S SRR SS 200

Error programmer NATOWEATEc.coiiiieieiieeie ettt bbbt b et bbb e se s e b e b e st et e b et et bebebane e nses 200

EFrOr iNTEINAI ettt ettt b et £ b st £ e b b e b e e b b e b e R e e b e b e e R e s e b e b e ne bbb e b et b e b e b e ne e tne 201

Error CONFIQUIALTION .ottt bbbt b bkttt b b 201

IO DBVICE ettt ettt b b s bbb e bt £ e b b e b e e e b e b e R et £ e b e b e R e s e b e b e sttt et e b et et bebebane et ne 201

ErrOr CHECK DOX ettt b e b e b b e bRt b e b e b e Rt et e e b e b e sttt et et et bebebane et es 201

[o] 4 21 OO 201

LAV U a1 o OSSPSR 202

I b 4 0] =21 o] T TSR 202
(@] o114 0] o =TSO 202

(@] o 11 =T o =3O TSSOSO 204
EXPreSSION EXAMPIES ..ottt e bbbt b e bbb b bRt b e b e b e At et s e b e b e st et e b e b et e b ebebane e nsns 204

O ot A1 1 A1 [0 = = =T = Lo = SRR 204
SCripting LANGUAGE DESCIIPLION o.eeiuiiiiriiieiettsis ettt ettt b et £ bt e b e e e b e b e se st e b st et ese e s et ebese st b ebebeneanas 205
Difference Between Scripting @and C LANQUAGESc.cciririruruiiririeieereresis et se s sss e ssssesanes 205

Scripting Language Syntax... ... 206

FOIMAL e e e e R A e R e AR e R e R e R e Rt R e Rt A e e b e R Re b e e b e erees 206

COMMENES ettt h e e e e b e e e E e e e R e e e e e e R e s e e Re b e R e e R et e b e sE e R e e b e s e e R e b e b e b ebenb et ebenreneabennnnens 206

Identifiers

© 2021 Phyton, Inc. Microsystems and Development Tools

Contents 7

RESEIVEA WOITS ettt b bt b et b ettt b e ne b 207
INTEOEI CONSTANTS e e r e b e n e b s 207
LONG INTEYET CONSTANTS....c.eiiiitiiiirtt ettt bbb bbbttt b b b ne et 208
FIOAtING-POINT CONSTANTS. ...c.oivitiiiiieitcict ekttt bbbt a et 208
CRATACIEN CONSTANTS .ottt bbbt e bbbt s b bt e ettt b b ens 209
SHINQ CONSTANTS ettt b b bt e e bttt d bbb e b bt e bbbt b b ens 209
Basic Data Types.. .209
DAtA DYLE OFUET .ttt bbb e bbb e bbb b bt e bt e et bt e e nen s 210
OPEratioNS AN EXPIrESSIONS.c.iiriieteiiire ettt ettt bt e ettt e bbb et e et bt e bbbt s s b s e et 210
Operand MetadeSIGNALION.........c.ciiriiireiir ettt bbbttt b ket b et na et rerebs 211
ArtNMETIC OPEIATIONS ...ttt bbbt bbbt s et bt b b b nn e 211
ASSTGNMENT OPEFALIONS ...ttt ettt b et b b st b bbbt e e b st b et bt e bbb e e e e 212
RElAtiON OPEIAtIONS ..ottt b bbbttt bbbt b bbb 214
Logical Operations
Array Operations
Bit Operations
Other Operations
Operation Execution PrioritieS @and OFAEr ..ottt 218
OpErand EXECULION OFUET ...ttt bbbttt ettt b et ne et rerebes 219
Arithmetic CONVErSIONS IN EXPIrESSIONS ..ottt bbbt 219
(O] 6= =1 (] £ TSRO P SO TPTTO

Format and nesting
Operator label
Composite operator
Operator-expression
Operator Break
Operator Continue
Operator Return
Operator Goto
Conditional OPErAtOr IF-EIS ..ottt 222
CYCIE OPETALOr WHIIE ..ottt b bbbttt
Cycle Operator Do-While... .
CYCIE OPEIALOr FOI ettt bbbt e e bttt b bt e b bt e bbbt n b b ens
FUNCHONS ettt b et b bbb e Rt E e e e b e s A e Rt b e st b e b e b e s A et e b e st e be e beseeb e e nbe st eneseeneanan
Function Definition
Function Call
The main Function

DESCHPHONS ittt b b e b bttt E b b E e E b b e E bttt bbb e e bRt b bt n s
BaASIC TYPES b bbb bRt R st b b e
AITAYS e e et
Local Variable DEfiNItION ..ottt
Global Variable DefiNitiON ..ottt

Variable Initialization
EXternal ObJECt DESCHPONc.iiiriiteiiiie ettt bttt 229

Directives of the Script LANQUAGE PreprOCESSONottt sttt 230
ldentifier Change (FAEMINE)......c et 230
INCIUSION OF FIlES (FINCIUAR) ..ottt 230
CoNditioNal COMPIIALIONciiieeiiiie bbbt b ettt ne ettt rerenes 231

Predefined Symbols in the Script File CoOmMPIlation..........ociiiicii s 231

BUIlt-iN FUNCLIONS DY GrOUP ..ottt bbbt e bbb e 231

BUFfEr @CCESS TUNCHONS ...ttt bbbt bbbt b ettt b s 232
CRECKSUM et bbbttt r s 232
GetByte
GetDword

© 2021 Phyton, Inc. Microsystems and Development Tools

CPI2_MODEL Device Programmers - CPI2-B1

GEIMEMOIY e bbb e bbb bbb 233
GEIWOII bbbt R b e b bttt et rens 234
LOAAPIOGIAM et bbbt bbbt ettt 234
MAXAAAE bbbt h bbbt E et b ettt 235
MINAGAE bbbt e bbbk e e b bttt e bbb bt b s 235
REl0AAPIOGIAM bbb bbbt b et b et 235
SaveData
SetByte
SEIDEVICE bbbt E b s b bt e et enes 236
SEIDWOIT bbb bbbt ettt 236
SEIMEIMOIY e e R b e r et e e n e 237
SEIWOIT bbb R b bbbt et enes 237
Device programming control functions and Variables.............coiiiinci s 237
Function AllProgOptionsDefault
FUNCHON EXECFUNCHON ...ttt b bbbt b et b bbb
FUNCHON GANGEXECULE ...ttt bbbt b bt
FUNCHON GANGGEIEITON......cititieiiieiteietist ettt bbb bt e bbbttt s bbb e et b e
FUNCHON GANGSIALUS ..ottt bbbkt b et b ettt b e ne et bt
FUNCtion GangWaitCOMPIETE ...ttt
FUNCHioN GetBaODEVICEC OUNT..........cuiiiieieieire ettt ettt bbbttt
FUNCtioN GetGOOUDEVICECOUNL ...ttt ettt sttt
FUNCHON GEtPrOGOPLIONBILSc.ciiiitctiiieie ettt bbbttt
FUNCtion GetProgOPtIONFIOAL. ...ttt
FUNCHON GEIPTOGOPTONLIST. ...ttt ekttt na s
Function GetProgOptionLong.. .
FUNCHON GEtPrOGOPIONSIIING. ...eivvetiiiieietetei ittt ettt b e ne e
FUNCHON MPEINTE bbbttt e et b e ne et
FUNCHON OPENPIOJECT ...tttk b et b et
Function ProgOptioNDEfaUIL...........oucuiiiec ettt
FUNCHON REAASNAUOWAICA.......c.eriiiiiieietete ettt bbbttt
FUNCHON SEPTOGOPIION.....ciititiiiirietcttti etttk b ettt b e b
Function WriteShadowArea. .
Variable BIANKCRNECK oviiiiieci ettt bbbttt
Variable BUferSartAGUN........c.ooeiir ettt 243
Variable ChECKSUM ettt e
Variable ChipEndAddr .. .
Variable ChIPSTAITAGUL ..ottt bbbttt ettt b e
Variable DEVICEBAICNSIZE ..ottt 243
Variable DIBIOGONEITONc.ciiiiieieii ettt b ekt b et b et s b b n e 244
Variable GANGMOOE ..ot bbbttt 244
Variable INSEITEST ot b bbbt e bt e et bt s bt n e 244
Variable LaStErMOrMESSAGE[].....cccuourimuiiiiiiiiiiiieeee s 244
Variable NUMSITES oottt bbbt 244
Variable REVEISEBYIESOIUEN.......c.cciiiiieiiiieieiee ettt e 244
Variable SEraINUMDETttt bbbttt n e 244
Variable SIGNAIUIE ottt bbbt b bbb e 245
Variable VerifyARBIPIOGIAM ...ttt bbbttt b e 245
Variable VEIfYARBIREAM. ..ottt 245
MathemMatiCal FUNCHIONSouivieiiiiic bbbttt bbbt b ettt 245
StrHNG OPEration FUNCHONS........ouiieiii ettt bbbt s b 246
Character Operation fUNCHONS ..ottt bbbt nn e 247
Functions for file and dir€@Ctory OPEratioN............c.cciiriiiiiiic bbb 247
Stream file FUNCHONS. ...ttt b bbbt

Formatted input-output functions

© 2021 Phyton, Inc. Microsystems and Development Tools

Contents 9

Script File Manipulation FUNCHONS. ..otttk 250
L= Car=Te [(o g 0 o (o o 1SRRI 250
Debug Shell CONrOl fUNCHONS. ...ttt b s 252
Windows operation functions and other System fUNCHONS........c.cociiiriicinn e 253
Graphical OUIPUL FUNCHIONS ...ttt bbbttt bbbt 253
1/O Stream Window OPeration fUNCHONS. ..ottt 254
Event Wait Functions......
Other Various Functions

BUilt-in Variables DY GrOUP ..ottt b e

List of Built-in FUNCLIONS @Nd VAIIADIES ..ottt ettt e 256

SCIIPLNG FUNCLIONS ettt h bbb b b e e e bttt b bttt e b b sttt b e 263
LT T=T 1 T OO SO TP TP PSRRI 263
FUNCHON _ff BEIID. ...t bbbtttk 264
Function _ff_date .. 264
FUNCHON _ff NBIM G ..ttt b bbbttt b bbb 264
FUNCHON _ff SIZE .o b et b ettt b e 265
FUNCHON _ff M@ et b bt e bttt b ettt b b 265
FUNCHON _FUIPAIN ... bbbttt b et b ettt b e 265
FUNCHON _GEIWOIT.......otiiiieccct ettt bbbttt b bbbt b ekt 265
FUNCHON _PEINTIV bbb bbb bttt b et e b bbb 266
LT o310 = o 1RSSR 266
[T a1 o = U o 1SRRI 266
FUNCHON ACHVAIEWINTUOW.. ..ottt s ettt e s s e e e s e st et e beseesentesess e e eteneeneneenennan 266
Lo 10] Yo Lo | 21U o o SRS 266
Function AddrExpr.... 267
LT Tox 10T Yo [0 VAT 2= L od o ST SRS 267
Lo 10 o T SRS 268
[T e 10 = U= [OO RTSRRS 268
[T o310 = 7= SRS 268
LT o310 o = (o) TSRS 268
[T a1 o = (o OSSPSR 269
Function BackSpace.... .269
FUNCHON BIOCKBEGIN. ..ottt bbbt b ekttt b etttk et b b 269
FUNCHON BIOCKCOPY....o vttt bbbttt bbbkt b et b bkt b b 269
[T To Lo] T =] oo {1 (= SRR 269
Function BlockEnd... .270
FUNCHON BIOCKFASICOPY....cetitiiiiiiitctiiniet ettt bbbttt bbbttt b ettt ee b 270
FUNCHON BIOCKIMOVE ..ottt ettt sttt et e e s st e s b e seese s e s e st e e e beseesenteseas e e nteneeneneenennan 270
[T e 10T T =] Lo o3 (@ SRR 270
FUNCHON BIOCKPASTE. ...ttt ettt b et e b e st et e b e ne e bt e s et e e et e st e st see e anan 270
FUNCHON CallLiDraryFUNCHON.otttk 270
L8 o310 o T = | SRR 271
FUNCHON CRAIT ettt b et b et b e b e bt nb et e b e st e be st e s et et e be st e st seeneenan 271
FUNCHON CRECKSUM ...ttt ettt b etk e s e e e s e st et e beseese e tesess e e nteneeneneenennn 271
FUNCHON CRSIZE ettt e b et b et e b et e s e st et e be st e se e tesens e e nbeneeneneenennan 271
FUNCHON ClEATAIIBIEAKSeitieetiteietes ettt ettt et et e bt e et b e et e b e benb et e beneebe st e s et e e nbe st eneseeneanan 272
FUNCHON ClEAIBIEAK.......cui ittt et e b et et et e e b e e e s e st et e beseesestesessenenteneeneneenennan 272
FUNCHON ClEArBrEaKSRANGE. ..ottt bbbttt b bt e bbbt e b b 272
[Tl 1Le] Tl 1= T= U= o OSSPSR 272
FUNCHON ClEANWINTOW. ...ttt sttt et e st e e esestese et e sesse s e s e ne e e ebeseesestesessenseseseenesaeneanan 273
LT o3 10 o T [0 1= SRS 273
FUNCHON ClOSEPTOJECLottt bbbttt bbbt b sttt b ket e e 273
FUNCHON ClOSEWINUOW......couiiiiieiiieerieicee ettt ettt te e e s e steseebe s e e se s ese st e e nbeseesestesensenenseneeneseenennn 273

Function cos

© 2021 Phyton, Inc. Microsystems and Development Tools

10

CPI2_MODEL Device Programmers - CPI2-B1

L1 o3 1 o X O OSSPSR 274
LT o310 o T == TSRS 274
[T ex 10] T == U1 =TSRSS 275
FUNCHON CrBAMEIMIP ...ttt bbb bbb b bt e bbb bkt e e b b 275
[T o3 10T T O [@ o =¥ SRS 276

Function Curcuit
Function delay
Function DelChar
Function DelLine
Function difftime

FUNCHON DISPIAYTEXE....vceiuieieeteiiistet ettt b e e bbbt bbbt ne e bt s b bt e e b neas 277
FUNCHON DISPIAYTEXIF.ottt b e bbbt e bt e bkt b b 277
FUNCHON DOWN ettt bbbt e bbb bbbt b et b bkt e e b 278

Function dup
Function dup2

FUNCHON EIPSE .ot bbbttt bbbt b et b ekt ne e b 279
L1 o3 10 T ST 279
FUNCHON BOT ettt ettt e b e st b et e s e s e b e et et e beseese e teseas e e nteneenenteneanan 279
LT e 1T o T = OSSPSR 280
LT o3 10T T = oSSR 280
FUNCHON EXECMENU.....eiuiitiieicteee ettt ettt sttt e e e s e st e ke se e s e s e se et e e e beseesentese st e e nbeneeneneeneanan 280
FUNCHON EXECSCIIPL ...ttt b e bbb b bt b etk re e b b 281
LT o3 10T T SRS 281
FUNCHON EXIEPTOGIAIM ..ottt bbbt b et b et b ekt b b 282

Function exp

Function Expr
Function fabs
FUNCHON FCIOSE ettt bbbt bbb et b e b b e e b et e b e st e be et e s e b et e be st enesbeneenan 282
FUNCHON FAOPEN .t b bbb bt et e b ettt b bt s b b 283
Function feof

Function ferror
Function fflush
Function fgetc
Function fgets

FUNCHON FIIECRNANGEM.ottt bbbttt b bt e bttt b et b s 285
Function filelength....

[T a1 o T 1= T TSRS
LT ox 10T T T =T o SRS
FUNCHON FINATIFEST oottt b et et et s e e e s e st et e beneesentesees e e eteneenenaeneanan
FUNCHON FINANEXE ...ttt bbbt b e s e et b et e b e b e b e ne et e beneebe st e s e b e e nbe st eneseeneenan
FUNCHON FINAWINGOW.....cuiiiiiiieieieees ettt ettt s ettt e e s e e e s e st et e beneesestesens e e nbeneenenaeneanan 287
LT o 10T T T 63 LAY o o SRS 287
FUNCHON FlIOBIEXDT ...tttk b bbbkt b ekt n b 287
FUNCHON flOOF ottt ettt e e b e st e se b e st e s e e e s e st et e beneesentesens e e ebeneeneneeneanan 287
L8 o 10 T .o Yo SRS 288
FUNCHON FNISPIIT e bbbttt b bkt b et b ket e s b b 288
FUNCHON FOPEN et b bt e bbb b bt e bttt s b bt b b 288
FUNCHON FOMWAIATIl ...ttt sttt b e b e e e s e st et et e seesentesesse e nseneeneseenennan 289
FUNCHON FOMWAIATIINOL.......iiteieie ettt sttt e e se et et e se e bt e s et e e be st eneseeneenan 289
FUNCHON FPFINTE bbbt b et e bttt b bbb 289
FUNCHON FPULC bbbt b bttt b bbbt b e 290
FUNCHON FPULS et bbb bbbt b ket b e 290
FUNCHON FIAMERECT.ottt ettt e e b et e et e e s e e e s e st et e beseesentese st e e nteneenentenennan 290

Function fread

© 2021 Phyton, Inc. Microsystems and Development Tools

Contents 11

FUNCHON FrEELIDIAIY.....cu ittt bbbttt b bkt b ekt e b 291
Function freopen
Function frexp
Function fscanf
Function fseek
Function ftell
Function fwrite
Function GetByte
Function getc

FUNCHON GEICUITIN ...ttt b bbb b b bt e bttt ekt b b 295
FUNCHON GEICW ...ttt b b bt n e e bbbt b b 295
FUNCHON GEIAALE ...ttt e bbb bt n et bbb b bt e e b b 295
FUNCHON GEIATIEE ...t bbbt b ket b etttk e b 296
Function getdisk(). . 296
FUNCHON GEIENV .ttt b b e bbbt e bbb b bt n et h et s b bt e s b b 296
FUNCHON GEFIIENGIME.....ouiiiiiiet bbbttt bbbt b etttk e b 296
FUNCHON GELRIME ..ot e bt b bttt b et b ettt b b 296
FUNCHON GELLINE ...ttt b ettt b b bt bbb bt e s b b 297
FUNCHON GEUMATK ...ttt b e bbb b bt e bttt b ket e e b b 297
FUNCHON GEUMEIM OIY.....tiiiiieieicie ettt bbbt bbb e bbb b bt n et h et s b b et e e b b 297
FUNCHON GEtSCHPIRIENGIME. ...ttt b et b ettt b s 298
FUNCHON GELIME .ottt bbbt e bbb bbbt e bttt e bkt e e b 298
FUNCHON GEIW ettt bbbt e bbbt e e b e bbbt st e bbb s b bt e s b b 299
FUNCHON GEtWINAOWHEIGNT.......oiiiee bbbttt 299
Function GetWindowWidth... .299
FUNCHON GEIWOTT......c.otitiiiice ettt bbbttt b bttt b et b bt b b 299
FUNCHON GEEIWOTT.......vtiiiiece ettt b et bbb b bttt b et s b bt e e b b 300
FUNCHON GOLOXY ..ttt bbb e bbbt e bbb bbb bt n e e bt s bkt e e b b 300

Function HStep
Function inport
Function inportb
Function Inspect

FUNCHON INVEIRECT ...ttt ettt ettt sttt e e e e s s e et e ebesaeeseeasessebesaeebesasebeessensentessessessesaneseans 301
FUNCHON IS@AINUIM ...ttt ettt saeebe e s e e et e saeeteebesaeeseensess e besaeebesaeebeensensentessestesaesaneneens 302
FUNCHON ISAIPNE ..ttt bbbttt b bbbttt ettt b s 302

Function isascii
Function isatty

Function iscntrl
Function isdigit

FUNCHON ISOIAPN .ttt b bbb bbbt e bbbkt e b 303
FUNCHON ISTOWET ..ttt h bt e et b b bt n et b et s b bt n b b 303
FUNCHON ISPIINT et bbb b bbbt e bbb b bt n et bttt b bt e e b b 304
FUNCHON ISPUNCE ..ottt bbbkt e bbb b bkt e bttt b bkt e e b 304
FUNCHON ISSPACE ...ttt b ettt bbbt e bbb b bt n e e bttt s b bt e s b b 304
FUNCHON ISUPPET ..ttt b ettt b e bbbt e e bt e bbbt n et h et s b bt e s b b 304
FUNCHON ISXATGIL ..ttt b bbb bbb bbbkt e e b b 304
FUNCHON IO ettt b b et b b b et e bttt e b bt e e b b 305
FUNCHON LBSTCNAT ...ttt bbb e bbb bttt b et n et bt e e b b 305
FUNCHON LASTEVENT ..ottt bbbttt bbbt b et b ket n e b 305
FUNCHON LASTEVENTINTL...4}... .ottt bbbttt 306
FUNCHON LBSTSIIING. ...ttt b ettt b bt e bbbt b et s b nens 306
FUNCHON LINETO .ottt bbb bbbttt b bkt b et b ekt e b 306
FUNCHON LOBADESKIOP. ...ttt b et b ettt b e b b 306

Function Left

© 2021 Phyton, Inc. Microsystems and Development Tools

11

12

CPI2_MODEL Device Programmers - CPI2-B1

FUNCHON LOBALIDIAIY......cuiiiicice bbbt bbbtttk 307
FUNCHON LOBAOPHONS.cuiiiiiiiiietet ettt h bbb b bt e bttt b et b b 307
FUNCHON LOBAPTOGIAMcuiiiitiiiiietet ettt bbb bbbt e bbbt e b n s 307
FUNCHON LOBAPTOJECL ..ottt bbbt bbbkt e bbbt e b 308
FUNCHON TOCKING .ttt bbbt b bt e bt s b bt b e 308

Function log
Function log10
Function Iseek
Function Itoa

FUNCHON IMBXAUTttt bbbk e bbbt e bbb bbb bt st e bt n bkt e e b b 310
FUNCHON MEMICCPY. vttt ettt b ettt h bbb e bbbt e b bt b b bt n e e bt s b bt ee s b n s 310
FUNCHON MEMICRT ..ttt bbb h b e e bttt b b bt n et b et s bbb 310
FUNCHON MEMICITIP. .ttt bbbkt e bbbt e bbb bbbt n e e bttt e bkt e e b b 311
Function memcpy..... 311
FUNCHON M BMICIID. ittt bbbt bbb b bt e e bttt b b bt et e bbb bt e e b b 311
FUNCHON MEMIMOVE. ..ottt bbbttt bbbt e bbb b b et st e bt n bkt e e b b 312
FUNCHON MEMISEL. ..ottt bbb b bt e bbb b bt et e h et s et bt s b b 312
FUNCHON MESSAGEBOX ...ttt ettt b bbb b bttt b et b bt benens 312
FUNCHON MESSAGEBOXEX. ...ttt bbbttt b et b etttk ne b 312
FUNCHON IMINAGAT ..ottt h e bbb e e bttt b b bt ne e bttt s b b et e b b 313
FUNCHON MKAIT bbb bbb b bt n et bttt b bt s b b 313
FUNCHON MOVETO ...ttt bbbt ettt bbbt et bbbt 314
FUNCHON MOVEWINTOW.... .ottt ettt b bt b b bt n e e bttt s bbb b 314
FUNCHON MOVITIEIM ..ottt b kbbbt e bbb b bt n et h et s b bt e s b b 314
Function open314
FUNCLON OPENEAItONWINTOW........cuitiiiiiiieieicirte ettt bbbttt ettt 315
FUNCLON OPeNSITEAMWINTOW........cucviiiiiieiiirireet ettt bbbttt n s 315
FUNCHON OPENUSEIWINAOW. ...ttt bbbttt bbbt b etttk ee e 316
FUNCHON OPENWINUOW. ...ttt h et bbbt e bt s ettt ben s 316
FUNCHON OULPOIT ..ttt bbbt b bt e bttt s b bt e e b b 317
FUNCHON OULPOID ...ttt bbbtttk 317

Function peek
Function peekb
Function poke
Function pokeb

Function Polyline .. .318
FUNCHON POW ettt bbb h e bbbt d bbb bbb bt e bttt s b bt e b 318
FUNCHON POWLO .ottt e bbbt e bbb b b et e bttt s b b et e e b b 318
FUNCHON PN bbb e bbb b bt ne e bttt s b bt s b b 319
printf Conversion TYPE CHATACIEIS.ciiiiice ettt 319
PrINF FIAg CRATACIETS ..ottt bbbt b bttt b ettt b bbb 320
printf Format SPeCifier CONVENTIONS. ..ottt 320
Q0€ OF YOE CONVEISIONS ...ttt ettt bbbttt bbbt s bbbt 321

OF CONVEISIONS et b bbbkt e b bttt ettt benens 321

900G OF Y0G CONVEISIONS ...ttt b ettt bbbt e b ea et s bkt e b bttt nenens 321

QOX OF Y0X COMVBISTONS ...ttt ettt b ettt bbbt b et s bbb s bbbttt benebs 321
Alternate FOrms for printf CONVEISION ...ttt 322

PrINTF FOIM At SPECITIEIS ...tttk ettt b et b s 322
PrNTFFOIMAL SIINQ ottt b et b bbbt 323
PNt INPUE-SIZE MOGITIEIS ...ttt bbbttt 323
PriNtf PreCiSioN SPECITIEIScviiiiicc bbbttt bbbt 323
PNt Width SPECITIEIS ...t bbbttt 325
FUNCHON PSCANT .ttt bbbt b b bt ne e b et b bbb 325

Function putc

© 2021 Phyton, Inc. Microsystems and Development Tools

Contents 13

FUNCHON PULBNV .ttt b bbb bbb bkt n e bbbt s bkt b e 326
FUNCHON PUIW ettt bbbt e bbb b bt n et bttt s et bt n b b 326
L8 o3 10 T -V o o SRS 327
[T Tex 1o] a1 =V q o (o] o IO SRS 327
[T Tox 10T T =V a o (o o 1= SRS 327
LT o310] T == o SRS 327
Function Rectangle......... .328
FUNCHON REATAWSCIEEN. ..ottt ettt sa et e e s e st e se et e se e s e e e s e st e st ebeseesentesessenenseneeneseeneanan 328
FUNCHON REIOAUPTOGIAM ...ttt b ettt b b bt n e e bbbt e e b b 328
FUNCHON REMOVEBUIIONS ...ttt sttt ettt ettt e et et e st eneseeneenan 328
LT o 10T AT (= F= o = SRR SRS 329
LT ox 10] T =LY T SRS 329
FUNCHON RIGNT et bbbttt b bt e bbbkt b e 329
Function rmdir .329
Lo 1o TS T= L =TI - - TSRS 330
FUNCHON SAVEDESKIOP ... ettt bbbttt b bttt b etk e b 330
FUNCHON SAVEFIIQ......ciiceiecee ettt et e e s e st et et ese s e s e st et e beseesentesess e e nteneeneneeneann 331
FUNCHON SAVEOPTIONS ...ttt b bbb bt e bbb b bt ne e bbb bt ben s 331
FUNCHON SCANT ettt b et b e bRt b e st b e b b e ne et e b e seebe s be s et e e nbe st eneseeneenan 331
LT ox 10T TS == U o o SRS 332
FUNCHON SEAICRPATN......c.ceiiii bbbt bbbt b ettt e b b 332
FUNCHON SEAICHREPIACE........cuiiiietcc ettt b ekt 333
FUNCHON SEIECIBIUS.....cuiieicteee ettt sttt b e s e st et e beseese st e s e ss e e eteneeneneenennan 333
[T Tea Lo] TS (=T ox 1o o | SRS 333
Function SelectPen.. .333
[T Te 1o] TS 1= (@ o] (o SRS 334
FUNCHON SEIBKIMOUE.cuiieeeiiieieiie ettt s s e st e e s e st e se et e se e s e e e seneeneebeseesenteseasenenseneeneneenennan 334
FUNCHON SEIBIEAK........iiiiiieieteee ettt b e st b et e b e bt s b et e ke seebe st e se st e e e be st eneneeneenan 334
FUNCHON SEtBrEaKSRANGE. ...ttt b ettt b et bbbt 334
FUNCHON SEBYLE ...ttt bbbt bbb e bbb b bt e bttt s b b et e e b b 334
FUNCHON SEICAPTION. ...ttt b b bt e bbb bbb st st b et b ket b b 335
Function setdisk .. .335
FUNCHON SEIDWOIU.......iieiiiieieieieeiie ettt ettt se st s s s e s et e e eseseeseebeseese s eseneeneebeseesentesenseneeseseenestenennan 335
FUNCHON SEIFTIENGME ..ottt bbb et e b e b e st et ek e se e b et e st st e e et e st eneseeneanan 335
LT Tox 10T A T=Y =Y 1] = SRS 336
Function SetMark .. .336
[T Te 1o] A T=Y =] (0 0= o o OSSPSR 336
FUNCHON SEUMEIMOTY.....viiiiiiecttici ettt b bbbttt b b bt n e e bttt b bbb 337
LT Tox 10T A T=Y =] 1o Lo = SRS 337
FUNCHON SEIPIXEI ...ttt et b et b et b et e b e bt s b et e ke neebe st e s et e e nbe st eneseeneenan 337
[T Tex 1o] TS =D (o] o SRS 337
[T Tex 10T TS =] 0 o To 1 o L= SRS 338
FUNCHON SEUPAAEMOUE.ottt bbbt bbbt b etk ne b 338
FUNCHON SEIWINAOWRFONL ...ttt e s e st et beseesesbesess e e nseneeneneeneanan 338
FUNCHON SEIWINAOWSIZE..... oottt ettt b et b et s e e s e st et e beseesentesesseneeteneeneseeneanan 339
FUNCHON SEIWINAOWSIZET ..ottt ettt b ettt b e st et e b e ne e b et e s et et nbe st eneseeneenan 339
LT o 10T TS AT o] o TSRS 339
L1 o310 =1 SRS 340
FUNCHON SPIINEE et b et bbb bbbt n e bbbkt e b b 340
FUNCHON SOM ettt bbb e bbbt e e bbb b e ne e bttt n b bt e e b b 340
L8 o3 10T 1= = g o SRS 341
FUNCHON SSCANT ettt bbbt b e st e st b e st e b e b e b e nb et e b e st e be et e s e b e e e be st enesbeneanan 341

Function Step
Function Stop

© 2021 Phyton, Inc. Microsystems and Development Tools

13

14

CPI2_MODEL Device Programmers - CPI2-B1

Function stpcpy
Function strcat
Function strchr
Function strcmp
Function strcmpi
Function strcpy
Function strcspn ..
Function stricmp
Function strlen
Function strlwr
Function strncat

FUNCHON STNMCIMIP ..ttt bbbk e bbbt e bbb b bt ne e bttt s b bt b b 345
FUNCHON STNMCIMIPi.uiiititiiiiietetcc ettt bbbkt b bbb bttt b et e bkt e e b b 345
Function strncpy .. . 345
FUNCHON ST .ttt bbbt e bbbt e bbb bt n e e bttt s b bt e e b b 346
[T o 10T TS 14 0 Y = SRRSO 346
FUNCHON STPDIK et b et b bbb bttt b bbb 346
LT o310] TS 15 o OSSR 346
FUNCHON SITEY etttk b e et b e b et bt s b e Rt b e st b e b e b e nE et e b e seebe b e s e b e e et e st eneseeneenan 347
LT o3 10T TS 1 £ = SRR 347
FUNCHON STISPIN ittt b b e bbbt e e bttt b b bt ne e bt s bttt e b b 347
LT o 10T TS 1 £ (RSOSSN 347
LT o310 = 1 (o SRR 348
L8 o310 TS 1 (o T | TSRS 348

Function strupr
Function tan
Function tanh
Function tell
FUNCHON TEIMINAIEAIISCIIPLS.ciiitetiiiietei ettt bbbt b ettt 350
FUNCHON TEIMINAIESCIIPL... .ttt bbbt b bbbt b ket e e b s 350
Function Text
Function toascii
Function Tof

[T e 10T T (o] 011 OSSR 351
FUNCHON TOUPPET ..ttt bbbk e bbbt et b b bt ne e bttt s b bt e e b b 351
Function ultoa
Function unlink

FUNCHON UNTOCK .t bbb b bttt h ettt b bbb 352
FUNCHON UP ettt b b b e e E kbbb e e e e bt s b b et e s b b 352
FUNCHON UPAAEWINUOW......c.eeiiiiiiteicii ettt bbbkt b etttk e b 352
FUNCHON WAL ettt bbb h bbb b bt ne e bttt b bt b b 352
FUNCHON WAITEXPICRANGE. ...ttt bbbttt b e 353
FUNCHON WaAITEXDITIUE ...ttt bbb bbbt b ekt b b 353
FUNCHON WaItGEIMES SAUE. ...ttt ettt b bt n e e bttt sttt e s b b 354
FUNCHON WaAItMEIM OFYACCES ...ttt sttt ettt b bt a bbb b b bt ne e bttt b bt e s ben s 354
FUNCHON WaAItSENUMESSAGE.coiiiiiiiiiiiiteietre ettt bbbttt bbbt b etk re b 355
FUNCHON WAIESTOP ...ttt bbbttt bt b et s bbb b 356
FUNCHON WAIWINAOWEVENL.......ciiitiiiiieetct ettt bbbt b et b ettt 356
FUNCHON WOEBTCNAT. ...ttt bbbttt bbbkt b et e bkt e b b 356
FUNCHON WOEBTNEX. ..ttt bbbt b bbb b bt n et h et s b bt be b 357
FUNCHON WOEBTSTIING ...ttt b bbbt b bt e bbbt b b 357
FUNCHON WINAOWHOTKEY......ceiiiiiietc ettt bbbttt 357
FUNCHON WOTALET......cee bbbt b ettt b et b ettt b e

Function WordRight

© 2021 Phyton, Inc. Microsystems and Development Tools

Contents 15

Function wprintf
Function write
lock
Variable _fmode 359
VariabIe ADPINGITIE.ttt h ettt bt e bbb e e bttt b b st e s b et 359
VT E=Y o] (3 =1 (o Ted (@ o] SRS 360
Variable BlockCol2...
AT = Yol [T =] CoTed (I = SRS 360
VarAabIE BIOCKLINEZ..... ..ottt sttt ettt b et s e st e e e se st e e ebe e e se s esessenenbeseenenteneasanensens 360
Variable BlockStatus.... .
VarADIE CaSESENSIIVE......c.iiiicireei et sttt et e e e sese e e e be e e setesessenenbeseenentenenbanensens 361
VL=V o] [T O T @ o SRS 361
Variable CurLine 361
Variable DESKIOPNAIME ...ttt bbbt e bbb bt n b et 361
RV L=V o] (<IN =T 1 T TSRS 361
Variable InsertMode......... .. 362
Variable LasStFOUNASIIING......c.c.oiieiiiet ettt bbbttt b ket b e nn e 362
Variable LaStMEMACCAUAN. ..ottt sttt e s s e e e se st e e ebe e e sentesessenenbeseenestenensenensens 362
Variable LastMemAccAddrSpace... .
VariabIe LaSIMEIMACCLEN. ...ttt sttt et e e e ae st et ebe e e setesessenenbeseesentenensenensens
Variable LaStMEMACCTYPE ...ttt ettt ettt b bt e bbbk s et e s b e e
Variable LastMessagelnt......
Variable LastMessagelLong
Variable MainWINAOWHENUIE ..ottt e ettt e e nbeseenestenessenensens
Variable NumWindows.......... .
Variable REGUIAIEXDIESSIONS ...ttt bbbttt b ettt nn e
Variable SEIECIEUASIIINGccviterei ittt bbbt e bbbt e s b e
Variable SystemDir......
Variable WholeWords
Variable WINAOWHEANAIES...........oiceeee ettt a e st e et e e se st se st enenbeseesentenenbanensens
Variable WorkFieldHeight.
Variable WOTKFIEIAWIALN ..ottt b e st e et et s s e e nbeseeneseenenbenensens
5 ACIFUCtiONS and SEIUCIUIES.......ccoiiiiiiiiiii

ACTRUCTIONS ettt bbbt E bt E bbb e e bbb bbbt b b eb et et ne bttt ren b s
ACI_AlIPrOgOPIONSDETAUIL.......c.oriiiiieieeeee ettt st b ettt e et seebe st e e s be e nbens
ACI|_BuffersDialog..............

ACI_ConnectionStatus
AC T CrEATEBUTEI ...ttt sttt b e b et b e s e et b et e be b b e st et ek e neebenbe e be st nten
ACI_ErrorString
ACI_ExecFunction
ACI_Exit
ACI_FileLoad
ACI_FileSave
ACI_FillLayer
ACI_GangStartcccceeeuee .
AC|_GangTerMiNAtEFUNCHON........c.ciic bbbt
F o] 1= (@] o1 =Y od o o OO OSSOSO PTSTUROTRPRRIN
ACI_GetDevice
ACI_GetLayer
F o I CT=y (oo @) o] ([o OSSOSO PSSV
ACI_GetProgrammingParams....
ACT_GEISTAIUS oottt b bt ee e b bt d e bbb bbb e e e bttt b bbbt
ACT_LABUNCR bbbt 4t b e e bbb et e b et e b e s e et e b e e e b et e bt e b e ne e b e st e benbeneebe st nben
ACI_LoadConfigFile

© 2021 Phyton, Inc. Microsystems and Development Tools

16

CPI2_MODEL Device Programmers - CPI2-B1

ACI_LoadFileDialog.

ACI_LOAAPIOJECE ...
ACI_ReadLayer ...

ACI_ReallocBuffer.....
ACI_SaveConfigFile
ACI_SaveFileDialog
ACI_SelectDeviceDialog....

ACI_SerializationDialog........ccccceoevrvereininninicinenns
ACI_SetConNECtioN.......ccocuerrieeirereiccesreeeeeas

ACI_SetDevice
ACI_SetProgOption

ACI_SetProgrammingParams.........c.cccevevvrereenenn

ACI_SettingsDialog...

ACI_StartFUNCHON.........ccviccereccceeees
ACI_TerminateFUNCLioNn..........ccccovvveeenininieecinens

ACI_WriteLayer
ACI Structures

ACI_Buffer_Params.........cccoooreennnicinnnecenenns

ACI_Config_Params........

ACI_Connection_Params..........ccoeeeererneeeinennas
ACI_Device_Params........ccoueernreereenenneieenenens

ACI_ErrorString_Params...

ACI_File_Params.........cccovnmeennniccinneecneens
ACI_Function_Params..........cccccovriecnnnncienennns

ACI_GangStart_Params........

ACI_GangTerminate_Params........c.ccocecvrvrcerenenn
ACI_Launch_Params........c.coocecernniccnnnncinenens

ACI_Layer_Params......
ACl_Memory_Params

ACI_ProgOption_Params.........ccceevvrererenereneenens

ACI_Programming_Params.

ACI_ProjectParams.........cccoueeenrreirecnenninieinenens
ACI_PStatus_Params.........cccccvevnvineeneieneneenenn

Index

© 2021 Phyton, Inc. Microsystems and Development Tools

Introduction 17

1 Introduction

PhytéGn

CPI2-B1
In-System Device Programmers

User's Guide

Copyright © 2017-2020, Phyton, Inc. Microsystems and Development Tools, All rights reserved

1.1 Terminology

Terms used in the document

Operations on device mounted on a board in user equipment. ICP is
performed via a cable connecting programmer to the target either directly]
or via needles or pogo contacts.

Same as ISP above.

ISP or in-system
programming

ICP or in-circuit
rogramming

Mode of the in-system programming that is usually defined by the
programming signals voltage or the ISP interface (JTAG, SWD, UART,
SPI, etc.). Distinct ISP modes are enabled for different target devices ang
more than one mode may exist for one device.

A serial flash memory device, microcontroller or programmable logical
device having memory inside which can be programmed by an in-system
device programmer. In CPI2-B1 GUI device nhames comprised of part
numbers (full or reduced) following types of ISP programming modes in
[] brackets (for example: PIC10F200 [ISP HV Mode], M25P X80 [ISP
Model]).

[DUT IWice Under Test - same as target device above.

Start and End Addresses [|Physical memory range of target device to perform programming

|(of the Target device) operations (read, write, verify, etc.) on.

Programming Interface On-device port that enables access to the internal memory that includes
but not limited to: SPI, 12C, JTAG, SWD, UART.

© 2021 Phyton, Inc. Microsystems and Development Tools

Target device or Target

18

CPI2_MODEL Device Programmers - CPI2-B1

ISP Mode

different target devices and more than one mode may exist for one
device.

\i/lode of the in-system programming. Distinct ISP modes are enabled for

ISP JTAG Mode

III—n—system programming using JTAG interface.

lisP SWD Mode

Illn-system programming using SWD (single wire debug) interface.

ISP EzPort Mode

Illn—system programming using Freescale proprietary EzPort interface.

[ISP HV Mode Iln—system programming that requires application of relatively high voltage
|to the target device (12V for example).
IFile In the CPI2-B1 context the term file may represent: a) an image of

information on a PC hard drive or other media that is supposed to be
ritten into the target device’s physical memory, or b) an image fetched

from the target device and stored on the disk or other media. Files in

ChipProg can be read from and written to a PC hard drive or CD.

IBuffer or Memory buffer

Buffers are intermediate data holders between data in files and data in
the target device. A buffer is a portion of computer memory (RAM) used
to temporarily store, edit and display data to be written to the target
device or read from the device. User can open any number of buffers of
any size only limited by available computer memory.

IBuffer layer or sub-layer

buffer may hold several layers (also known as sub-layers) that
according to architecture and memory model of a particular target
device. For example, for some microcontrollers one buffer can include
the code and data memory layers (see more details below).

IBuffer size

Buffers size may vary from 128KB to 32GB.

IBuffer start address

The address to display the buffer contents from.

IChecksum

An arithmetic sum of all bytes of data in a specified part of buffer
calculated by programmer to ensure data integrity. The program has a
variety of algorithms for checksum calculation and allows writing the
checksum into a specified location of the target device.

[Command Line mode

Method of controlling a CPI2-B1 in which the user issues commands to
the computer program in the form of successive lines of text (command
lines).

Standalone Operation
IMode

CPI2-B1 device programmer contains internal memory card that can
hold all information that the device programmer needs to run without
further interaction with a PC.

[Project

An integrated set of information that completely describes the target
device, properties of data buffers, programming options and settings, list
of source and destination files with their properties, etc. ChipProg-02
stores projects in the computer memory. Each project with a unique
name can be stored and promptly reloaded for immediate execution.
Usually user creates a project to work with one type of device. Using
projects saves a lot of time during initial configuration of programmer
every time you start working with a new device.

Standalone job (or Job)

This is the same as a project above but the ChipProg-ISP2 stores this

integrated set of information that completely describes the target device,
data to be programmed and other programming options and settings not
in a PC memory but on the SD card inside of the programmer hardware.

© 2021 Phyton, Inc. Microsystems and Development Tools

Introduction 19

Then a stored job can be launched by applying appropriate electrical
signals from the ATE to the connector CONTROL.

1.2 CPI2-B1 device programmer

ChipProg-ISP2 is a family of in-system device programmers produced by Phyton, Inc. Microsystems
and Development Tools. Currently this family consists of two models: a single-channel CPI2-B1 and
CPI2-Gx gang device programmer. See the ChipProg-ISP2 portfolio on the www.phyton.com.

CPI2-B1 device programmers are primarily intended for use in test fixtures for programming single-
and multi-board panels. For this purpose multiple CPI2-B1 units can be driven from one computer in the
gangl 1 mode. This device programmer can be also used for engineering and field service. The
programmer works under control of the ChipProg-02 software package. See the pictures below.

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.phyton.com

20

CPI2_MODEL Device Programmers - CPI2-B1

1.2.1

1.2.2

Features Overview

Features Overview

e Programs devices with Vcc from 1.2V to 5.5V.

e Supports JTAG, SWD, SPI, SCI, RC, UART, and other on-chip programming interfaces.
o Extremely fast.

e Can program some devices at a long distance of up to 5m (~15ft).

¢ Virtually unlimited number of CPI2-B1 units can be controlled by a single computer.

e Each of ganged programmers works independently.

¢ USB 2.0 High Speed and LAN 100 Mbit/s communication interfaces.

e ATE interface for stand-alone operations.

e Each module has memory card that enables stand-alone operations.

¢ Friendly intuitive graphical user interface (GUI).

o Simplified graphical user interface for use by unskilled personnel.

¢ Application Control Interface (ACI) with SDK for developers.

¢ ACl enables control from programs in Visual Basic, C, C++, C#, etc.

¢ ACl enables control from National Instrument® LabVIEW ™.,

¢ On-the-fly utility allows controlling already launched programmer.

¢ Software includes scripting language.

¢ Project files are protected against hackers and corruption.

e Programmer kit includes a bracket for mounting on a standard DIN rail.

¢ Clip-on compartment for a battery, LEDs and a button for standalone operations (optional).

Hardware characteristics

NOTE. Some of the features and items below may be unavailable by the moment of sale of your CPI2-
B1 device programmer

Housing Options and Applications

e Palm-size unit in a plastic enclosure.

¢ By means of enclosed plastic brackets multiple CPI2-B1 units can be mounted on a standard EN
50022 (TS35) 35 mm DIN ralil.

Extra Options and Ordering Codes
e CPI2-B1 - single-channel programmer with no galvanic isolation of control lines.
e CPI2-ISO - single-channel programmer with galvanic isolation of control lines.

Communication interfaces
e USB 2.0 High-speed.
e Ethernet (LAN) 100 Mbit/s.

Powering the programmer

e From external power supply 5V/1A (not included).

e From PC USB port.

e Rechargeable Li-lon battery (with CPI2-BB option only).

Powering Targets from the Programmer

© 2021 Phyton, Inc. Microsystems and Development Tools

Introduction 21

¢ When powered from an external power supply (5V@1A), provides the target equipment with the
voltages: Vcc (1.2 to 5.5V @ up to 350mA) and Vpp (1.2 to 15V @ up to 80mA).

Signals to/from the Target

¢ Ten input/output lines with logical levels 1.2 to 5.5V that can be individually programmed as
TTL/CMOS logic /0.

¢ The signal lines above alternate with GND lines for stable programming via long cables.

o Two input/output lines which can be individually programmed as TTL logic I/Os, GNDs, Vcc or Vpp.

Control Methods

¢ Start/Stop logic signal for external control.

Output signals for external control: BUSY, GOOD and ERROR.

Five logic inputs for choosing one of 32 preloaded standalone jobs (projects).

One low-current output for setting that can be used for standalone job selection code.
One output signal for charging an add-on battery (CPI12-BB).

Three GND lines.

Dimensions
e CPI2-B1 unit: 114 x 73 x 32 mm (~4.5 x 2.9 x 1.25 inch).

1.2.3 Software features

NOTE. Some of the features and items below may be unavailable by the moment of sale of your CPI2-
B1 device programmer.

System Requirements
e Microsoft® Windows™ XP, 7, 8 or 10.

Software Features

o Supports loading and saving files in all popular formats.

¢ Unlimited number of data buffers can be open and maintained.

¢ Enables arithmetic operations with data blocks in buffers.

¢ Enables writing serial numbers, MAC addresses and other device-specific parameters into user-
selectable shadow areas of target devices.

¢ Allows writing of user-defined signatures and data blocks into target devices.

o Offers several algorithms for calculating checksums.

e Special DLL for user-defined checksum calculation.

¢ Writes programming session logs with real time stamps.

e The GUI has a special editor for easy setting of device and algorithm parameters, such as fuses, lock
bits, boot loader vectors, etc.

o Comprehensive self-test procedure.

Managing Projects and Configurations

¢ The software supports unlimited number of projects.

¢ Project files are protected against hackers and corruption.

e The software ensures data integrity - every data transfer to/from a PC or ATE system or memory
card is accompanied with CRC sum.

¢ The software allows storing and retrieving the state of user interface: configurations, colors, fonts, hot
keys and other settable preferences.

Computer Control Methods

© 2021 Phyton, Inc. Microsystems and Development Tools

22

CPI2_MODEL Device Programmers - CPI2-B1

1.2.4

1.2.5

e From Automated Test Equipment (ATE), In-Circuit Test System (ICT), or programming fixtures.

¢ From command line or via Application Control Interface (DLL).

¢ Integration with National Instruments® LabVIEW ™ software.

¢ On-the-fly management utility allows control of already launched and running device programmer.

¢ Built-in scripting language for writing user scripts. Auto programming can be started by closing fixture
lid or by connecting a device.

¢ Friendly and intuitive graphical user interface (GUI) for creating and debugging projects.

o Optional simplified user interface for unskilled personnel.

Standalone Control

e The programmer can work in a standalone mode that does not require connection to a computer.
Up to 256 standalone jobs can be stored on a built-in memory card.

32 of 256 standalone jobs above can be selected and launched by ATE signals.

Special utility allows monitoring standalone activity on a computer.

Communication Interfaces

CPI2-B1 is equipped with two communication computer interfaces: USB 2.0 and Ethernet (LAN) 100
Mbit/s. Sockets for USB and LAN connections are located on a rear panel of the CPI2-B1 unit.

If the programmer is controlled from a graphical user interface (GUIl 41), by default, the Startupl "
dialog prompts to connect via USB. The user may select the Ethernet radio button in the this dialog
instead. If the programmer is controlled from a command line and no ETH (Ethernet) options is
specified in the startup command line, the ChipProg-02 will establish connection with the programmer
also via USB. The ETH command options are listed in the command line option matrix.

If a CPI2-B1 programmer, or a cluster comprised of multiple CPI2-B1 programmers, is controlled by
Ethernet there are two options of assigning IP addresses for each device programmer: dynamic, or
static IP addresses. By default, if the programmers are controlled via Ethernet, the ChipProg-02
software is set to get IP addresses dynamically distributed by your Internet router. Within a local
network, a DHCP server assigns a local IP address to each device programmer connected to the LAN.
However, it is possible to set unique static IP addresses for each CPI2-B1 unit.

Connector TARGET

TARGET connector

The TARGET connector positioned on the front panel enables connecting a CPI2-B1 device
programmer to the target device by the 20-wire ribbon cable included in a CPI2-B1 kit. See here the
connector pin assignment and description of the signals in the matrix below.

CPI12-B1 TARGET connector

#1 9\ palariza$n notch v #1 +
s = = = =2 = ® ® = L
" = = = = = = = =

#20 #2

© 2021 Phyton, Inc. Microsystems and Development Tools

Introduction

Pin# Signhal | Signal description —all signals are bidirectional

1 P1 Log 0/1, Vcc or GND

2 P11 Log 0/1, Vcc, Vpp or GND
3 P2 Log 0/1, Vcc or GND

4 GND Ground

5 P3 Log 0/1, Vcc or GND

6 GND Ground

7 P4 Log 0/1, Vcc or GND

8 GND Ground

9 P5 Log 0/1, Vcc or GND

10 GND Ground

11 P6 Log 0/1, Vcc or GND

12 GND Ground

13 pP7 Log 0/1, Vcc or GND

14 GND Ground

15 P8 Log 0/1, Vcc or GND

16 GND Ground

17 P9 Log 0/1, Vcc or GND

18 GND Ground

19 P10 Log 0/1, Vcc or GND

20 P12 Log 0/1, Vcc, Vpp or GND

23

e P1to P10 - logical signals formed by high-speed buffers that can output target-specific logic 0 or 1,
Vcc or GND levels, according to the chosen target device type. These lines can output Vcc with

levels from 1.2 to 5.5V @ up to 350mA. The buffers are bidirectional, also serving as inputs when the

CPI2-B1 programmer reads data.

e P11, P12 - signals formed by high speed mixed-signal circuits that can also output target-specific
logic 0 or 1, Vcc or GND levels according to the type of the chosen target device. These lines can
output Vcc with levels from 1.2 to 5.5V @ up to 350mA. The mixed-signal buffers are bidirectional,
also serving as inputs when the CPI2-B1 programmer reads data. In addition, these two signals can
output Vpp voltage with levels from 1.5V to 15V @ up to 100mA.

The P1...P12 signals are target-specific. A CPI2-B1 user must ensure that the target device (DUT) is
properly connected, according to the target-specific wiring diagram published on the

http://phyton.com/products/isp/chipprog-isp2-family/cpi2-b1-connecting web page. When

programmer is controlled by the GUI, the same diagram can be viewed in a browser by clicking the
Connection to the target device link in the Device Information window.

To “cut off” the target in the stand-by mode or after completion of any programming operation, CPI2-B1

programmer leaves the P1...P12 signals in a high impedance state.

© 2021 Phyton, Inc. Microsystems and Development Tools

http://phyton.com/products/isp/chipprog-isp2-family/cpi2-b1-connecting

24 CPI2_MODEL Device Programmers - CPI2-B1

1.2.6 Connector CONTROL

CONTROL connector

The CONTROL connector positioned on the right side of the CPI2-B1 unit enables connecting the
programmer to Automated Test Equipment (ATE) or the fixture by the 20-wire ribbon cable. See the
connector pin assignment and description of the signals in the matrix below. The programmer may be
optionally equipped with a CPI2-ISO 10 galvanic isolation board. Therefore, there are two different
diagrams shown below, one for each configuration.

CPI2-B1 CONTROL connector

#2 #20 *
Top

#1 A polarization notch #19

Variant WITHOUT optical isolation (CPI2-ISO is NOT installed inside of CPI2-B1)

Pin# Signal Type of Signal description — all signals are bidirectional
signal

1 GND Ground Ground

2 GND Ground Ground

3 JOB_SELO < Input Job select 0; active log 1

4 START < Input Control signal that launches/stops programming; active: log O

5 JOB_SEL1 < Input Job select 1; active: log 1

6 |5V_CHARGE Output > 5V @ 500 mA sending to battery compartment for charging the
battery

7 JOB_SEL2 < Input Job select 2; active: log 1

8 S5V_IN < Input 5V input - either from external power supply or the CPI2-B1
battery

9 JOB_SEL3 < Input Job select 3; active: log 1

10 5V_IN < Input 5V input - either from external power supply or the CPI2-B1
battery

11 JOB_SEL4 < Input Job select 4; active: log 1

12 GND Ground Ground

13 SAMODE < Input Standalone mode control; active: log 1

14 GND Ground Ground

15 ST_GOOD Output > Signal GOOD sent to ATE; active: log 0

16 GND Ground Ground

© 2021 Phyton, Inc. Microsystems and Development Tools

Introduction

25

17 ST _BUSY Output > Signal BUSY sent to ATE; active: log 0
18 NC Not connected] Not connected

19 | ST_ERROR Output > Signal ERROR sent to ATE; active: log 0
20 NC Not connected] Not connected

e JOB_SEL[4..0] — 5-hit selector for choosing one of 32 preloaded standalone jobs - the #0 select
code is 000000, the #4 - 000100;
e ST _GOOD | ST_ERROR | ST_BUSY - programmer status lines; active status: log 0;
e START - External signal launching and stopping the programmer; active status: log 0. If this signal
remains applied to this connector pin for longer than 2 sec it switches the programmer to the
Standalone Mode;

¢ 5V CHARGE - +5V @ 500mA max signal that charges CPI2-BB battery. It can be used for powering

on the SA job selector;
e 5V_IN — 5V supplied either from an external power adapter plugged to the programmer or from a

stacked CPI2-BB compartment with a built-in battery or floating 0V if both external power adapter and

CPI2-BB compartment are not connected to the CPI2-B1 unit.
¢ SAMODE - Standalone mode control; log 1 applied to this input at a moment of powering the
programmer on switches the programmer to the standalone mode] 132\,

Variant WITH optical isolation (CPI2-I1SO is installed inside of CPI2-B1)
Pin# Signal Type of Signal description — all signals are bidirectional
signal

1 NC Not connected| Not connected

2 NC Not connected| Not connected

3 JOB_SELO < Input Optically isolated job select O; active log 1

4 START < Input Optically isolated control signal that launches/stops
programming; active: log O

5 JOB_SEL1 < Input Optically isolated job select 1; active: log 1

6 V_ISO Output > Optically isolated 5V @ 10 mA max

7 JOB_SEL2 < Input Optically isolated job select 2; active: log 1

8 NC Not connected] Not connected

9 JOB_SEL3 < Input Optically isolated job select 3; active: log 1

10 NC Not connected] Not connected

11 JOB_SEL4 < Input Optically isolated job select 4; active: log 1

12 GND Ground Optically isolated GND line

13 SAMODE < Input Standalone mode control; active: log 1

14 GND_ISO Ground Optically isolated GND line

15 ST_GOOD Output > Optically isolated signal GOOD sent to ATE; active: log O

16 GND_ISO Ground Optically isolated GND line

17 ST _BUSY Output > Optically isolated signal BUSY sent to ATE; active: log 0

© 2021 Phyton, Inc. Microsystems and Development Tools

26

CPI2_MODEL Device Programmers - CPI2-B1

1.2.7

18 RS232_TX Output > Data transmitted to computer

19 | ST_ERROR Output > Optically isolated signal ERROR sent to ATE; active: log O

20 RS232_RX < Input Not connected

e JOB_SEL][4..0] — 5-bit selector for choosing one of 32 preloaded standalone jobs - the #0 select
code is 000000, the #4 - 000100;

e ST_GOOD | ST_ERROR | ST_BUSY - Optically isolated programmer status lines; active status:
log O;

o START - Optically isolated external signal launching and stopping the programmer; active status: log
0; If this signal remains applied to this connector pin for longer than 2 sec it switches the programmer
to the Standalone Mode;

¢ 5V_CHARGE +5V @ 500mA max signal that charges CPI2-BB battery. It can be used as a power
source for the job selector;

e 5V _IN — 5V supplied either from an external power adapter plugged to the programmer or from a
stacked CPI2-BB compartment with a built-in battery or floating OV if both external power adapter and
CPI2-BB compartment are not connected to the CPI2-B1 unit.

¢ SAMODE - Standalone mode control; log 1 applied to this input at a moment of powering the
programmer on switches the programmer to the standalone mode/ 1\

Single- and Gang-site programming

The ChipProg-02 software allows the user to drive CPI2-B1 device programmers in two different
modes:

¢ Single-programming mode - intended for programming one target device at a time by means of
one CPI2-B1 programmer.

e Gang-programming mode - intended for simultaneous programming of multiple devices by means
of multiple CPI12-B1 programmers driven from one PC. This mode is intended for mass production
in test fixtures or other ATE.

The programming mode is set in the Startug@ dialog by checking and unchecking the Gang Mode
checkbox.

The software enables control of one, specific, CPI2-B1 device programmer within a cluster of multiple
programmers driven from one PC. In this case, the user the programmers by serial number. This
allows the user to switch between Single-programming and Gang-programming modes of control.

Gang-programming mode differs from Single-programming mode in the following ways:

1. Inthe Gang-programming mode only same target device type may be selected for all
programmers controlled by one instance of the ChipProg-02 program;

2. Inthe Gang-programming mode all programmers controlled by one instance of the ChipProg-02
program share the same data buffer;

3. Only the Auto Programming] 108 function can be performed by ChipProg-02 in the Gang-
programming mode. In order to execute one command only (for example, Erase, Read, Write,
etc.) it is necessary to modify a default set of Auto Programming[% commands by removing
unwanted commands and leaving the single one required for the purpose.

By running several instances of the ChipProg-02 software it is possible to control some CPI2-B1
programmers controlled from one computer in the Gang-programming mode and others in Single-
programming mode.

© 2021 Phyton, Inc. Microsystems and Development Tools

Introduction

27

© 2021 Phyton, Inc. Microsystems and Development Tools

28 CPI2_MODEL Device Programmers - CPI2-B1

2 Installation and Launching

This chapter covers the following topics.

How to install the CPI2-B1 hardware| 201
How to install the ChipProg-02 software[23
How to launch the CPI2-B1 device programmer.

It is highly recommended that before you start using the tool you read all basic topics in the chapters
Graphical User Interfacel 48) and Operating ChipProg programmers[194) of this manual.

Experience using MS Windows and familiarity with basic Windows operation are required.

2.1 Getting Assistance

Context-Sensitive CPI12-B1 Online Help

The ChipProg-02 software comes with a comprehensive context-sensitive on-line Help. To access it press F1
key or use Help menul %7, Almost ewvery ChipProg-02 dialog, message box, and menu has a help item
associated with it; for the active dialog or menu it can be viewed by pressing F1.

In most cases you can find the necessary topic by searching for a keyword. For example, if you type "Verify" in
the first box of the Find tab, the third box will list topics related to the programming \erification. Choose
appropriate topic from this list and press Display.

A CPI2-B1 PDF manual is also available.

Technical Support

For the length of a product’s warranty period Phyton provides technical support free of charge. Although we do
our best to clean up and improve our software, ChipProg-02 software may contain minor bugs and some
programming algorithms may not be stable on some of recently supported devices. We kindly ask you to report
bugs when you get an error message or have a problem with programming a particular device or devices. We
are committed to promptly checking your information and fixing discovered bugs.

To minimize difficulties using ChipProg-02 it is highly recommended to get familiar with the manual before
using the programmer. The ChipProg-02 - user interfacel 48Y is quite friendly and intuitive; howewer, it includes
some specific functions and controls that a user should learn about.

Before Contacting Phyton

e Make sure you use the latest ChipProg-02 version which is always available as free download from the

http://phyton.com/support/updates.
e Make sure the detected error is reproducible under the same conditions and is not a casual glitch.

When Contacting Us

Please provide the following information to our technical support specialists.

e Your name, the name of your company, your contact phone, and your e-mail address.

o The CPI2-B1 serial number that can be found in the About[9" information box or on a sticker on the CPI2-B1
bottom shell.

e Software version number taken from the Aboutl 9 information box.

e The target device or DUT's part number.

e Basic parameters of your computer and operating system.

© 2021 Phyton, Inc. Microsystems and Development Tools

http://phyton.com/support/updates

Installation and Launching 29

¢ Descriptions of detected errors, relevant bug reports and error screen shots.

Please send your requests or questions to support@phyton.com. This is the easiest way to get professional
help quickly.

Contact Information

Phyton Inc., Microsystems and Development Tools

6701 Bay Parkway, Ste 3M-2
Brooklyn, New York 11204
USA

Web address:_www.phyton.com
E-mail contacts:

General inquiry: info@phyton.com
Sales: sales@phyton.com

Technical Support: support@phyton.com
Tel: 1-718-259-3191
Fax: 1-718-259-1539

2.2 Hardware installation

Three connectors are situated on a rear panel of the CPI2-B1 unit: USB and Ethernet (LAN)
communication ports and 5V power socket. See the pictures below:

Version with a coaxial 5V power plug (produced in 2015-2018 years)

5V

UsB2.0 LAN

Version with a latching 5V power plug (in production beginning 2019)

© 2021 Phyton, Inc. Microsystems and Development Tools

mailto:support@phyton.com
http://www.phyton.com
mailto:info@phyton.com
mailto:sales@phyton.com
mailto:support@phyton.com

30

CPI2_MODEL Device Programmers - CPI2-B1

Powering the programmer

A power adapter is not included into the CPI2-B1 kit. If the CPI2-B1 is controlled via a USB 2.0 port, it
may get enough power via a USB port and therefore powering the programmer from an external
supply is not mandatory. However, powering the programmer from an external 5V power adapter
ensures more stable programming operations. Driving a CPI12-B1 device programmer via Ethernet
(LAN) port always requires use of an external 5V power supply.

To power a CPI2-B1 device programmer, use any regulated 5V/500mA+ adapter. In 2015-2018
Phyton produced CPI2-B1 with coaxial power plugs (2.1 mm, center positive). Beginning 2019 Phyton
produces device programmers with latching rectangular connectors that insure more reliable
powering of the CPI2-B1 units that is important for use in production environment. Complimentary
female terminal block plug OSTTJ0211530 is included into the CPI2-B1 kit. This block is available for
purchasing from Digi-Key (p/n ED10554-ND) and Farnell Element14 corporations.

Connecting to a computer

In case of driving a CPI2-B1 device programmer via USB it is recommended to connect the
programmer directly to a USB port on a computer main unit and not to use USB hubs. In case of
controlling multiple CPI2-B1 device programmers via USB ports and use of one or more USB hubs,
these hubs should be powered. Do not use passive USB hubs.

© 2021 Phyton, Inc. Microsystems and Development Tools

Installation and Launching 31

Connecting to the target

See a picture of the CPI2-B1 TARGET connector below:

#10 TARGET #1

#20 V 7 : 3 #2
On the picture above a polarization notch of the male connector is situated on the top edge of the
connector.

A ribbon cable with both-end mounted 20-pin headers is included in the CPI2-B1 kit. This cable is
intended for connecting a CPI2-B1 device programmer to the target device (board) in accordance to
the device-specific connection diagram. After a target device was selected in the programmer GUI,
the diagram is also accessible by clicking the Connection to the target device link in the Device
Information[%21 window. Refer to the Connector TARGET] 22" pinout.

Grounding

Each IO signal wire in the ribbon cable alternates with ground wires. There are as many as 8 wires
connected to the ground point inside of the CPI2-B1 device programmer unit. To ensure stable
programming operations it is extremely important to bring all 8 ground wires (GND) from the
programmer's TARGET connector to the GND points on the target board. Do not join these GND
wires in a single wire - this may cause the programmer to crash or unstable functioning!

Connecting to ATE controls

See a picture of the CPI2-B1 CONTROL connector below:

#2 CONTROL #20

On the picture above a polarization notch of the male connector is situated on the bottom edge of the
connector. To control a CPI2-B1 device programmer from your test fixture or other ATE use the

© 2021 Phyton, Inc. Microsystems and Development Tools

32 CPI2_MODEL Device Programmers - CPI2-B1

CONTROL port. The CPI2-B1 kit does not include a cable with a 20-pin header to connect this port.
Refer to the CONTROL connector pinout to customize connection to your ATE.

Mechanical mounting

CPI2-B1 device programmer kits include plastic brackets for mounting programmer units on a
standard 35 mm DIN rail. Use these brackets for mounting multiple device programmers on a DIN
rail.

2.3 System Requirements

To run ChipProg-02 and control a CPI2-B1 device programmer, you need a personal computer (PC) with the
following components:

Pentium-V or higher CPU.

Microsoft Windows XP, 7, 8 or 10 operating system.

A hard drive with at least 200MB of free space.

In case of use the USB communication: at least one USB 2.0 port.

In case of use the Ethernet communication: at least one LAN port or an Ethernet router with the
Dynamic Host Configuration Protocol (DHCP).

2.4 Software Installation

Since beginning of 2020 Phyton does not supply device programmer kits with CD ROMs with the ChipProg-02
software. Users should download the latest software version from the https://phyton.com/support/updates
webpage. To begin the software installation launch the cp-02.exe self-extracting executable file. Or, if you have a
CD ROM, insert it into a CD drive on your PC. When installer launches, click the Install ChipProg-02 button,
accept the license agreement, and follow the series of prompts that will guide you through the installation
process.

© 2021 Phyton, Inc. Microsystems and Development Tools

https://phyton.com/support/updates

Installation and Launching

33

@ ChipProg-02 v. 6.00.23 =)

———— PhytGn

Install ChipProg-02

] AuraDetect

e A RERVES L, SWHE v L0 OTTT

.
SCENT i 1. Siapped, PO=S00) HOAE [CERT

S Schama | Hotes.

Exit

Phyton WEB Site

- - -
w4 Phyton ChipProg-02 Programmer v. 6.00.23 Installation I - X

License Agreement I

Flease read the following license agreement cansfully.

| NOTICE: *

l Phyton, Inc. Microgystems and Development tools (hereafter Phyton) licenses the accompanying
goftware to you anhy upon the condition that you accept all of the terms contained in this license
agreement. Please read the terms carefully before continuing installation, as pressing the "yes"
button will indicate your assent to them. K you do not agree to these terms, please press the "no
button to exit install.

i@ | accept the terms of the license agreement

(71 | do not accept the temms of the license agreement

| E= @ o] [9]

© 2021 Phyton, Inc. Microsystems and Development Tools

34

CPI2_MODEL Device Programmers - CPI2-B1

85 Phyton ChipProg-02 Programmer v. 6.00.23 Installation ﬁ

Transfer Working Enviromnent from Previoushy Installed Version

Setup has found that the following Phyton ChipProg-02 Programmer versions has been
already installed on this computer. You may wish to transfer the working environment
from one of the installed versions. Click the ‘Details’ button for mare information.

[] Transfer working environment from version:

(@ 6.00.23

6.00.09

e ()

85 Phyton ChipProg-02 Programmer v. £.00.23 Installation ﬂ

LUninstall Previoushy Installed Version(s)

Setup has found that the following Phyton ChipProg-02 Programmer versions has been
already installed on this computer. You may wish to uninstall some of these versions.
Choose Phyton ChipProg-02 Programmer versions to uninstall before installing version
6.00.23:

Maote: Version &.00.23 has been already installed
an this computer and will be uninstalled.

@] (=8

© 2021 Phyton, Inc. Microsystems and Development Tools

Installation and Launching 35
L hl
85 Phyton ChipProg-02 Programmer v. £.00.23 Installation u
Installation Folder
Please choose the folder to install Phyton ChipProg-02 Programmer below. If the folder specified does not
endst, it will be created.
Folder:
\Phyton\ChipProg 02\6_00_23
@ s] (e 9
: - .)
) Phyton ChipProg-02 Programmer v. 6.00.23 Installation l - X
Installation Progress I
C:MPhyton\ChipProg-02%6_00_23"ChipProgUSE pdf
L | 262
Drive space used: 27 227 584 Bytes |
|

|
I Exit |

Phyton ChipProg-02 folder

At the end of the software installation the installer creates a folder with ChipProg-02 shortcuts.

© 2021 Phyton, Inc. Microsystems and Development Tools

36 CPI2_MODEL Device Programmers - CPI2-B1
Mame . Date modified Type Size
@ Phyton ChipProg-02 6.07.00 6/24/2017 5:52 PM Shortout 1KB
@ Phyton USE Device Driver Installer 6/24,/2017 5:52 PM Shortcut 1 KB
Uninstall Phyton ChipProg-02 Programm... 6/24/2017 5:52 PM Shortcut 1 KB
The first shortcut - Phyton ChipProg-02 opens the setup vizard[1 ending with the startup dialog| s".
In this dialog you can create multiple shortcuts for launching the device programmer(s) with different
startup settings. All of them are accessible from the Phyton ChipProg-02 folder.
2.5 Launching device programmers

Launching a single CPI2-B1 device programmer.

By default, a single CPI2-B1 programmer starts in the Single Programming[21 mode. Unless a serial
number of the CPI2-B1 device programmer was not specified in the Additional Command Line
Options box of the Startup dialogl =", after clicking the Start Device Programmer button ChipProg-02
program attempts to establish communication to a CPI2-B1 programmer via a USB or Ethernet port,
whatever is selected in the Startup Dialog[1. On a very first attempt the programmer issues the
Choose a Programmer dialog:

If a CPI2-B1 device programmer is connected via USB:

-
Ch P [
@ Choose a Programmer - . — :
Programmer Mame Seral Mumber Id String
CPI2-B1 | SI2-20257 | Phyton Programmer ChipProg-15P2
LV 4 Connect l ’K Cancel] ’lﬂ Help Demo
A

If it is connected via Ethernet:

© 2021 Phyton, Inc. Microsystems and Development Tools

Installation and Launching 37

Choose a Programmer (Mot Responding) * I.:I -

Programmer Name Seral Mumber |d String IP Address
CPI2-B1 | 512-20297 | Phyton Programmer ChipProg-I5P2| 192.168.1.5
'y Connect l ’4.@ Cancel l ’{Fl Help

When a CPI2-B1 device programmer is controlled via Ethernet, the default behavior is that it gets an IP
addresses dynamically changed by a LAN router. However, it is possible to set static IP address| 74,

Click the Connect button to establish communications to the CPI2-B1 programmer and to open the
ChipProg-02 main window. Later, when you launch the same CPI2-B1 device programmer the program
will skip displaying the Choose a Programmer dialog.

Launching a cluster of multiple CPI2-B1 device programmers.

To launch ChipProg-02 program in the gang-programming mode, either check in the use the Gang
Mode checkbox below the Start button in the Startup dialog[3 or add the -GANG key to the
command line[12).

The number of CPI2-B1 device programmers driven from one computer in gang-programming mode
is limited to 72 units. Each single CPI2-B1 unit has its own unique serial number. Before operating
with multiple CPI2-B1 programmers as a gang cluster you must assign Site Numbers from 1 to N to
serial numbers of the programmers' serial numbers. There are two ways to do this: a) directly
specifying a chain of CPI2-B1 serial numbers in the command line or b) manually.

Specifying site numbers in command line |20\

In order to specify the site numbers in the command line, use the -GANG key followed by '# sign with a list of
serial numbers separated by semicolons. The application will wait until the number of connected single-site
programmers matches the number of serial numbers in the list. Once all programmers are connected, the
software automatically assigns sequence numbers according to the serial numbers in the list. For example, if the
-GANG#S12-10014;S12-10022 is specified, the application waits for two programmers with serial numbers SiI2-
10014 and SI2-10022 to be connected. The programmer with serial number S12-10014 will be assigned the
sequence number 1 and programmer with serial number SI2-10022 will be assigned the sequence number 2.

Manual assignment of site numbers.

If the -GANG key is not followed with CPI2-B1 serial numbers you can assign site numbers manually.
Once Windows has detected multiple CPI2-B1 programmers connected to a PC, the ChipProg-02
opens the Specify Site Numbers dialog. It prompts the user for assignment of numbers to individual
programmers (as shown in the figure for the case of three-programmer cluster). Press the Start
button on the programmer to which you would like to assign the site #1. Then the ChipProg-02 will

© 2021 Phyton, Inc. Microsystems and Development Tools

38

CPI2_MODEL Device Programmers - CPI2-B1

prompt the user to assign the site #2 to another programmer and continue this way until all
programmers are assigned a sequence number.

-
i Specify Site Numbers

Press the button on a programmer that you want to assign to the
site number 2...

Assigned Sites

Site Mumber(s) Serial Number
1 S512-20123
2 Mot assigned
3 Mot assigned

Description

CPIZ2-B1 Programmer
CPI2-B1 Programmer
CPIZ-B1 Programmer

’ﬂ Cancel and exit

2.6 Setup Wizard and Startup Dialog

If you launch the programmer first time, the program opens the ChipProg-ISP2 setup wizard welcome
page:

© 2021 Phyton, Inc. Microsystems and Development Tools

Installation and Launching

39

Welcome to the ChipProg-I1SP2 wizard. Follow the prompts to choose the device
programmer model and setup basic options.

e Wizard: Welcome [B[]

- Skip

E Help v Mext

On the next step the wizard prompts you to select the device programmer model:

Choose your device programmer's model. It is impossible to operate on
different programmer types at a time. Setup each device programmer
separately.

Device programmer's model:

=) ECPL?'_-El: ISP Universal Prngrammer‘é

CPI2-Gx: Gang In-5System Device Programmer
CPI2-PXI: Gang In-System Device Programmer PXI Module

“4E Wizard: Choose your device programmer's model @

[s | # sk

@ Back | | e Help [v" Next

© 2021 Phyton, Inc. Microsystems and Development Tools

CPI2_MODEL Device Programmers - CPI2-B1

Then opt whether you have just one or multiple CPI12-B1 device programmers controlled by your
computer. Let us assume you selected launching a single CPI2-B1.:

& Wizard: How many device programmers do you have? @

How many CPI2-B1 device programmers do you have?

@ A single CPIZ-B1 programmer

Multiple CPI2-B1 programmers

| P4 Skip |

@ Back | | e Help [v" Mext]

then, after clicking the Next button, you will need to choose the interface type - USB or LAN that will
open the Startup dialog. But, if you select launching multiple CPI2-B1 device programmers:

i Wizard: How many device programmers do you have? @

How many CPI2-B1 device programmers do you have?

A single CPI2-B1 programmer

@ Multiple CPI2-B1 programmers

(% skp |

@ Back | | e Help [v" Next]

© 2021 Phyton, Inc. Microsystems and Development Tools

Installation and Launching 41

and click the Next button then the wizard prompts you to opt whether you want to launch just one of
multiple CPI2-B1 programmers connected to your PC or to drive a cluster of them in the gang[o7
mode:

& Wizard: Choose device programmer mode @

Choose how to control your CPI2-B1 device programmers - in the single-site or
gang mode. In the gang mode you can drive as many programmers from one
computer as you need. Click the Help button to read more.

@ Launch one of a few programmers

Launch multiple programmers in the gang mode

| P4 Skip |

@ Back | | e Help h [v" Mext]

If you selected launching one CPI2-B1 and click the Next button, the wizard prompts you to select the
interface to a PC and completes with opening the Startup dialog.

If you selected driving multiple CPI2-B1 programmers in the gang[10 mode:

© 2021 Phyton, Inc. Microsystems and Development Tools

CPI2_MODEL Device Programmers - CPI2-B1

- w

@ Wizard: Choose device programmer mode e

Choose how to control your CP12-B1 device programmers - in the single-site or
gang mode. In the gang mode you can drive as many programmers from one
computer as you need. Click the Help button to read more.

_' Launch one of a few programmers

@ |aunch multiple programmers in the gang mode

| - Skip |

@ Back | | 2] Help [v" Next l

then on the next step the wizard prompts you to specify the number of CPI2-B1 programmers that you
would like to drive as a gang cluster. Specify here an actual number of CPI2-B1 programmers
controlled by your PC:

-

’tﬁ Wizard: Choose device programmer mode L} @

Choose how to control your CPI2-B1 device programmers - in the single-site or
gang mode. In the gang mode you can drive as many programmers from one
computer as you need. Click the Help button to read more.

' Launch one of a few programmers

@ Launch multiple programmers in the gang mode

| - Skip |

@ Back | | L2 Help [w" Mext l

© 2021 Phyton, Inc. Microsystems and Development Tools

Installation and Launching 43

If you leave this box blank, the software will scan the computer USB and LAN ports trying to detect all
CPI2-B1 programmers which may be connected to the computer. This will significantly increase the
time of polling. After clicking the Next button in the dialog above, the wizard will display two

communication interface options:

& Wizard: Number of device programmers in the gang @
Specify the number of the CP12-B1 device programmers —
in the gang cluster: L\? 2] -

| P4 Skip |

@ Back | | e Help [v" Mext]

The same prompt completes setting for all other CPI12-B1 configuration options above. After choosing
the communication interface, the wizard issues the final prompt:

© 2021 Phyton, Inc. Microsystems and Development Tools

44

CPI2_MODEL Device Programmers - CPI2-B1

e Wizard: Setting complete [~ % |[w23m]

You have completed setting basic parameters. Click the Complete button to
open the programmer Start Up dialeg. In this dialog you will be able to add some
advanced settings and to change earlier set options. The Start Up dialog has a
link allowing to recall the ChipProg-ISP2 wizard.

A Back | | e Help | " Finish

By clicking the Finish button above you open the Startup dialog that displays all the settings made in
the wizard. This dialog enables to enter some additional settings. The dialog window is divided in
several zones: Program Startup Options, Documentation, Contact Technical Support, For
Developers. The very bottom filed displays prompts for the dialog widget pointed to a mouse cursor. In
the picture below the cursor is placed over the Create a shortcut with this options link in the top right
corner. The picture below displays an example with some specified startup options.

© 2021 Phyton, Inc. Microsystems and Development Tools

Installation and Launching 45

& ChipProg-02 v. 6.20.03 o || B &

Programmer Startup Options

|#| Create a shortcut with these optio
& Open shortcuts folder

Gang Mode 7| Diagnostic Mode «, Launch wizard

l(‘jﬁ Start Device Programmer

Connection: @ USB Ethernet
Additional Command Line Options:
-C"NXPMCOS08DVI2ZMLF [ISP Mode]" -L"C:\Work\Output\Bin\Serial.bin" -FB0x2000 -A -12 -

‘Qﬁ Start Standalone Mode Monitor Demonstration Mode (without hardware)

| Close this window after programmer start

Documentation
Mo newer Phyton ChipProg-02 versions

B CPI2-B1 On-lee H.elg 4° Changelog available.
FE) CPI2-B1 User's Guide & Phyton Homepage
X CPI2-B1 Quick Start Manual
CPI2-Gx On-Line Help

] B— .e ¥| Check for updates on start
) CPI2-Gx User's Guide
Contact Tech Support For Developers

@ Submit Bug Report %® Application Control Interface (ACT) Manual

- P b i
B Create a ticket on the Phyton Site - Slar Al Sunelio s Dol ter

Phona: 718-259-3101 | | Open LabVIEW Library for the Programmer (32-bit

E-mails: info@phyton.com, sales@phyton.com, Open LabVIEW Library for the Programmer (64-bit)
support@phyton.com —

Create a shortcut for launching the programmer with the options specified. The shortcut will be available in the Windows' "Start"

menu. \

Prompt

The Program Startup Options zone concentrates major settings, including:

Connection: Select one of communication interfaces: either USB (default) or Ethernet or Local Area
Interface (LAN). Control of CPI2-B1 device programmer(s) via USB interface does not require any
special settings. Connecting via Ethernet requires appropriate setting in the Additional Command Line
Options[123. See a description of the -ETH key and associated parameters (IP addresses, etc.)

Gang Mode[197 Leave it unchecked to control either a single CPI2-B1 device programmer or a certain
one from a cluster of multiple CPI2-B1 programmers or a certain module number of a CPI2-Gx gang
device programmer. Check this box to control either multiple CPI12-B1 device programmers or a CPI2-
Gx gang device programmer connected to the computer.

Number of sites in gang[120} In this field you may optionally specify an actual number of CPI2-B1
device programmers to be controlled in the gang[91 mode.

Diagnostic Mode: This option enables/disables tracing programming operations - i.e. collecting the
trace to the UPROG.LOG file located in the folder where the the programmer software had been
installed. This UPROG.LOG file can be shared with Phyton Technical Support for remote

© 2021 Phyton, Inc. Microsystems and Development Tools

46

CPI2_MODEL Device Programmers - CPI2-B1

troubleshooting. By default, the Diagnostic Mode box is checked and a running programmer
permanently updates the diagnostic information into the UPROG.LOG file. This slightly slows down a
target device programming. If the programming speed is extremely important, a user may uncheck this
box. In this case the UPROG.LOG remains empty.

Additional Command Line Parameters: Here you can type in command line options[128, which will be
added to the options specified in this zone above, i.e. the Gang Mode, Number of sites in gang,
Diagnostic Mode options. By default this field is blank.

Create a shortcut with this options: This link allows to store a shortcut for launching the device
programmer with the options specified in the Program Startup Options zone. You may create multiple
shortcuts for launching the programmers.

Open shortcut folder - Opens a folder that displays all the shortcuts launching the device
programmer with different options.

Demonstration Mode: Check this box if you want to evaluate the product's user interface without in
the absence of programmer hardware driven from a computer.

Start Device Programmer: click on this button launches the device programmer(s) connected to a
computer with the options set in the Program Startup Options zone of the dialog.

Start Standalone Mode Monitor: if the programmer works in the standalone mode, click on this
button launches the monitor/ 133,

The Documentation zone concentrates: links that invoke different types of user's guides for two device
programmer models: CPI2-B1 and CPI2-Gx.

Changelog link opens the Phyton ChipProg-02 Revision History file that lists most recent feature
changes, newly added devices and bug fixes

Phyton Homepage links opens the www.phyton.com website in your default web browser.

The Contact Tech Support zone includes Phyton contact information and enables users to open a
new support case by clicking the Create aticket on the Phyton Site link.

If the programmer was launched in the Diagnostic mode (see above) then you can send a bug report to
the Phyton technical support by clicking the Submit Bug Report button.

The For Developers zone includes links to a set of tools for those who develop applications[58 for
CPI2 device programmer control.

Control Interfaces

CPI2-B1 device programmers can be controlled by an operator in one of the Computer Controlled
modes or in the Standalone Mode[123 mode controlled remotely by Automatic Test Equipment (ATE) .

Computer controls include the following:

e Full-capable Graphic User Interface (GUI[4"),
« Simplified User Interface (SUIl 1)),
e Command Line[2%, On-the-Fly[23 control

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.phyton.com

Control Interfaces 47

« Application Control Interface (ACI[1))

First three methods above are described in this chapter, the AClis described in a separate chapter.

The Standalone[1:2 control mode is also described in a separate chapter.

3.1

Using device programmer involves many operations such as choosing target device, loading a file to be
programmed into the device, customizing programming algorithm, constructing a batch of commands
for Auto Programming] 198 procedure, configuring the CPI2-B1 user interface, etc. These actions require

Using Projects

working with tens of dialogs, menus and sub-menus in different ChipProg-02 windows. The ChipProg-

02 program allows you to store all such settings in a single file called project. You can create| s any
number of projects for programming a variety of devices and store them in the project repository| 6.

When needed, these files can be loaded and used just by a mouse-click, or by including a project name

on command line[120. Use of projects saves time and simplifies programming process.

Projects are especially beneficial for production programming where a typical scenario includes

replication of a lot of chips programmed with the same data but different serial numbers. In such case it

is very convenient to create and lock a project that completely defines the programming session and
then assign programming operation to a worker who will simply replace the chips being programmed
while watching programming progress and results.

The table below lists major project options.

Option group

| Project options

Where to set up...

Major properties

Project name; Description; Permissions
(password, selected locking options); Files to
be programmed into the device, File format,
Start and end address for file loading,
Destination buffers; Scripts to be preloaded;
Desktop.

Menu Project - Options - Dialog Project
Options@

IDevice type; Auto Detect; Insert test; Check
device ID; What to do when the device insertion
is detected; Device parameters (fuses, lock

Menu Configure[s - Dialog Select
Device[58,
Window Program Manager - tab

file settings.

Device bits, specigl functiqn registerfs, etc.); . Obtions/109)
|Programming algorithm (applicable chip Windows Device and Algorithm
sectors, wltages, oscillator frequency, etc.) Parameters Editor[93
Menu Configure| 51— sub menu
Buffers| 61
Buffers Buffer name; Buffer size; Default fill value; Swag Window Buffer — toolbar; Dialog Buffer

Configuration[97,
Window Buffer — toolbar; Dialog Memory

Dump Windows Setup/ 9

Serialization,
Check sum, Log
files

IAlgorithm for programming serial numbers;
Custom signature patterns; Algorithm of the
check sum calculation; Check sum formats;

Menu Configure[57— tabs of the sub menu

Serialization. Check sum. Log files[6"

© 2021 Phyton, Inc. Microsystems and Development Tools

48 CPI2_MODEL Device Programmers - CPI2-B1

Option group I Project options Where to set up...
[Parameters and locations of log files to be
saved.

IActions triggered by certain events, issuing .
Menu Configure[51— sub menu

Actions on events i .
error messages and sounds, logging results Preferences| 781
Screen configuration, fonts and colors of
Graphical User windows, key mappings, messages and Menu Configure[51— sub menu
Interface miscellaneous settings. Environment| 79

Number of chips to be programmed and related

Statistics settings. Window Program Manager - tab

Statistics[11}

You can create, edit and save projects within the CPI2-B1 Graphical User Interface - read about the Project
Menul 52 and related dialogs. The project files have the name extension .upp.

Note. ChipProg-02 software does not automatically save changes to project options on exit. You must
execute the Save or Save as command from the Project[s21 menu to save project changes made in
all GUI settings dialogs since this project was opened.

3.2 Graphical User Interface

The ChipProg-02 graphical user interface (GUI) contains the following elements:

Windows| 2.

Menus| 501 - global and local.
Toolbars| 491 - global and local.
Dialogs.

Hot Keys| &1,

Context-sensitive help prompts| oo,

The GUI features several useful additions| 48" designed specifically for the CPI12-B1 operations.

To make your using ChipProg-02 program easier we highly recommend you read the Menus[5% and
Windowsl| ¢ chaptersin full. You will be able to use the CPI2-B1 device programmers much more
effectively.

3.2.1 User Interface Overview

ChipProg-02 features standard Windows interface with several useful additions.

1. Each window has its own local menu (the shortcut menu). To open this menu, click the right mouse button
within the window area or press Ctrl+Enter or Ctrl+F10. Each command in the menu has a hot key
shortcut assigned to a Ctrl+<letter> key. Pressing the hot key combination in the active window executes
the corresponding command.

2. Each window has its own local toolbar. The toolbar buttons access most of the local menu commands of
the window. A window toolbar buttons work only within that window. The main ChipProg-02 window has
seweral toolbars which can be turned on or off (in the Environment dialog, the Toolbar[" tab).

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 49

3. Toolbar buttons feature mouse-over help: when you place the mouse cursor over a toolbar button for two
seconds, a small yellow box appears nearby with a short description of the button’s function.

4. To save screen space, you can hide any window title bar. To do this, use the Properties command in the
local menu. You can identify the ChipProg-02 windows by their contents and position on the screen (and,
if you wish, by color and font). When the title bar is hidden, you can move the window as if the toolbar were
the title bar: place the cursor on a free space in the toolbar, press the left mouse button and drag the
window to a new position.

5. You can open any number of windows of the same type. For example, you can open seweral Buffer
windows.

6. Every input text field of any dialog box has a history list. ChipProg-02 saves them when you close
programming session. Then a previously entered string can be picked from the history list.

7. All input text boxes in the dialogs feature automatic name completion.

8. All check boxes and radio buttons in the dialogs work in the following way: a double-click on the check box
or radio button is equivalent to a single click on the box or button, followed by a click on the OK button.
This is convenient when you need to change only one option in the dialog and then close it.

3.2.2 Toolbars

The ChipProg-02 program shows several toolbars at the top of the main window (see below).

G CPI2-Gx -- ABC test -- [Atmel ATB9S8253 [ISP Mode]]
File | View Project Configure Commands Scripts Window Help

Jﬁ h Fv{:’ E_% ‘P’i ‘u; L _J [n‘;'sj E |_—| ‘:‘: ,,»j-' /@ _4}1 Auto
M Select Device... | |[Amel ATass8253 (1SP Moce] - 0 2 B [¢

The topmost toolbar (right under the CPI2-B1 main window title) includes the Main menul s bar with
drop-down submenus File, View, etc.. The second toolbar contains icons and buttons for the most
frequently used commands on files and target devices (Open project, Load file, Save file... Check,
Program, Verify, etc.). There is an indicator of the ChipProg-02 status (Ready, Wait, etc.). The third
toolbar displays a target device selector. The fourth toolbar, which is not displayed by default, includes
the built-in editor options and commands for scripts. The default toolbars can be customized. Refer
also to the topics The Configure Menu[57, The Environment dialog[7%, Toolbar| &2\,

NOTE. Hereafter some toolbar elements can be displayed grayed out - it means that these elements
are unavailable for a particular target device or a mode of use. For example, since only one operation -
Auto Programming[108l - is available for gang programmers[197, the Check, Program, Verify, Read,
Erase buttons are disabled and grayed out.

Besides the main window toolbars, windows of other types have their own local toolbars with buttons
assigned to the most frequently used commands related to the window. See for example the Buffer
window's[s toolbar below.

Buffer #0 - Code (128 KB), bytes: 00000000 [00000000] [B]==E
Code User Data

é Addr | Load | Save |Configure Buffer | Setup | View Modify| Blocl-:|

File: Mone ~
Checksum: 002FD000 [Summation, discard overflow]

oooeeeoo: FF FF FF FF FF FF FF FF FF FF FF FF FF |

© 2021 Phyton, Inc. Microsystems and Development Tools

50 CPI2_MODEL Device Programmers - CPI2-B1

3.2.3 Menus

The ChipProg-02 Main menu bar contains the following pull-down sub-menus:
e File menul ™

e View menul 53

e Project menuls

o Configure menulsM

e Commands menul s

e Scripts menul s

e Window menul el

e Help menul s

To access these menus, use the mouse or press Alt+letter, where "letter" is the underlined character in the
name of the menu item.

e Context Menus

Each window has a context menu associated with it. To open context menu, either click the right mouse
button within the window or press Ctrl+Enter or Ctrl+F10.

Most, but not all, context menu commands are also available as toolbar buttons at the top of the window.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 51

3.2.3.1 The File Menu

File menu commands invoke file operations. For those commands that have a corresponding toolbar button,
the button is shown in the first column of the table below. In case there is a shortcut key for a command, the
shortcut key will be displayed to the right of the command in the menu.

Button Command

Description

L

I

f"] Load ... Opens the Load file[103) dialog that specifies all the parameters of
= the file to be loaded and the file destination.
d=l Reload Reloads the most recently loaded file.
L
Save...

Sawes the file from the currently active window to a disk. Opens the
Save file from buffer[10h dialog.

Configuration
Files

Gives access to operations with configuration files[521

:ﬂ Exit

Closes ChipProg-02. Alternatively, use the standard ways to close
a Windows application (the Alt+F4 or Alt+X keys combination).

© 2021 Phyton, Inc. Microsystems and Development Tools

52 CPI2_MODEL Device Programmers - CPI2-B1

3.2.3.1.1 Configuration Files

On exit ChipProg-02 automatically saves its configuration data in several configuration files named
UPROG.*. On start-up, configuration is restored from the most recently saved configuration files. In addition,
you can sawe and load any of these files at any time using the Configuration Files command of the File[st
menul 510, You can have several sets of configuration files for different purposes.

e The Desktop file stores display options and screen configuration as well as positions, dimensions, colors,
and fonts of all open windows. The extension of this file is .dsk. The default file name is UPROG.dsk.

e The Options file stores target device type, file options, etc. The extension of this file is .opt. The default
file name is UPROG.opt.

e The Session file stores session data and specifies the desktop and options; it can also be saved and
loaded by means of the Save session or Load session subcommand of the Configuration Files
command. The extension of this file is .ses. The default file name is UPROG.ses.

e The History file contains all settings entered in the text boxes of all the ChipProg-02 dialogs. This file is
hidden but the settings stored earlier are available for quick selection from the History lists. The extension
of this file is .hst. The default file name is UPROG.hst.

3.2.3.2 The View Menu

This menu provides a way to show various to ChipProg-02 windows.

Command Description

oo
c
I~
o
-]

Program Manager Opens the Program Manager[109) dialog.

=
Ed
——

Device and Algorithm Parameters Opens the Device and Algorithm
Parameters/ 9" dialog.

Opens the Buffer[%1 dialog.

"
—
-

-—

Buffer Dump

Memory Card Window Opens the Memory Card [window

. . i i 92 i
Device Information Opens the Device Information[2 dialog.

Console Opens the Console[10) dialog.

H O (o[

3.2.3.3 The Project Menu

This menu contains commands for working with projects [4M,

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 53

Button Command Description
ia New Opens the Project Options[531 dialog.
ﬁ Open Opens the Open Project/ 5N dialog for loading an existing project
file.
j Close Closes and saves current project.
=
(ﬁ Save Saves all settings of current project.
'|ﬁ Save As Opens the Save project dialog. Duplicating projects under different
names and/or in different folders is helpful for cloning similar projects.
‘@ Export Opens the Exporting Project dialog
[Import Opens the Importing Project dialog
5 Repository Opens the Project Repository@ dialog for storing current project
= in project data base for convenient handling.
ﬁ Options Opens the Project Options| 531 dialog for editing project options.
Note. ChipProg-02 software does not automatically save changes to project options on exit. You
must execute the Save or Save as command from the Project[s21 menu to save project changes
made in all Ul settings dialogs since this project was opened.

3.2.3.3.1 The Project Options Dialog

This dialog is used for setting initially and editing project options.

Control

Project File Name

Description

Specifies the project file name and path. If extension is omitted. when you
close the dialog by clicking the OK button, the program saves the project file
with extension .upp.

Permissions...

Opens the Editing Permission Settings dialog. Here you can protect the
project file against unauthorized editing. By checking appropriate boxes in
this dialog you can lock major groups of project options.

Project Description
(optional)

Here you can enter your custom comments for the project.

Desktop

Two radio buttons which allow you to choose if current project will have its
own desktop, or all ChipProg-02 projects will use the same desktop
settings.

Files to Load to Buffers

One or more files to be loaded into the buffers upon opening the
project.

Add file

Opens the Load File[10} dialog for adding this file to the Files to Load to
Buffers.

© 2021 Phyton, Inc. Microsystems and Development Tools

54 CPI2_MODEL Device Programmers - CPI2-B1

Remove file Remowe selected file from field Files to Load to Buffers.

Opens the Load File[103 dialog for editing a file highlighted in the Files to
Load to Buffers list.

Edit file options

Script to execute before Here you can enter the name of a script to be executed before loading

loading files: the files to the project.
Script to execute after Here you can enter the name of a script to be executed after loading thej
loading files: files to the project.

The dialog should be completed by clicking the OK button. Then a specified project file with the extension .upp
will appear in a specified folder.

3.2.3.3.2 The Open Project Dialog

This dialog is used to open a previously created project.

Control Description

. . Here you can enter full path of a project file name or browse project files. The
Project File Name ChipProg-02 project files hawe file name extension .upp.

Shows a list of previously opened projects. Double-clicking on a line in the list

Project Open History opens corresponding project.

Remove from list Deletes selected project from the Project Open History list.

3.2.3.3.3 Exportand Import Project Dialogs

The ChipProg-02 allows exporting and importing projects[+71 created for the CPI2-B1 control.

The Export Project dialog allows moving an entire project along with the user's data to another
computer.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 55

® Export Project @

Exporting a project creates a compressed file that contains the project file and all data files loaded into
buffers. This makes it easier to move projectto another location.

Afterwards the compressed project can be loaded just like a normal project (everything will be
decompressed automatically) or unpacked with the 'Project’ -= 'Import...' command.

Folder for compressed project file:

C\Work\Projects - 2l Browse.

v | Overwrite output file without prompt

Add timestamp postix to the compressed file name ("yyyy-mm-dd-hh-mm-ss")

| Encrypt file with password: eose

‘v" oK | |n’ Cancel ‘ ‘P Help

The program zips a specified the project file (for example, ABC.upp) with the data file(s) to be loaded by
opening the ABC.upp project to the CPI2-B1 programmer's buffer and stores the exported compressed
project into a specified folder (here C:\Work\Projects). Exported project files have the .upc extension -
in this case the ABC.upc file. The .upc files have a standard zip format.

Checking the Overwrite output file without prompt box prevents casual spoiling of a previously
stored compressed project.

Checking the Add timestamp postfix to the compressed file name enables to create a series of .upc
files with the same name but made at a different time.

For security you may encrypt the .upc file. Check the Encrypt file with password box and type in your
password in a field at right. Later, when you attempt opening or importing the project, you will be
prompted to enter this password.

These exported files can be moved or copied to another PC and then can be open by the Project >
Import command.

The Import Project dialog enables extracting a project exported from one computer to another.

© 2021 Phyton, Inc. Microsystems and Development Tools

56 CPI2_MODEL Device Programmers - CPI2-B1

@® Import Project

% el
Compressed projectfile:
C\Work!\Projects\RTX-028.upc hd i@l Browse...

Folder to unpack projectfiles to:

C\Projects\UnpackedRTX - 2l Browse...

v | Open project after unpacking

« OK] |n’ Cancel ‘ |E" Help ‘

Specify an exported .upc file, a destination folder to unpack it and click OK. If the source .upc file was
encrypted with a password enter it into a popped up box.

For the example above, all parts of the RTX-028.upc compressed project will be extracted into the
folder UnpackedRTX, including the RTX-028.upp project file and all the data files associated with this
project.

Compressed .upc files can be loaded to ChipProg-02 by the Open Projectl 58 command as well as
"simple" .upp project files. When you use the Open Project[51 command from the Project/ 5 menu
ChipProg-02 program extracts a .upc file to a temporary folder, loads the extracted project and then
deletes this temporary created folder. If the .upc file includes large data, opening the project may take
quite a long time. Use of the Import Project function vs Open Project saves time because an
imported project extracts to a specified folder and all extracted files remain in this folder.

Since opening a compressed .upc project completes with deleting a folder that temporary stores
extracted files they cannot be stored and modified.

3.2.3.3.4 Project Repository

The Project Repository command of the Project menul =21 opens the Project Repository tree.

Project Repository is a small database that stores records with links to project files. Here you can
see the CPI2-B1 projects in a tree form similar to the Windows File Explorer, to logically organize
projects for convenient access. Operations with the repository do not change the projects
themselves - the repository works only with records about the projects (links to the project files). A
tree branch may show projects and other branches. Any branch may contain different projects with
the same names. Different branches may contain links to the same project.

Tree branches show each project file as a name (without a path) and a description in square
brackets. The ChipProg-02 remembers state of tree branch (expanded/collapsed) and restores it
next time you open the dialog.

When you install a new version of the ChipProg-02 software and copy the working environment
from the previously installed version, the new version will inherit the existing project repository (the
repos.ini file).

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 57

Dialog Control

Description

Add New Branch

Opens the Add New Branch dialog in which you can specify the name
of a new branch.

Add a Project to Branch

Show the Open Project/ s dialog to select a project to be added.
Clicking the Open button adds the selected project to the selected
branch.

Add Current Project to
Branch

Adds the currently opened project to the selected branch.

Remove Project/Branch

Deletes the selected project or branch from the repository. All child
branches are also deleted.

When deleting a project from the repository, the ChipProg-02 deletes only
the repository record about the project, and does not delete the project
file from disk.

Edit Branch Name

Opens the Edit Branch Name dialog for the selected branch.

Move Up Mowes a selected project or branch up within the same lewel of hierarchy.
The branch mowes together with all its child branches .
Move Down Mowes the selected project or branch down within the same lewvel of

hierarchy. The branch moves together with all its child branches .

Save Repository

Writes or updates the repository to the disc file repos.ini in the CPI2-
B1 working folder.

Browse Project Folder

Opens MS Windows Explorer with the opened folder of the selected
project.

Open Project

Writes the repository to the disk file and opens a selected project.

Close

Closes the dialog. If the repository is changed, ChipProg-02 will
prompt to sawe it.

3.2.3.4 The Configure Menu

This menu gives access to major ChipProg-02 configuration dialogs.

© 2021 Phyton, Inc. Microsystems and Development Tools

58 CPI2_MODEL Device Programmers - CPI2-B1

Button Command Hot | Description
key

m Select Device Select device F3 | Opens the Select Device[581 dialog.

Devi lection hist Alt+H Opens the list of previously selected
evice selection historyl "oy oo

Buffers F5 | Opens the Buffers[6 dialog.
Serialization, F6 Opens the Serialization. Checksum
Checksum, Log file |Log File[63 dialog

Data caching,
Standalone jobs...

Opens the dialog for setting static 1P}
Jaddresses of device programmers

IP address settings...

2 & | = sl

Preferences Cégl+ Opens the Preferences| 781 dialog.
Simplified User Opens the Simplified User
Iinterface editor Interface[113) editor

Opens the Environment dialog with
tabs: the Fonts[80 tab[8, the
Environment Colors[&t tablE)"I, the Key
ppingsl 8" tabl 81, the Toolbar[8"
[8 and the Misc/ &2 tabl &2,

=

3.2.3.4.1 The Select Device Dialog

The dialog allows specification of the device to work with; it has several groups of controls.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 59

ﬁ Select Device

Devices to list Devices [Texas Instruments]

EF’F{OM. EEFPROM, FLASH Search mask:
[¥]PLD, PAL, EPLD
Micrngantrnllers

LM3S102-ERN [ISP JTAG Mode]
LM3S102-ERN [ISP JTAG-Chain Mode]
LM3S102-ERN [ISP SWD Mode]

|Programmable In-Sockst

...... |Programmable In-System LM3S102-IRN [ISP JTAG Mode]
LM33102-IRMN [ISP JTAG-Chain Mode]
(@ Selected manufacturer only LM3S102-IRN [ISP SWD Mode]

LM3S1110-EQC [ISP JTAG Mode]

—
e LM3S1110-EQC [ISP JTAG-Chain Mode]

Scenix -~ LM3S1110-EQC ISP SWD Mode]
Seiko LM3ST1110-1QC [ISF JTAG Maode]
Semtech LM3ST1110-1QC [ISF JTAG-Chain Mode]
Sensory LM3ST1110-1QC [ISF WD Mode]

Sis LM3S1133-EQC [ISP JTAG Mode]
Siemens LM3S1133-EQC [ISP JTAG-Chain Mode]
Signetics LM3S1133-EQC [ISP SWD Mode]
Silicon Labs LM3S1133-1QC [ISF JTAG Maode]
Spansion

SyncMOS Type: Microcontroller = MSP430
Syntronix

TOPRO Packages/Adapters
Tests

Toshiba

Unknown

VLS|

Vantis

Weltrend

Winbond Memgw
AEMICS Code: 589,824 Bytes

K!;nr Password: 8,193 Bytes

Zilinx

ZDEC

Fentel

Zilog v

o OK ‘ﬁ Cancel ‘ @ Hel

Control Description

© 2021 Phyton, Inc. Microsystems and Development Tools

60

CPI2_MODEL Device Programmers - CPI2-B1

Devices to list:

In this field you can check one or more boxes to specify the target
device type. Devices are combined into three functional groups: a)
Serial memory devices; b) Programmable Logical Devices; ¢)
Microcontrollers. Speed up the search by specifying the device
properties if possible.

Manufacturer

The box lists the device manufacturers in alphabetic order.

Search mask:

Here you can enter a mask to speed up device search. The "*'
character (star) represents any number of any characters in
device part number. For example, the mask 'PIC18*64" will list all
PIC18 devices ending in '64".

Devices

Displays all devices by the chosen manufacturer that satisfy
search criteria specified in Devices to list, Search mask, and
Packages/Adapters fields.

Sometimes you may see some devices listed in the Devices pane "greyout":

Devices [Microchip]

Search mask:

PIC18LFE620
PIC18LFE621
PIC18LFE622
PIC18LF8E2Y
PIC18LF8625
PIC18LF8E80
PIC18LF8720
PIC18LF8722
PIC18LF8723

PIC32MR220F
PIC32MR220F
PIC32MA320F
PIC32ZMX320F032H I/PT
PIC32ZMX320F032H VIMR
PIC3ZMX320F032H VP T
PIC32ZMX320F032H-401/MR

[ISP HV Mode]
[ISP HV Mode]
[ISP HV Mode]
[ISP HV Mode]
[ISP HV Mode]
[ISP HV Mode]
[ISP HV Mode]
[ISP HV Mode]
[ISP HV Mode]
032B-I/ML
0320-ML
032H /MR

Support of "greyout" part numbers requires having appropriate CPI2-D-xxxx device library licenses.
After activation a certain CPI2-D-xxxx device library license all the part numbers of the devices covered

by this license become visible and can be selected.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 61

3.2.3.4.2 The Buffers Dialog

Description

Displays names, sizes and sub-layers of all open buffers| 187

Buffer list:

Add... Opens Buffer Configuration[61 dialog to create a new buffer
Delete Deletes the buffer highlighted in the 'Buffer list' box.

Edit... Opens Buffer Configurationm dialog for editing.

View Switches focus to the window displaying the buffer highlighted in

the 'Buffer list' box. If this window is hidden behind others it will be
brought to the foreground.

This drop-down menu allows limiting the amount of computer RAM|
allocated for each buffer. The amount of free memory available for
allocation is shown here in this screen area.

Memory Allocation

If computer's RAM s limited, the ChipProg-02 can temporarily
store buffer images on PC hard drive to free some RAM. You can
select the hard drive or allow the program to swap files
automatically.

Swap Files

Checking this box enables swapping memory to the network drives

Use network drives
connected to your computer.

Here you can reserve space on the hard drive that will never be

Amount of space to leave . .
used for file swapping.

free on each drive (GB):

3.2.3.4.2.1 The Buffer Configuration Dialog

The Buffer Configuration dialog allows to setup sub-layers in buffers and to make their presentation
easier to work with. To open this dialog click the Buffer Configuration button in the toolbar of the
Buffer window| o).

The dialog has one tab for each sub-layer[181 of a particular device. Every buffer has at least one
main Code layer, so the tab 'Code’ is always displayed in the dialog foreground. If selected device
has other address spaces (‘Data’, 'User’, 'ID location', etc.) the buffer will have additional sub-layers.
For example: Microchip PIC16LF18875-I/PT device has two sub-layers: ID location and Data (see the
picture below). Here the Buffer Configuration dialog has three tabs: one main for Code settings and
two for ID location and Data sub-layers.

The "Buffer name, Code settings" tab contains a dialog for configuring the main buffer layer - the
‘Code’ layer.

© 2021 Phyton, Inc. Microsystems and Development Tools

62

CPI2_MODEL Device Programmers - CPI2-B1

-
Buffer Configuration

X

Buffer name, Code settings | |D lacation | Data |

Buffer MName

Buffer H0 -
Size of layer Code”:

128 KB -

Fill layer Code' with data:

Eefore loading file
After device is selected

[Data to fill layer with:
i i@ Predefined (3FFF)
() Custom: (cFF

(") Random

f Shrink; buffer size when device is selected

[/ oK

][ﬁ Cancel][ﬂ Help]

Description

Dialog Control

Buffer Name

Here you can type a name for the buffer or pick it from the history
list. By default the first opened buffer gets the name "Buffer #0",
the next one "Buffer #1", etc. Using this field you can give the
buffer any name you wish.

Size of sub-layer 'Code’

Here you can select the size of the 'Code' layer using drop-down
menu, from 128KB to 32MB.

Fill sub-layer 'Code' with
data:

both.

The program fills the buffer sub-layers with default data pattern,
usually 'FF's or zeros. By checking these boxes you specify
when the 'Code' layer fills with default information - before
loading the file or right after device type has been chosen or

Leaving the "Before loading file" box unchecked enables merging
multiple files in a single buffer with following programming a
merged file into a target device. This, for example, can be
convenient for merging code with configuration data for

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 63

programming microcontrollers if the configuration file exist
separately from the main code file.

These two radio buttons define whether the 'Code' sub-layer will
be filled with default information specific for the selected device,
or by a custom bit pattern or randomly.

Data to fill sub-layer
with:

Initially, buffer size usually exceeds target device 'Code’ size. By
checking this box you decrease buffer size to match target
device layer size and to free unused PC memory.

Shrink buffer size when
device is selected

Other tabs open appropriate dialogs which control filling the sub-layer with data similarly to filling the
main (Code) layer.

3.2.3.4.3 The Serialization, Checksum, and Log Dialog
The dialog allows writing serial numbers, unique signatures, checksums and user-specified

information into target device memory. It also allows to configure writing log of the process of mass
production device programming.

Important!
All functions available with these dialogs: Serialization, writing in Checksums, Signatures,
etc.
work ONLY when you use the Auto Programmingl 18l mode for mass production.

The tabs of the dialog shown below allow manual setting of the parameters and methods of their
calculation:

© 2021 Phyton, Inc. Microsystems and Development Tools

64

CPI2_MODEL Device Programmers - CPI2-B1

Serialization, Checksum, Log File

General Serial Number Checksum Signature String Custom Shadow Areas Log File

Attention! All operations with Senal Number. Checksum, Signature String. Shadow Areas and
Log File are performed with Auto Programming only.

Using Serialization

® Discard serial numbers of defective devices. In this mode serial numbers ofthe device yield ma},ur
include gaps in the sequence of numbers written into successfully programmed devices.

If a programming operation fails, discard the device but keep incrementing serial numbers (in
() accordance with the 'Serial Number' dialog's settings). In this mode. serial numbers ofthe device
yield are always represented by continuously increasing sequence, i.e. without gaps.

Generall &

Serial Number[e
Checksum [e

Signature String[

Custom Shadow Areas[71

Log File[7

ChipProg-02 merges: a) the data loaded to buffers and b) special data set in the shadows areas and
then writes the merged data array into the target memory device. If some addresses of the merged
data overlap each other then the data taken from the shadow areas overwrite ones taken from the
memory buffer and the merged data physically move[&1 to the target device memory.

3.2.3.4.3.1 Shadow Areas

Concept of Shadow Memory Areas

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 65

Shadow memory areas are special parts of the computer RAM that the ChipProg-02 program
handles in a special way allowing to create unique data images for each single device to be
programmed. In most cases such a challenge is essential for Gang-Programming when multiple
CPI2-B1 device programmers concurrently flashes identical devices on boards comprising a multi-
PCB panel. Then very often, besides the same code, it is necessary to write into each device a
unigue, device-specific, information: such as a serial number, checksum, bar code scanned from the
board, device MAC address, etc.. The ChipProg-02 software is featured with a mechanism allowing
to create such unique, dynamically changing data and to merge these data with the code, writing
these merged images into specified part of the device memories. The ChipProg shadow memory
mechanism, implemented in the ChipProg-02 software and CPI2-B1 firmware, enable correct
merging of the common data with dynamically changeable portions of data into one data image,
unique for each target device. Shadow areas are special memory locations laying away from the
buffer[18, in the computer RAM. Hereafter in this chapter the "buffer" means a specified layer| 181 of
the device memory (Code, ID parameters, Data, EEPROM, etc.) that contains a common part of data
image to be written in the devices on boards.

CPI2-B1 operates with two types of shadow memory areas:
a) dedicated to certain, frequently used parameters;
b) custom shadow areas that can be used for programming custom parameters.

CPI2-B1 has three types of shadow memory areas dedicated to the parameters frequently
programmed into devices along with the code: Serial Number[es], Checksum| es', and Signature
String[7. The ChipProg-02 setting dialogs for each of these parameters are very specific and the
mechanisms of blending these parameters located in dedicated shadow memory areas with the
buffer content are built into the ChipProg-02 software and cannot be changed by the programmer
user.

For specifying other parameters, such, for example, as bar codes scanned from target boards,
device MAC addresses, parameters exceeding limitations of the dedicated shadow memory settings,
etc., ChipProg-02 enables creation virtually unlimited number of Custom Shadow Areas[711 and
manipulation with them.

How does it work?

When a current programming site initiates a request for the device #N programming, the CPI2-B1
fetches data from the source buffer layer, browses shadow areas predefined for the site #N and
replaces the layer data by contents of these area forming the merged data image to be written to the
device #N and physically writes this merged image to the device. Then the programmer repeats the
operations for the device #N+1 taking content of the shadow areas predefined for the device #N+1
and so on and so on. The addresses of each identical shadow memory areas and their sizes are the
same for all devices but the contents vary. The picture below shows how the programmer prepares a
data image to be written to a target device.

© 2021 Phyton, Inc. Microsystems and Development Tools

66

CPI2_MODEL Device Programmers - CPI2-B1

=
\{

Data inthe Buffer Layer

—_— Merged data image for programming to target device

The diagram below displays shaping data images for four board programming. Each unique data
image includes a common part fetched from the buffer layer[181 merged with contents of three

dedicated and one custom shadow areas.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces

Buffer

Shadow Memory Areas #1

5N CREC | | Sign. Eustnr‘

Target Boards

#1

-

:} Image#1

Shadow Memory Areas #2

5N CRE | | 5ign. | Euston

#
77

e | Shadow Memory Areas #3

> Image#?

#3

S ! 5.0 | | CRC | |51‘gn.| tust[d
. -

> Image#3

Shadow Memory Areas #4

5.N. CRC Sign. I‘_'ustm{

#4

Overlapping of Shadow Areas and Buffer Data

‘> Image#4

67

If any addresses in the merged data overlap, the data read from shadow areas overwrite the data

read from memory buffer, in the order shown below.

Custom shadow areaN ?
Custom shadow area N-1 ?
Custom shadow area N-2 ?

Custom shadow area 2 ?
Custom shadow area 1 ?

© 2021 Phyton, Inc. Microsystems and Development Tools

68 CPI2_MODEL Device Programmers - CPI2-B1

Signature string ?

Checksum ?

Serial Number ?

Data in memory buffer

The ChipProg-02 software itself does not prevent of or warn about the shadow memory overlaps. The
user should carefully check correctness of the addresses set in the the Serial Number] e9,
Checksum[&, Signature Stringl 701and Custom Shadow Areas[711 setting dialogs to prevent data
image corruption as a result of accidental shadow areas overlapping.

3.2.3.4.3.2 General settings

The tab contains a dialog to handle serialization of the devices in case a device programming fails. The
two options are shown in the figure below.

Serialization, Checksum, Log File

General Serial Number Checksum Signature String Custom Shadow Areas Log File

Attention! All operations with Senal Number. Checksum. Signature Sirning. Shadow Areas and
Log File are performed with Auto Programming only.

Using Serialization

©§Discard serial numbers of defective devices. In this mode serial numbers of the device yield mayé

include gaps in the sequence of numbers written into successfully programmed devices.

If a programming operation fails, discard the device but keep incrementing serial numbers (in
() accordance with the 'Serial Number' dialog's settings). In this mode. serial numbers ofthe device
yield are always represented by continuously increasing sequence, i.e. without gaps.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 69

3.2.3.4.3.3 Device Serialization

The Serial Number tab defines a procedure of assigning a unique number to each single device
from a series of devices to be programmed. By default serial number starts at 0, is incremented by 1,
and occupies one byte.

Element of dialog Description

If this box is checked, the programmer will write a serial number
into the specified address of the specified memory layer of the
target device, as defined by the settings below.

Write S/N to address:

Use this field to specify the starting serial number. Default value is

Current serial number: 0

Specify the size of serial number in bytes; for example: 1, 2, 4, etc.

S/N size, in byte: .
12€, 1N By Default is one byte.

These radio buttons define the order of bytes in the serial number
(if it occupies more than one byte): either the least significant byte
(LSB) follows the most significant byte (MSB) or vise versa.

Byte Order

These radio buttons choose the serial number display format - decimal or

Display S/N as: hexadecimal.

By selecting this radio button you set the serial number increment

I t ial b . e
nerement serial number as the fixed value specified here: 1, 2, 10, etc.

by:

By checking this radio button you set the increment value to the

Use script to increment B o o
IPLIo result of executing the specified script file.

serial number:

3.2.3.4.3.4 Checksum

The Checksum tab controls automatic calculation of checksums of data in buffers and writing the
checksums into the target device memory. Checksums can be calculated using a commonly used
"standard" algorithm, or using a complex custom algorithm implemented in a script/ 7.

Element of dialog Description

If this box is checked, the programmer will write a checksum into
the specified address of the specified memory layer of the target
address: device, in accordance to the parameters below.

Write checksum to

Address range for There are two options for setting the address range: Auto and
checksum calculation: User-defined.

Auto: The address is defined as a full range of the selected device
memory layer. This is the default.

© 2021 Phyton, Inc. Microsystems and Development Tools

70 CPI2_MODEL Device Programmers - CPI2-B1

User-defined:

Here you can specify the start and end addresses of the selected
device memory layer for which the program calculates the
checksum.

Use algorithm to calculate
checksum:

This drop-down menu allows to select one of several available
algorithms. The default is "Summation, discard overflow".

Use script to calculate
checksum:

By checking this radio button you specify a script that implements
custom checksum calculation.

Size of calculation result:

These radio buttons choose the size calculated checksum: one,
two or four bytes.

Size of data being
summed:

These radio buttons choose the size of data being summed up:
one, two or four bytes.

Operation on summation
result:

These radio buttons allow to perform no operation on the
calculated checksum, or to negate or complement it.

Byte Order:

These two radio buttons define an order of bytes that represent the
checksum - either the least significant byte (LSB) follows the most
significant byte (MSB) or vice versa.

Exclude the following
areas from checksum
calculation:

Checking off this box allows to specify one or more memory
ranges that will be skipped by the checksum calculation algorithm.
To specify a range, enter its start and end addresses and click the
'‘Add’ button.

3.2.3.4.3.5 Signature string

The tab contains settings for writing user-defined signature string into the target device. The signature
may include generic data (such as the date when the device was programmed) and unique data
(such as project name, operator name, etc.).

Dialog Control

Description

Write Sighature String to
address:

in sub-layer:

When this box is checked, the programmer will write the specified
signature into the specified address of the specified memory layer
of the target device, according to parameters below.

Max. size sighature string:

This field defines the maximum length of the signature string as a
number of characters.

Use Signature String
template:

One of two radio buttons. If checked, the string of parameters from
Template String Specifiers drop-down menu will be programmed into
the target device.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 71

Use script to create T_hls radio bu_ttonbselects anfalternatlve me_thod of composing the

Signature String: signature string by means of a custom script.

Template String This field lists available parameters (specifiers) for inserting into

Specifiers: the Use Signature String template field. Each parameter starts with
the '$' symbol.

3.2.3.4.3.6 Custom Shadow Areas

The tab opens the dialog allowing to set custom shadow areas and to watch content of these areas
for debugging of automated device programming.

© 2021 Phyton, Inc. Microsystems and Development Tools

72

CPI2_MODEL Device Programmers - CPI2-B1

T [~ % |[w23m]

| General | Seral Number | Checlsum | Signature String | Custom Shadow Arsas | Log File|

List of Shadow Areas:
H Sub-level Address Size

IHETEEC O (o A |

2 IDlocation kA 2
B]
o Delte |
Data in shadow area #1 (Code: (bBF)
<Area modified or has been just added:
Launch script to fill shadow areas:
D\ Temp \CALC CMD » [yl Browse..

[OK |[i Cancel | (@ Hep |

Click the +Add button opens a sub dialog prompting to specify the buffer layer[1", content of which
will be merged with the custom shadow memory area, the area’'s address and size. A user may
create as many custom shadow areas as needed to be blended to same or different buffer layers.
The picture above displays two custom shadow areas reserved for two buffer layers: Code and ID
parameters.

The pane Data displays current content of the highlighted shadow area. Right after creation it is
blank. Then the area can be filled by executing of an ACI function or by a script. To use a script check
the box below the Data pane and specify the script name and location. In the example above the area
#1 is going to be filled by the script CALC.CMD.

Though, the shadow memory areas are mostly used for mass production in the gang programming
mode, sometimes this feature can be used for operation with a single CPI2-B1 device programmer.
For example, the Checksum|[69 setting dialog allows to calculate a single 8-, 16- or 32-bit checksum.
Use of the custom shadow areas enables to multiple checksums with the size exceeding 32 bits.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 73

3.2.3.4.3.7 Logfile

The tab allows set up of a log or logs of the device programming.

Dialog Control

Description

Enable log file

Check this box to enable logging device programming sessions
and to set log parameters below.

Separate log file for each
device

Radio buttons to select whether separate logs will be written for
each manufacturer or target device type, or single log will be
written for all devices programmed.

File Name (Generated
Automatically)

Radio buttons to select what kind of specifier will be included in the
log file name: both manufacturer and device type (for example:
Atmel ATSAM3S1BB-AU, Microchip PIC18F2525, etc.) or device
type only (for example: ATSAM3S1BB-AU, PIC18F2525, etc.).

Folder for log file:

The field for entering the full path to the folder where log files will be
created. There is also a button for path browsing.

Single log file for all
device types

Check this radio button to write single log for all types of devices
programmed.

File Name

The field for entering the full path to the folder where the common
log file will be created. There is also a button for path browsing.

Log File Contents

Log file settings.

Gang mode: Socket #

If device is programmed in Gang (multiprogramming) mode when
this box is checked, the socket number will be logged.

Date/Time

Check this box to log date and time of device programming.

Events (device type
change, file names, etc.)

Check this box to log all events associated with device
programming, such as target device replacement, loaded file
names, etc.

Device operation

Check this box to log all events associated with device
manipulations.

Detailed Device operation

Check this box to enable more detailed logging of all events
associated with device manipulations.

Operation Result

Check this box to log results of programming operations.

Device #/Good devices/Bad
devices

Check this box to log the total number of the devices programmed,
the number of successfully programmed devices and the number
of failed ones.

Serial Number

Check this box to log serial number read from the device.

© 2021 Phyton, Inc. Microsystems and Development Tools

74 CPI2_MODEL Device Programmers - CPI2-B1

Signature string Check this box to log signature string read from the device.

Checksum Check this box to log checksum value read from the device.

Buffer name Check this box to log buffer name.

Check this box to log ranges of device locations that have been

Programming address
9 9 programmed.

Programming options Check this box to log all programming options.

A Pair of adio buttons: one selects plain text format of the log file,
the other selects comma-separated text that can be imported into
Microsoft Excel.

Log File Format

A pair of radio buttons. Checking the top one selects the mode of
appending new records to a specified log file. Checking the other
selects overwriting the old log each time CPI2-B1 re-starts.

Log File Overwrite Mode

If this box is checked, ChipProg-02 will issue a warning every time

Warn if size exceeds . e
log size exceeds a user-specified value.

If this box is checked, ChipProg-02 writes log directly to hard drive

I diatel ite log fil . L
mmediately Wit log fiie without buffering it in computer RAM.

to disk, no buffering

3.2.3.4.4 The Sata Caching, Standalone... Dialog

This topic refers to the settings of Standalone Operation Mode. Read the entire chapter[13,

3.2.3.4.5 IP Address Setting Dialog

If a single CPI2-B1 programmer is controlled via Ethernet, a DHCP server assigns local IP address to this
programmer. To set a static IP address a CPI12-B1 programmer should be connected to a PC via
USB. To set the IP addresses invoke the Configure > IP address settings... menu. This will open
the dialog below:

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 75

4 Device Programmer IP Addresses Settings

Subnet mask Default gateway MAC address

Programmer Serial IP address
CPIZ-B1 S512-20285 =Auto= <Auto= <Auto= 70-B3-D3-8A-41-0D
2 Edt.. | %) ResettoAuto
4 QK

It displays a string with the CPI2-B1 with its serial number and MAC address. To assign static IP
addresses click the Edit button. In the popped up Edit IP Address dialog type in the IP address value,

subnet mask, default gateway and click OK.

4 EditIP Address [~ B |z

IP Address Settings

Distribute IP addresses sequentially starting with this address:

IP Address: 192 . 188 211 . 3|

Subnet Mask: 255 . 295 . 235 .0

Default Gateway: 192 . 188 . 222 .1
« QK | s Cancel | | € Help

You will see a new IP address set:

© 2021 Phyton, Inc. Microsystems and Development Tools

76

CPI2_MODEL Device Programmers - CPI2-B1

4t Device Programmmer IP Addresses Settings

Programmer Serial IP address Subnet mask Default gateway MAC address
CPI2-B1 512-20285 192.168.211.3 255.255.255.0 192.168.222.1 70-B3-D5-8A-41-0D
1 Edt.. | [®) ResettoAuto

Copy IP address list to dipboard

If you control multiple CPI2-B1 device programmers from one PC, you may want to set static IP
addresses for all (or to a few) of them at once. Invoke the Configure > IP address settings... menu
to open the dialog below. In the example below it lists four CPI2-B1 programmers with their serial
numbers. Select those you would like to set IP addresses for (in the case below with serial numbers
SI2-20285, SI2-20286 and SI2-20287).

7t Device Programmer IP Addresses Settings
Programmer Serial IP address Subnet mask Default gateway MAC address
CPI2-B1 512-20285 «<Auto> <Auto> <Auto> 70-B3-D5-8A-41-0D
CPI2-B1 SI2-20286 <Auto= <Auto= <Auto= 70-B3-D5-84-41-0E
CPI2-B1 S12-20287 «<Auto> <Auto> <Auto> 70-B3-D5-8A-41-0F
[cpr2-B1 S12-20288 «Auto> <Auto= <Auto> 70-B3-D5-8A41-10
7 Edt. | [®) Resettoauto
L4 0K

Then click the Edit button to set the addresses for three selected programmers:

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 77

f Edit IP Address (3 device programmers selected) @
IP Address Settings
Distribute IP addresses sequentially starting with this address:

IP Address: 192 . 168 . 211 . 1|

Subnet Mask: 255 . 295 . 235 .0

Default Gateway: 192 . 168 . 222 .1
» 0K | s Cancel | | € Help

In the dialog check the Distribute IP addresses... box and enter the first IP address. Then click OK
to complete settings. This will assign the specified address to the most top device programmer in the
list; other selected programmers will be automatically assigned with IP addresses incremented by 1.
See the result below illustrated setting static IP addresses for 3 of 4 CPI2-B1 device programmers:

“if Device Programmer IP Addresses Settings

Programmer Serial IP address Subnet mask Default gateway MAC address
CPI2-B1 SI2-20285 192.168.211.1 255.255.253.0 192.168.222.1 70-B3-D3-8A-41-0D
CPI2-B1 SI2-20280 192.168.211.2 255.255.253.0 192.168.222.1 70-B3-D3-8A-41-0E
CPI2-B1 SI2-20287 192.168.211.3 255.255.255.0 192.168.222.1 70-B3-D3-8A-41-0F
[l | cP12-B1 SI2-20288 <Auto= <Auto= <Auto= 70-B3-D5-8A-41-10
U Bt] [®) Resettosuto

Copy IP address list to clipboard

ChipProg-02 set identical Subnet mask and Default gateway for all the programmer sites. After setting
static IP addresses you can copy these settings to the clipboard and then to a file.

Important Note.

to complete setting static IP addresses before restarting the programmer with LAN control
you must cycle the programmer power.

3.2.3.4.6 Simplified User Interface Editor

This topic refers to the settings of the Simplified User Interface (SUI). Read the entire chapter[113,

© 2021 Phyton, Inc. Microsystems and Development Tools

78 CPI2_MODEL Device Programmers - CPI2-B1

3.2.3.4.7 The Preferences Dialog

This dialog contains settings for miscellaneous options.

Options
Enable caching of buffer data to the programmer SD card
[]Reload lastfile on start-up
Execute Power-On test on startup
[] Terminate device operation on error and do not display error message
Show error messages in the 'Operation Progress' pane
Display clock in the 'Operation Progress' pane
Log operations to the Console window
Reset all settings to defaults when closing project
[«] Deny computer power suspension

Sounds

() Use PC speakerto play sounds
(® Use sound card to play sounds

Device operation error. | Sound 1 v @ Test

Device operation complete: |Mone ~| [E Test

Device operation complete (Gang Mode). Mone ~| [E Test

Programming start (AutoDetect Mode): | Mone w (- Test

Device countdown value reaches zero: | Mone v| [E Test
& OK ¥ Cancel € Help

Dialog Control Description

Options Some (but not all) dialog options are described below.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 79

Reload last file on start-
up

Check this box to reload the last loaded file into the open buffer(s) every
time you start CPI2-B1.

Execute Power-On test on
start-up

This box is checked by default. Uncheck it to skip running self-test at
CPI2-B1 start-up.

Terminate device
operation...

Check this box to stop programmer operations operations on any error
and suppress error messages in the user interface.

Log operationsin the
Console window

Check this box to enable dump of programming session trace to the
Console window.

Deny computer power
suspension

While the programmer is not communicating with the target device, the
computer may switch to the sleep mode. Check this box to prevent
Windows from entering the sleep mode. This does not prevent entering
sleep mode when an operator closes notebook lid or shuts down the
computer by selecting Start > Shut down. This option will not disable
screen saver nor prevent powering off the monitor.

In the process of CPI2-B1 executing any command on the target device,
entering sleep mode is disabled regardless of this check box status
because powering off USB port may cause damage to the target
device.

If this box is unchecked, PC wake-up will cause ChipProg-02 software
crashes. If a crash happens, it is necessary to cycle CPI2-B1 power
and re-launch the ChipProg-02 application.

Sounds

All programmable sounds can be picked from the preset ChipProg-02
sounds

Device operation error:

Select the sound for error operations.

Device operation
complete:

Select the sound for successful completion of the programming
operations in a single programming mode (i.e. when one CPI2-B1l is in
use).

Device operation
complete (Gang Mode):

Select the sound for successful completion of the programming
operations in a gang programming mode (either a few single-site
programmers are connected to one PC for multi-device programming
or the CPI2-B1 gang programmer is in use).

Programming start
(AutoDetect Mode):

Select the sound for indicating the start of the device programming
when the CPI2-B1 automatically detects insertion of a device into
programming socket.

3.2.3.4.8 The Environment Dialog

The Environment dialog includes the following tabs:

Fonts[8N tab,

Colors[& tab,

© 2021 Phyton, Inc. Microsystems and Development Tools

80 CPI2_MODEL Device Programmers - CPI2-B1

Mapping Hot Keys[& tab,

Toolbar[& tab,

Miscellaneous Settings| & tab.

3.2.3.4.8.1 Fonts

The Fonts tab of the Environment dialog provides settings for fonts and some Ul elements in ChipProg-02
windows. Only monospaced (non-proportional) fonts are used to display information in windows (default is
Fixedsys). To change window appearance you can select a font to be used in all windows, or in any
particular window.

The Windows area lists the types of windows. Select a type to change its settings. The settings apply to all
windows of selected type, including the windows that are already open.

Control Description

Window Title Bar Toggles display of title bar for windows of the selected type. If the box is
checked it adds a toolbar at the position specified by the Windows Toolbar
Location option. To save screen space uncheck the box. Also, see notes
below.

Window Toolbar Sets the toolbar location for selected window.

Location

Grid Toggles display of the vertical and horizontal grids in windows of certain types,
and enables adjustment of column width if the vertical grid is allowed.

Additional Line Provides additional line spacing to be added to the standard line spacing.

Spacing Specify a new value or choose from the list of most recently used values.

Define Font Opens the Font dialog. The selected font applies to all windows of the selected
type.

Use This Font for All Applies the font of the selected window type to all ChipProg-02 windows.

Windows

Notes

1. To move a window that does not hawve a title bar, place the cursor on its toolbar, where there are no buttons,
and then act as if the toolbar were the window title bar. Also, you can access the window control functions
via its system menu by pressing the Alt+<grey minus> keys.

2. Each window has Properties item in its context menu, which can be accessed by a right click. The Title
and Toolbar items of the Properties sub-menu toggle the title bar and toolbar on/off for the active window.

3.2.3.4.8.2 Colors

The Colors tab of the Environment dialog contains color settings for window elements such as background,
font, etc. By default most colors are inherited from MS Windows; here you can set your preferred colors.

| Control Description

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 81

Color Scheme

Name of the color scheme. Your can type a name or choose a recently used
one from the list.

Save button saves the current scheme to disk; later you can restore color
settings by just a mouse click. Remove button removes the current scheme.

Colors

Lists the names of color groups. Each group consists of several elements.

Inherit Windows
Color

When this box is checked, the selected color is inherited from MS Windows
color scheme. If later you change the MS Windows colors through the Windows
Control Panel, this color will change accordingly. This option is available only for
background and text colors.

Use Inverted

When this box is checked, the program inverts the selected window colors (for

Text/Background text and background). For example, if the Watches window background is white

Color and the text is black, then the line with the selected variable will be highlighted
with black background and white text.

Edit Opens the Color dialog if the Inherit Windows Color and Use Inverted
Text/Background Color boxes are unchecked for this type of window.
The Color dialog also opens with a double-click on a color in the Colors list.

Spread Sets the selected color for all windows. This option is useful for text and
background colors. For example, if you set yellow text on blue background for
the Source window, and then click the Spread button, these colors will be set
as the text and background colors for all windows.

Font To highlight syntax in the Source window you can specify additional font

attributes - Bold and Italic.

In some cases when synthesizing bold fonts, MS Windows increases character
size so that the font becomes unusable, because the bold and regular
characters should be of the same size. In these cases, the Bold attribute is
ignored.

Sometimes this effect takes place with Fixedsys font. If you need to use Bold
fonts, choose the Courier New font.

3.2.3.4.8.3 Mapping Hot Keys

The Key Mapping tab of the Environment dialog is used to assign hot keys to all ChipProg-02 commands.
The Menu Commands Tree column displays a tree-like expandable diagram of all commands. The Key 1
(Key 2) columns contain hot key combinations corresponding to commands. The actions apply to the currently

selected command.

_Control

Define Key 1
Define Key 2

Opens the Define Key dialog. In the dialog, press the key combination you
want to assign to the selected command, or press Cancel.

© 2021 Phyton, Inc. Microsystems and Development Tools

82 CPI2_MODEL Device Programmers - CPI2-B1

Alternatively, double-click the "cell" in the row of this command and the Key 1
(Key 2) column.

Erase Key 1 Deletes the assigned key combination for the selected command.
Erase Key 2 Alternatively, right click the "cell" in the row of this command and the Key 1
(Key 2) column.

3.2.3.4.8.4 Toolbar

The Toolbar tab of the Environment dialog controls display and contents of window toolbars.

Control Description

Toolbar Bands Lists the ChipProg-02 toolbars. To enable/disable a toolbar check/uncheck its
box.

Buttons/Commands Lists the buttons available for the toolbar selected in the Toolbar Bands list. To

enable/disable a button on the toolbar check its box.

"Flat" Local Toggles between "flat" and 3D appearance of toolbar buttons in specifyed
Window Toolbars windows.

Toolbar Settings are Applies current settings of this dialog to other projects or future opened files.
the Same for Each
Project/Desktop File

3.2.3.4.8.5 Messages

Check messages that program should display, uncheck messages that you do not want to be
displayed.

3.2.3.4.8.6 Miscellaneous Settings

The Miscellaneous tab of the Environment dialog contains settings for miscellaneous properties of
ChipProg-02 windows and messages.

Control Description

Main Window Sets \isibility and location of the <% CM%> window status line.

Status Line

Quick Watch Turns Quick Watch functionl 199 on or off.

Enabled

Highlight Active Toggles highlighting for the currently active tab (MS Windows-style) in windows
Tabs that have tabs.

Double Click on Makes mouse double click equivalent to single click plus pressing OK button in
Check Box or Radio dialogs.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 83

Button in Dialogs

Show Hotkeys in
Pop-up Descriptions

Toggles display of hot keys in mouse-over help for toolbar buttons.

Do not Display Box
if Console Window
Opened

If Console 1A window is open it will show messages. Otherwise messages will
be shown in message box.

Always Display
Message Box

All messages will be displayed in the message box. In addition, the Console
window will also display same messages.

Automatically Place
Cursor at OK Button

When this box is checked, the cursor will always be on the OK button whenever
message box opens.

You can also press Enter key instead of using the mouse to click OK.

Audible Notification
for Error Messages

If this is selected, error message will be accompanied with a beep. Information
(as opposed to error) messages never come with a beep.

Log Messages to
File

Specifies message log file name. All messages will be written to this file.
Writing method depends on the radio button with two options:

Overwrite Log File
After Each Start

For every session, erase previous log file if exists, and create a new one.

Append Messages
to Log File

Append messages to the existing log file. In this case log file can grow without
limit.

3.2.3.4.9 The Editor Otions Dialog

The ChipProg-02 software includes a built-in Scripts Files[178) editor. The Editor Options dialog provides
access to editor settings and includes the following tabs.

General Editor Settings[83 tab,

Key Mapping[& tab.

3.2.3.4.9.1 The General Tab

The General tab of the Editor Options dialog has settings for common options that apply to every
Source[188 window.

Descrigtion

Toggles Backspace Unindent mode (see below).

Dialog Control

Backspace Unindents

Keep Trailing Spaces When this box is checked, the editor does not remowe trailing spaces
in lines when copying text to a buffer or saving it to a disk. When the

box is unchecked such spaces are removed.

© 2021 Phyton, Inc. Microsystems and Development Tools

84

CPI2_MODEL Device Programmers - CPI2-B1

Vertical Blocks

If checked, the Vertical Blocks mode is enabled for block

ogerations 187,

Persistent Blocks

If checked, the Persistent Blocks mode is enabled for block
operations.

Create Backup File

If checked then each time a file in the Source window is saved
ChipProg-02 creates a back-up file (with file name extension *.BAK).

Horizontal Cursor

If checked, the cursor will have the shape of a horizontal line, similar to
DOS command prompt.

CR/LF at End-of-file

If checked, a carriage return/line feed sequence will be added to the
end of the file (if it does not hawe it already) when saving file to disk.

Syntax Highlighting

If checked, forces syntax highlighting@ for language elements.

Highlight Multi-line
Comments

If checked, enables highlighting of multi-line comments. By default,
only single-line comments are highlighted.

Auto Word/AutoWatch Pane

If checked, new Source|[188 windows will have Auto
Word/AutoWatch pane at their right, and the automatic word
completion function will be enabled.

Full Path in Window Title

If checked, the Source window caption bars display full path to the
open file.

Empty Clipboard Before
Copying

If not checked, previously kept data remains retrievable after copying to
the clipboard.

Convert Keyboard Input to
OEM

If checked, the Source window conwerts input characters from MS
Windows character set to OEM (local) character set that corresponds
to your localized version of Windows operating system. Also, see
note below.

AutoSave Files Each ... min

If checked, ChipProg-02 will save the file being edited every ‘X
minutes. The value of ‘X can be selected from a list.

Tab Size Sets the tabulation size for text display. Possible values are from 1 to
32. If the file being edited contains ASCII tabulation characters, they
will be replaced with the number of spaces equal to this tabulation
size.

Undo Count Sets the maximum number of available undo steps (512 by default).

Maximum allowed value is 10000 steps; however, larger values
increase the editor's memory usage.

Automatic Word Completion

If the Enable box is checked, it enables the automatic word
mmlm function. The Scan Range drop-down list sets the
number of text lines to be scanned by the automatic word completion
system.

Indenting

Toggles automatic indentation of new lines created on pressing. Enter.

NOTE 1. Convert Keyboard Input to OEM box only needs to be checked when adding characters to a file
with OEM character encoding in the Source window. To only display such file correctly without modifying it,
select the Terminal font for use in Source windows. This can be done in the Fonts[807 tab of the
Environment dialog: select Editor in Windows list and press the Define Font button.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 85

NOTE 2. The Backspace Unindents mode establishes the editing result from pressing the Backspace key
in the following four cases, when the cursor is positioned at the first non-space character in the line (there are
seweral spaces between the first column of the window and the first non-space character):

Backspace Unindent enabled Backspace Unindent disabled

Insert mode Any preceding blank spaces in the line One space to the left of the cursor is
are deleted. The rest of the line shifts deleted. The cursor and the rest of the
left until its first character is in the first line to the right of the cursor shift one
column of the window. position left.

Overwrite mode The cursor mowes to the first column of Only the cursor mowves one position left.
the window. The text in the line The text in the line remains in place.
remains in place.

3.2.3.4.9.2 The Key Mappings Tab

You can manage the list of available editor commands in the Key Mappings tab of the Editor Options
dialog. You can add and delete editor commands, assign or reassign hot keys for new and built-in
commands.

In the list, the left column shows command descriptions, corresponding command types are in the right
column. The term Command refers to a built-in ChipProg-02 command; Script NNN refers to an added
user-defined command. Two columns on the right specify hot key combinations that invoke the command, if
they are defined.

Dialog Control Description
Add Opens the Edit Command[& dialog for adding a new command to the list and

setting up the command parameters.

Delete Removes a selected user-defined command from the list. Any attempt to
remowve a built-in command is ignored.

Edit Opens the Edit Command dialog to change the command parameters. For
built-in commands, you can only reassign the hot keys (the Command
Description and Script Name boxes are not available).

Edit Script File Opens the script source file of this command in the Script Source[188 window.

Creating new commands

To create a new command, you should develop a script for it. In fact, you add this script to the editor, not the
command. This means that your command is able to perform much more complex, multi-step actions than a
usual editor command. Moreover, you can tailor this action for your convenience, or for a specific work task or
other need. Your scripts may employ the capabilities of the script language with its entire set of built-in
functions and variables, text editor functions| 250 and existing script examples.

A script source file is an ASCII file. To execute your command, the editor compiles the script source file. Note
that before you can switch to using the script which you have been editing, you must first sawe it to the disk
so that ChipProg-02 can compile it.

© 2021 Phyton, Inc. Microsystems and Development Tools

86 CPI2_MODEL Device Programmers - CPI2-B1

Script source files for new commands will reside only in the KEYCMD subdirectory of the ChipProg-02
system folder. Sewveral script example files are available in KEY CMD. For more information about developing
scripts, see Script Files[178)

This Edit Command dialog defines parameters for a new or existing command.

Control Description

Command Enter the command description here (optional). Text entered in this box will be
Description displayed in the list of commands, to ease identification of the command.
Script Name Name of the script file that implements this command.

Define Key 1 Opens a special dialog box where you can assign two hot key combinations.
Define Key 2

Script source files for commands will reside only in the KEYCMD subdirectory of the ChipProg-02 system
folder. Enter the file name only, without the path or extension.

Notes
1. You should not specify any key combinations reserved for Windows (e.g. Alt+— or Alt+Tab).

2. We do not recommend assigning any combinations already used for commands in the Source window or
ChipProg-02, as you!l have fewer ways to access those commands. Some examples are Alt+F,
Shift+F1, Ctrl+F7 which open application menus; pthers are local menu hot keys of the editor window.

3. You can use more than one modifier key in the keystroke combinations. For example, you can use
Ctrl+Shift+F or Ctrl+Alt+Shift+F as well as Ctrl+F combination.

4. Hot keys for some built-in commands cannot be reassigned (e.g. cursor movement keys).

3.2.3.5 The Commands Menu

This menu items invoke main commands (a.k.a. functions) that control programming process - from
Blank Check to Auto Programming, mode switches as well as some utility commands. Most
commands of this menu can be launched by hot keys [F7] ...[F12].

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces

Commands | Scripts Window Help

Blank Check F&
Pragram Fa
Verify F10
Read F11
Erase F7
Aute programming F12
Self-Tests...

Switch to Stand-Alone mode...
Switch to Simplified User Interface...

Local menu Ctrl+F10, Ctrl+Enter
Calculator... Shift+F4
Command Hot Description
ke
Blank Check Launches the procedure of checking the target device

F8 |[before programming to make sure it is blank.
Programming of certain memory devices does not
require erasing them before re-programming. For such
devices the Blank Check command is disabled and
shown grayed out on the screen.

F9 |JLaunches the procedure of programming the target

P L .)
rogram device, i.e. writes the contents of the buffer into the target
device’s cells.
. F10 |Launches the procedure of comparing the information
Verify . . .
taken from the target device with the corresponding
information in the buffer.
F11 |Launches the procedure of reading the content of target
Read . . .
device cells into the active buffer.
Erase F7 |Launches the procedure of erasing the target device.

Some memory devices cannot be electrically erased. In
this case the Erase command is disabled and shown
grayed out on the screen

F12 |Launches the Auto Proqramminqlﬁﬁ.

Auto Programming

Launches testing the CPI2-B1 hardware. In case of
failure the diagnostic results screen will open.
Switches the CPI2-B1 from the computer-controlled
mode to standalone operation mode|132].

Self-Tests

Switch to Stand-Alone
mode

Hides a standard GUI and replaces it with a preset

Switch to Simplified - e
wi Implim Simplified User Interface(113).

User Interface

Local menu Opens local menu of the active window.

Opens Calculator/ & dialog which performs calculator

Calculator .
functions.

© 2021 Phyton, Inc. Microsystems and Development Tools

88

CPI2_MODEL Device Programmers - CPI2-B1

3.2.3.5.1 Calculator

The primary purpose of the embedded calculator is to evaluate expressions[202 and to convert values from
one radix to another. You can copy the calculated value to the clipboard.

Control Descrigtion
Expression The text field for entering an expression or a number.
Copy As Specifies format of the result to copy to clipboard.

Signed Values

If checked the result of calculation will be interpreted and displayed as a signed
value (for decimal format only).

Display Leading

If checked, binary and hexadecimal values retain leading zeroes.

Zeroes

Copy Copies result to clipboard using format set by Copy As radio button.

Clr Clears the Expression text box.

Bs Deletes one character (digit) to the left of the insertion point (Backspace).
0x Inserts "0x".

>> Shifts expression to the right by specified number of bits.

<< Shifts expression to the left by specified number of bits.

Mod Calculates the remainder of division by specified number.

While you are typing the expression in the Expression field, a drop-down list box ChipProg-02 tries to
evaluate the expression and immediately display the result in different formats in the Result area. States of
Copy As radio button and two check boxes in this area define format of the result.

You can assign values to program variables and SFRs by typing an expression that contains the assignment.
For example, you may type SP = 66h and the value of 66h will be assigned to SP.

Examples of expressions:

0x1234

-126

mai n + 33h
(float)(*ptr
101100b & OxF

+ RO)

3.2.3.6 The Script Menu

The Script menu contains several commands related to script files.

The ChipProg-02 contains a script language interpreter. Its purpose is automation of programming operations by
mastering complex procedures involving both the device programmer and the programmer operator's actions.
The ChipProg-02 supports composing and executing script files (SF). Working with scripts is describe in
the Script files[178 topics.

Commands in this menu are user-configurable, and the list can be expanded by adding new items (commands).
To add a new item to the menu, place a script file into current folder or into the ChipProg-02 installation folder.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces

89

The first non-empty line of any script file must contain three forward slashes followed by a title that will appear in
the Scripts menu:

///<Menu itemtitle>

When ChipProg-02 builds the Scripts menu, it searches the current folder and its installation folder for *. CMD
files whose first line starts with '//I' (please remember that //' denotes beginning of a single-line comment) and
inserts the text following '///" into the Scripts menu.

When you select an item from the Scripts menu, click the Start button, ChipProg-02 launches the selected

script.

Button

=

Command Description

Start... Opens the Script Files[178) dialog from which you can

New Script Source |Create a new Script File text.

Q Open Watches Opens the Watches| 193 window.
window
Add watch... Adds watch to the Watches window .

Editor window[185 |Opens a list of the commands to Compose a new, Open, Save,

Save as, Print a script file. of the Editor[188 window.

Text Edit[189 Edit a list of the commands for editing a selected Script File
Example Scripts Invokes the

Help on this menu

Working with scripts is describe in the Script files[7 topics.

3.2.3.7 The Window Menu

This menu lets you control how the windows are arranged within the computer screen. The list of open windows

is shown in the lower part of the menu. By choosing a window in from list you activate it and bring it to the

foreground.

Command Description

Tile Arranges all windows without overlap. Makes the window sizes
approximately equal.

Tile Horizontally Arranges all windows horizontally without overlap. Makes the window sizes
as close to each other as possible.

Cascade Cascades windows.

Arrange Icons Arranges icons of minimized windows.

Close All Closes all windows.

© 2021 Phyton, Inc. Microsystems and Development Tools

90 CPI2_MODEL Device Programmers - CPI2-B1

3.2.3.8 The Help Menu

This menu gives access to the help system. See also, How to Get On-line Help[2s".

Command Description

Contents Opens the contents of the help file.

ChipProg-02 User's Guide Opens complete User's Guide PDF file

(PDF)

ChipProg-02 Quick Start Opens Quick Start Manual PDF file

Manual

Search for Help on Opens a dialog for searching the tool's help system for the content,

index and keywords.

License Management... Opens the dialog that displays a list of current licensed features and
device libraries available for this CPI2-B1 and enabling to upgrade them.

Visit Phyton WEB site Opens the www.phyton.com site in your default Internet browser.
Create problem report If the CPI2-B1 crashs you can create a problem report and send a it to

Phyton technical support. ChipProg-02 generates problem reports only
when it was launched in the Diagnostic mode. In case the programmer
is running in a working mode click on this menu line causes restarting it
in the Diagnostic mode and then leads to sending a report to Phyton
technical support.

Check for updates Opens the Update Checking dialog that checks whether you are
running the most recent software version of ChipProg-02 and enables
automatic checking with different period of time.

Phyton HelpDesk Opens the HelpDesk web page where you can open a new ticket for
Phyton technical support, track your old tickets or send a question to
Phyton.

About CPI2-B1 Displays the ChipProg-02 and CPI2-B1 software versions, paths

selected target device type, and device type and manufacturer, the
CPI2-B1 serial number, memory card capacity and some other
parameters.

3.2.3.8.1 License Management Dialog

This dialog displays a list of current licensed features and device libraries available for this CPI2-B1. It also
enables adding new features and licenses.

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.phyton.com

Control Interfaces 91

@ License Management e

License options on Phyton WEB site

Extended Features @ Apply license

License Feature Status
CPI2-ACI Using the Application Control Interface (ACI) Enabled

Device Libraries

License Device Library Status
[00] Basic Basic lbrary Enabled
[01] CPI2-D-ATCM Microchip & Atmel Cortex device library Enabled
[02] CPI2-D-CYCM Cypress Cortex device lbrary Enabled
[03] CPI2-D-FRCM NXP & Freescale Cortex device lbrary Enabled
[06] CPI2-D-ELMOS Elmos controller library Not licensed
[08] CPI2-D-SLCM Siicon Labs Cortex device library Enabled
[09] CPI2-D-STCM ST Microelectronics Cortex device lbrary Enabled
[10] CPI2-D-TICM Texas Instruments Cortex device library Enabled
[11] CPI2-D-TOCM Toshba, Maxim Cortex device library Enabled
[12] CPI2-D-ALPLD Alera PLDs device lbrary Enabled

[13] CPI2-D-FR0O812 NXP & Freescale HC08/508/512 device lbrary Enabled
[14] CPI2-D-TI430 Texas Instruments MSP430 device lbrary Enabled
[15] CPI2-D-STM8 ST Microelectronics ST7/STM8 device lbrary Enabled
[16] CPI2-D-RE26 Renesas RL78/RX200/RX6xxx device lbrary Enabled

[17] CPI2-D-UPD78 Renesas uPD78xx device lbrary Enabled
[18] CPI2-D-SL51 Siicon Labs EFM8/8051 device library Enabled
[19] CPI2-D-PIC32 Microchip PIC24/32, dsPIC30/33 device lbrary Enabled
[20] CPI2-D-RESC Renesas R8C device lbrary Enabled
< (lose | ‘ e

Clicking on the License options on Phyton WEB site link opens a page in the CPI2-B1 item catalog where
you can check a list of all currently available licenses - both Extended Features and Device Libraries

© 2021 Phyton, Inc. Microsystems and Development Tools

92

CPI2_MODEL Device Programmers - CPI2-B1

3.24

3.24.1

licenses.

The Extended Features pane lists the licenses that go beyond the set of CPI12-B1 default features. For
example, the CPI12-AClI license enables use of the Phyton ChipProg-02 Software Development Kit
(SDK)[158, On-the-Fly Controll 12 utility and integration with NI LabVIEW [173) software in addition to

the default capabilities.

The Device Libraries pane lists Device Library licenses available at the moment of building the ChipProg-02
distributive. The Status column indicates the licenses physically tied to the CPI2-B1 with a certain serial
number as "Enabled" in green color. The licenses which optionally may be added at a later time are marked
as "Not licensed" in grey color.

If you have purchased a new license or licenses Phyton sends you a binary file that enables specific
capabilities. To update the license list for a CPI2-B1 with a certain serial number, click the Apply license file...
button, browse for the file on your PC, select it, and click Open to update the license list.

Windows

The following types of ChipProg-02 windows can be open from the View menul 52:

Program manager| 109
Device and Algorithm Parameters' Editor/ s

Buffer[)
Device Information[1
Console[104

In addition there are two types of windows associated with ChipProg-02 script files:

Editor
Watches

The Device Information Window

This window displays the type of selected target device and a link opening a connection diagram
between the TARGET/ 221 connector of CPI2-B1 and a selected target device (DUT).

Device Information FHEEE
Socket Scheme | Notes

Device: Micrechip PICT6LF18875-I/PT [ISP HV Mode]
Device Type: Microcontroller = PICmicro
Connection to the tammet device

It is highly recommended to verify correctness of the CPI2-B1 - to - DUT connection before beginning
your programming session either by clicking the Connection to the target device link in this window
or on the http://phyton.com/products/isp/chipprog-isp2-family/cpi2-b1-connecting web page.

© 2021 Phyton, Inc. Microsystems and Development Tools

http://phyton.com/products/isp/chipprog-isp2-family/cpi2-b1-connecting

Control Interfaces 93

3.24.2 The Device and Algorithm Parameters Window

The Device and Algorithm Parameters Editor window displays and allows editing (where
appropriate) target device internal parameters and settings. The edited settings must be programmed
into target device by executing the Programl ss1command in the Program Manager 105 window.

Device and Algorithm Parameters Editor [B=l=E
Edit | MinValue | MaxValue | DefaultValue | AliDefault |
Mame Value Description

Device Parameters

8 Fuse Bits =

- Lock bits Lock bits

- Calibration Byte (0h Calibration value for the internal RC Oscillator
Algorithm Parameters

- Algaorithm "In-System Programming" | Programming algorithm

- Oscillator Frequency | 2500 kHz
- Delay after Vee is On

- Programming Mode

Oscillator frequency

Delay afterVccis On

Programming Mode

Power supply valtage
Changed values shown in red color

500V

Changeable parameters shown in blue color

Parameters are displayed as two groups: Device Parameters and Algorithm Parameters. The
groups are separated by a light blue stripe.

Device This group includes parameters specific to each selected device, such as sectors
Parameters | for flash memory devices, lock and fuse bits, configuration bits, boot blocks,
start addresses and other settings for microcontrollers. Usually these parameters
represent certain bits in a microcontroller Special Function Registers (SFRs). Some
of the SFRs can be set in the CPI2-B1 buffers in accordance with device
manufacturer data sheets. However, setting the parameters in the Device and
Algorithms Parameters window is more intuitive. It is impossible to specify all
features that may become available in future devices; therefore not all possible
parameters for new devices are described here.

Important! Changing device parameters| | ProoramManager

in the Device and Algorithm | Progrsm Manager | Options | Statitics |

Parameters Editor window does not Device Status: ALto-detect off

immediately result in corresponding Buffer: | Buffer #0: Code (128 KE), bytes, User (128 KE), byte
changes inside the target device. By Functions

editing the changes you just prepare a - User e @ e
new configuration that is different from o e

the default for the device to be
programmed. The parameters will be

m

{— ‘ Repetitions
1

L X - Verfy 4
changed inside target device on_ly V_/hen . Lock Bits EEY
you execute the Program function in i~ Program M P a—
Device Parameters group in the Frogramming memory

Function pane of the Program

© 2021 Phyton, Inc. Microsystems and Development Tools

94

CPI2_MODEL Device Programmers - CPI2-B1

Manager 18 window as shown in the

illustration.
Algorithm This group includes parameters of the programming algorithm for the selected
[Parameters | device — including the algorithm type and editable programming voltages.

The window has three columns: 1) parameter name, 2) parameter value or setting, 3) a short
description. Names of the editable parameters are shown in blue; other names are shown in black.
Default values in the Value column are shown in black; after changing a parameter the new value will
be shown in red. If the value is too long to display, it is shown as three dots ('..."). The red color of
these dotst means that the parameter has been edited.

To edit a parameter double click its name. Some editable parameters are represented by a group of
check boxes, others have to be typed into text fields.

Local toolbar located at the top of Device and Algorithm Parameters Editor window contains the
following buttons:

Toolbar Button Description

Edit Opens a dialog to modify highlighted parameter in the format most
convenient for the parameter. Double click on a highlighted
parameter also opens such dialog.

If the parameter being modified is restricted to values from a
certain range, clicking on the Min.value button sets the highlighted
parameter to the minimum allowed value.

Min.Value

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 95

Max Value If the parameter being modified is restricted to values from a
' certain range, clicking on the Max.Vvalue button sets the highlighted
parameter to the maximum allowed value.

Clickin on this button returns the highlighted parameter to the
Default

default value.
Al Default \S:V:L(]:(;(ér;? on this button sets default values for all parameters in the

Depending on the type of a parameter ChipProg-02 offers the most convenient format for editing the
parameter:

Method of Editing Description

D When a parameter value may be picked from a few preset values,
rop-down menu . . S

the dialog shows a drop-down list of such values. Highlight a new
value in the list and click OK to complete editing. For example,
some microcontrollers can be programmed to work with different
types of clock generators, so the menu prompts to select one of
them.

Check Box dialog When some options can be_set or reset, the dialog appears i_n a

form of several boxes showing the default or recently set option
states. To toggle this behavior, check or uncheck the box. For
example, some microcontrollers allow locking of particular part of
memory by setting several lock bits, so the menu prompts to
select lock bits represented as a set of check boxes.

c - When a parameter value may be set to any value within allowed
ustomizing the - . :
parameter range, the dialog offers a box for entering a new value and a history
list displaying a few recently set values. The dialog prompts with
the min and max values and restricts entry to values in the allowed
range. This type of editing is used for custom values of Vcc and
Vpp voltages.

3.2.4.3 The Buffer Dump Window

The Buffer Dump window is used to display contents of memory buffer.
CPI2-B1 provides flexible buffer management:

¢ You can create an unlimited number of buffers. The number of buffers that can be created
is limited only by the available computer RAM.

e Every buffer has a certain number of sub-levels depending on the type of target device.
Each sub-level is associated with a specific section of the target device address space. For
example, for the Microchip PIC16F84 microcontroller, every buffer has three sub-levels: 1)
code memory; 2) EEPROM data memory; 3) user identification.

© 2021 Phyton, Inc. Microsystems and Development Tools

CPI2_MODEL Device Programmers - CPI2-B1

This flexible structure facilitates manipulating with several data arrays mapped to different buffers.
To open a Buffer Dump window, select Main Menu > View > Buffer Dump..

Buffer #0 - Code (128 KB), words: 0000 [0000] [7|=I=E3| Buffer #0 - Data (4 GB),
Code |Dlocation Data Code IDlocation Ds:

Q Addr | Load | Save |Configure Buffer| Setup | View Q Addr | Load |

File: AXTMPYUserDLLES dII S File: Mone
Checksum: 00153598 [Summation, discard overflow] Checksum: FFDFIAEZ
000e: 5A4D 0099 0003 08D |IM [0Poee200: 74 83
0e04: 0004 0000 FFFF 0000 [PPPee210: 28 00
0OoE: OOBE 0OOO 0000 0BOO bBoee220: 8B 28
AeC: 9040 PORO 00 PRee | @ w || B00062360: E6 FF
- 0ePe0240: 00 E8
Q Addr | Load | Save |Conflgure Buffer | Setup | View | \ap0p0250: 00 48
1068: 58468 65535 35656 34251 d H A PARRE2660: AC 0P
1864 : 29888 13065 59602 2458 ([t 2 PPERE270: E6 FF
1008: @ 5867 06128 13 0 D APPPB220 - BA 20
1868C: 59648 65200 65535 64131 PPERB290: ER E6
1816: 29955 13063 59593 3130 (ul 30 3: APPPE2AR: S5F EA
1914: 6 448 @ 18432 [H APERE2RA: 48 81
1818: 35979 16420 1 18432 @ 0 H v | lpeeee2ce: 48 21

The figure above shows three Buffer Dump windows representing three parts of the same buffer:

¢ Window #1 (the largest) shows buffer contents starting at address 0Oh.

¢ Window #2 shows the same buffer contents starting at the same address, displaying data in
decimal format.

o Window #3 shows the data starting at address 200h.

The leftmost column of the above windows shows absolute address of the first cell in each row.
The addresses always increment by one byte: 0, 1, 2.... Each address is followed by a colon ().
When you resize a window, the addresses shown in the address column automatically change in
accordance with the number of data items in each line. Some windows may be split into two panes
— the left pane showing data in a selected format, and the right pane showing the same data in
ASCII format.

The window has a toolbar for invoking settings dialogs and commands. Full path to the loaded file
and checksum of the dump are displayed beneath the toolbar.

Local Menu and Toolbar

The context-sensitive menu brought up by a right mouse click is used to invoke context commands and
dialogs of the Buffer Dump window. Most, but not all, local menu entries are duplicated by local toolbar
buttons at the top of the window. Following are local menu and toolbar items:

Menu Item Toolbar Description
button

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 97

New address... Addr Opens the Display from AM@ dialog.

Load file to buffer... Load Opens the Load Window Dumgmﬁ dialog.

Save data to file... Save Opens the Save Window Dumgm dialog.

Configure buffer... Configure | opens the Configuration Window Dump[7 dialog.
buffer

Window setup... Setup Opens the Window Dump Setugm dialog.

Editing in the buffer dump windows is disabled by

) o View default, so you can only view the data. If this box is
View only, edit disabled unchecked editing will be enabled and you will be able
to modify value under the cursor.

Opens the Modify Datal 108 dialog. This is only enabled
when the View only, edit disabled is unchecked.

Modify data Modify

Operations with memory

blocks Block Opens the Operations with Memory Blocks[108 dialog.

Swap fields No button Mowves the cursor between right and left window panes.

3.2.4.3.1 The 'Configuring a Buffer' dialog

The dialog allows to configure buffer dumps using the most convenient way, and name or rename
open buffers. By default, the first opened buffer is named ‘Buffer #0’, the next buffer is named ‘Buffer
#1', and so on. You can, however, rename buffers to your liking.

© 2021 Phyton, Inc. Microsystems and Development Tools

98

CPI2_MODEL Device Programmers - CPI2-B1

Buffer Configuration

Buffer name, Code settings |D location Data

Buffer Mame

Buffer #0 e

Size of layer 'Code".

125 KB e

Fill layer 'Code' with data:

Before loading file
[v] After device is selected

Data to fill layer with:

(@) Predefined (Ix3FFF)
() Custom: OxFF
() Random

Shrink buffer size when device is selected

« OK ¥ Cancel € Help

Initially each buffer is allocated a minimum of 128K of PC RAM and the ChipProg-02 program fills the
buffer with a predefined pattern (usually OFFh). You can customize these buffer settings - check the
Custom radio button and type in the pattern to be used to fill the buffer..

By default ChipProg-02 program fills the buffer sub-layers with default data pattern, usually 'FF's or
zeros. By checking these boxes you specify when the 'Code' layer fills with default information -
before loading the file or right after device type has been chosen or both.

Leaving the "Before loading file" box unchecked enables merging multiple files in a single buffer with
following programming a merged file into a target device. This, for example, can be convenient for
merging code with configuration data for programming microcontrollers if the configuration file exist
separately from the main code file.

3.2.4.3.2 The 'Buffer Setup' dialog

The dialog allows controlling the data presentation in the Buffer Dump| %1 window. You can open the dialog
using the Windows Setup command of the local menu or by clicking the Setup button on the local toolbar.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 99

Control

Description

Buffer:

Displays a list of all open buffers. Programming functions will be
applied to the active one.

Display Format

Three radio buttons select the format for the data displaye: binary,
decimal or hexadecimal.

Display Data As:

Four radio buttons select the format of data presentation in the
buffer: 1, 2, 3 or 4 bytes.

Options

Options to customize display format.

ASCII pane

If checked, the right pane will display ASCII characters
corresponding to the data in the buffer dump.

Display checksum

If checked, calculated checksum will be displayed in the blue strip
over the data dump, beneath the local toolbar.

Limit dump to sub-layer
size

If checked, dump window will display part of the memory whose
size is equal to the size of the active sub-layer.

Signed decimal and hex
values

If checked, the most significant bit (MSB) of the data shown in
binary or hexadecimal formats will be treated as a sign. If MSB=1
the data is negative, if MSB=0 they are positive.

Always display '+' or '~

This is a sub-setting for the Signed decimal and hex values option.
If both boxes are checked then the signs '+' and -' will be
displayed.

Leading zeroes for decimal
numbers

If checked, data in decimal format will be shown with leading
zeros; for example, 256 will be shown as 00000256.

Reverse bytesin words
(LSB first)

If checked, the order of bytes in words will be reversed so that the
MSB follows the LSB.

Reverse words in dwords

If checked, the order of 16-bit words in 32-bit words will be
reversed.

Reverse dwordsin qwords

If checked, the order of 32-bit words in 64-bit words will be
reversed.

Non-printable ASCII
characters

Characters in the range 0x00...0x20 and 0x80...0xFF are non-printable.
Following options customize display of non-printable ASCII
characters in the ASCII pane of the buffer dump window.

Replace characters
0x00...0x20

If checked, all characters in the range 0x00...0x 20 will be replaced
with the dot (.") or space ('"). Pair of radio buttons Replace with
selects the replacement character: dot (.") or space ().

© 2021 Phyton, Inc. Microsystems and Development Tools

100 CPI2_MODEL Device Programmers - CPI2-B1

Replace characters If _checked, all characters in the range 0x80...0xFF will be r'eplaced
0x80.. OXEF with dot (.") or space ('). A pair of radio buttons Replace with
selects the replacement character: dot (.") or space ().

3.2.4.3.3 The 'Display from address' dialog

The dialog allows to set a new starting address for the \isible part of the Buffer Dump] 91 window.

Element of dialog Description

Type new address to Here you may enter any address within valid range.
display from:

History Displays a list of previously entered addresses. You can pick one to set as
starting address for the buffer dump.

3.2.4.3.4 The 'Modify Data' dialog

The dialog allows to edit data in the Buffer Dump[¢ window. The dialog can be invoked only when the View
toolbar button if off, otherwise editing is disabled. To modify a data item in the buffer move cursor to its
location and click the Modify toolbar button. You will be able to enter a new data value in the pop-up box
or pick one from the history list. Alternatively, select a location by moving cursor to it and enter new
value using the PC keyboard.

3.2.4.3.5 The 'Memory Blocks' dialog

The ChipProg-02 program supports complex operations with memory blocks. This dialog controls operations with
blocks of data within a selected buffer or between different buffers.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces

101

o Operations with memory block - ﬁ

Source Operation Destination
Buffer: i@ Fill with value(s); [©F0 - Buffer:
(@) Buffer £#0 (") Search for data: (@) Buffer #0
() Copy
(7) Compare
Layer- () Invert Layer.
@ Code (128 KB). bytes © AND with value: © Ende (138 e byies
) User (128 KB), bytes e) User (128 KB), bytes
() Data (128 KE). bytes () XOR with value: () Data (128 KE). bytes
Start address: () Swap bits of data bus <3 Start address:
0 - (") Swap bits of address bus | < - 0
End address:
Dc1FFFF -

Full range

o OK [ﬁ Concel] ’ﬂ el

The dialog has three columns. Source, the left column, describes the source memory area used in
operations described in the middle column. Operation result will be placed in the area described by

Destination, the right column. By default, destination is same as source. Two operations — Fill and Search —
do not require destination; if any of these two operations is chosen, Destination radio button will be

disabled.
Control Description

Start Address
(of the Source)

Starting address of the memory area in the selected Source buffer to
which the operation will be applied.

End Address
(of the Source)

Ending address of the memory area. Ending address can be entered for the
Source area only. Once the source address range is defined, program
automatically calculates destination area ending address.

Full Range
(of the Source)

Sets the starting and ending addresses to span entire address space of
selected target device.

Start Address
(of the Destination)

Starting address of the memory area in the Destination buffer where the
result of the selected Operation will be stored.

The following operations are available via this dialog. Operation starts when you click OK in the dialog box

(see notes below).

|_Operation

Descrigtion

Fill with Value

Fills the source buffer with a value (or a sequence of values) specified in the

text box at the right.

© 2021 Phyton, Inc. Microsystems and Development Tools

102

CPI2_MODEL Device Programmers - CPI2-B1

Search for Data

Searches the source memory area for a particular value (or a sequence of
values) specified in the text box at the right.

Copy Copies contents of the source area to the destination address. A block can
be copied within the same address space or to another one.

Compare Compares contents of source and destination memory areas. The sizes of
source and destination areas are equal. If there is a mismatch, a mismatch
message box will request permission to continue the comparison process.

Invert Inverts contents of the source area bit-wise and stores the result in the

destination area.

Calculate Checksum

Calculates a 32-bit checksum for the source area. The calculation is done
by simple addition. See note below.

Negate Result

If checked, the 32-bit checksum will be subtracted from zero (this is a
widely used method of checksum calculation).

Write Result to
Destination

If checked, the 32-bit checksum will be written to the destination sub-level
at destination Start Address. If this box is cleared, the checksum wil onlyl
be displayed in a message.

AND with Value

Performs bit-wise AND operation on the contents of the source memory
area using operand specified in the text box on the right. The result is
stored in the destination area. See notes below.

OR with Value

Performs bit-wise OR operation on the contents of the source memory area
using operand specified in the text box on the right. The result is stored in
the destination area.

XOR with Value

Performs bit-wise XOR operation on the contents of the source memory
area using operand specified in the text box on the right. The result is
stored in the destination area.

Notes

1. Source and destination memory areas may overlap; since operations on memory blocks are carried out

using a temporary intermediate buffer, the overlap does not cause corruption of results.

2. The Copy and Compare commands use blocks specified in the Source address space and the
Destination address space.

3. The checksum is calculated as a 32-bit value by simple addition. If a memory space has byte organization,
then 8-bit values will be added. If it has word organization then 16-bit values will be added.

4. Logical operations (AND, OR, XOR) are performed on the contents of the Source address space, while the
operation result is written to the Destination address space. The program automatically converts the
operands to the word size of the selected type of memory (16-bit for Prog, Datal6, Reg and Stack
memory, 8-bit for Data8 memory).

3.2.4.3.6 The 'Load File'dialog

The dialog defines how a file is loaded into the buffer.

Description

Control

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 103

File Name: Enter a full path to the file in this box, pick the file name from a drop-down
menu list, or browse files on your computer or network.
File Format: Select format[103 of the file to be loaded by checking one of the radio

buttons in the File Format field of the dialog.

Buffer to load file to:

Select buffer to load the file into, by checking one of the Buffer# radio
buttons. There may be just one such button.

Layer to load file to:

The Buffer to load file to can have more than one memory layer. Select
the layer into which the file will be loaded by checking one of the radio
buttons. There may be just a single button available for selection.

Start address for binary
image:

Files in Binary format do not carry any address information. When
loading binary files you have to specify the starting address for
loading. In case the file to be loaded is a binary image enter starting
address in the box here.

Offset for loading
address:

Files in formats other than Binary may carry information about the
starting address for the loading. If the file to be loaded is not a binary
image, enter the offset for the file addresses in the box here. The
offset can be positive or negative.

3.2.4.3.6.1 File Formats

The ChipProg-02 program supports a variety of file formats that can be loaded to the CPI2-B1

buffers.

File Format

Description

Standard/Extended Intel
HEX (*.hex)

The Intel HEX file is a text file, each string of which includes the
starting address to load the data to the buffer, the data to load, line
checksums, and some additional information. The ChipProg-02
loader supports both Standard and Extended Intel HEX format.

Binary image (*.bin)

Binary image contains only data. These data will be loaded to the
buffer beginning with the specified starting address.

Motorola S-record
(*.hex, *.s, *.mot)

The Motorola S-record is a text file, each line of which includes
starting address to load the data into buffer, the data to load, line
checksums, and some additional information. The ChipProg-02
loader supports all kinds of the Motorola S-records with filename
extensions .hex, .s, .mot.

Altera POF (*.pof)

The Altera POF-file is a text file, each line of which includes
starting address to load the data into buffer, the data to load, line
checksums, and some additional information. The format is mostly,
used for programming PALs and PLDs.

© 2021 Phyton, Inc. Microsystems and Development Tools

104 CPI2_MODEL Device Programmers - CPI2-B1

JEDEC (*.jed)

This format is used for programming PALs and PLDs. A JEDEC-
file includes starting address to load the data into the buffer, the
data to load, test-vectors, and some additional information.

Xilinx PRG (*.prg)

The Xilinx PRG-file is a text file, each line of which includes starting
address to load the data into buffer, the data to load, line
checksums, and some additional information. The format is used
for programming the Xilinx PLDs.

Holtek OTR (*.otp)

This format is presented by Holtek company. An OTP-file includes
the starting address to load the data into the buffer, the data to
load, line checksums, and some additional information.

Angstrem SAV (*.sav)

This format is presented by Angstrem company. A SAV-file
includes the starting address to load the data into the buffer, the
data to load, line checksums, and some additional information.

ASCII Hex (*.txt)

The ASCII TXT-file includes the starting address to load the data
into the buffer, the data to load, line checksums, and some
additional information.

3.2.4.3.7 The 'Save File' dialog

The dialog defines how the buffer is to be saved to a file.

Control

Description

File Name: Enter a full path to the file in this box, pick the file name from a drop-
down menu list, or browse files on your computer or network.

Addresses Start and End Addresses define buffer address range that will be written
to the File. To save entire buffer click the All button.

File Format: Selected format[103) of the file to be written by checking one of the radio

buttons in the File Format field of the dialog.

Buffer to save file from:

Select the source buffer to write into the file by checking one of the
Buffer# radio buttons. There may be just one such button available.

Sub-level to save file
from:

The Buffer to save file from can have more than one memory layer.
Select the source layer by checking one of the radio buttons. There may
be just one such button available.

3.2.4.4 The Console Window

The Console window displays messages generated by the ChipProg-02 program. These messages
fall into two categories: the CPI2-B1 error messages and what-to-do prompts. The window
accumulates messages even when it is closed. You can open it at any time to view the last 256
messages, and get help for any of them. Error messages are shown in red color, others in black.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 105

The window should be large enough to see several messages. To save screen space you can close
the Console window and redirect all messages to pop-up message boxes. To do this, go to the
Configure menu > Environment > M@ tab and select the Always Display Message Box
option. Alternatively, you can select the Do not open box if Console window opened option,
redirecting all messages to Console window.

Click the Help button in the box to show the CPI2-B1 context-sensitive Help topic associated with the
error, or click the Close button and continue after correcting a parameter error.

Local Menu and Toolbar

The local menu contains Console window context commands and dialog calls. This menu can be opened
by a right mouse click in the window. Most, but not all, local menu commands are duplicated as local toolbar
buttons at the top of the window. Following are the local menu and toolbar commands:

Menu Command Toolbar Description
Button

Clear Window Clear Deletes all messages from the window

Opens context-sensitive Help topic associated with
Help on message MHelp . L. o

the error or information in the highlighted message
Help on window No button Opens the Console window Help topic
Help on word under o b Opens the context-sensitive Help topic associated
cursor o button | with the word under cursor

3.2.45 The Program Manager Window

The Program Manager window is the primary screen object used by an operator to control the
CPI2-B1 in the GUI mode. While some windows can be closed during programming operation, the
Program Manager is supposed to be always open and visible. The window includes three tabs:

The Program Manager tab[107 - by default this tab is open (see below)

The Options tab[19)

The Statistics tabluf]

The contents of the Project Manager and Options tabs depend on the CPI2-B1 programmers
working in single-programming and gang-programming modes. Below you can see the window
appearance for a CPI2-B1 device programmer operating in the Single Programmingl 21 mode.

© 2021 Phyton, Inc. Microsystems and Development Tools

106

CPI2_MODEL Device Programmers - CPI2-B1

Program Manager

Program Maniager | Options | Statistics |

x|

Buffer: | Buffer #0: Code (128 KB). bytes, User (128 KB). bytes, Data (128 KB), bytes v

Functions

- Blank Check
- Program
- Read

[+~ User

[=)- Device Parameters
-- Fuse

- Lock Bits

Execute

G

Fepetitions:

1 -

&4 Edit Auto...

@ Help

Auto Programming

Addresses

Device start: Device end:

Buffer start:

Buffer end: Mot applicable

| Area: Mot applicable

COperation Progress

Al Default

Ready

| Statistics: Good: 0. Bad: 0, Total: 0

In the Gang Programming[261 control mode the window's appearance is different. It displays as many
tabs as many sites are united into the programming cluster of multiple CPI12-B1 programmers. Each
tab has one Execute button, click on which initiates the Auto Programming[16] command for a chosen
site (device programmer). See below an example of the window for a cluster of four CPI2-B1
programmers driven in the Gang Programming] 261 mode.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 107
Program Manager
Program Manager Options Statistics
& Execute | & Execute | Execute ||&® Execute
1 Ready 2 Ready
Mo device MNo device Mo device Mo device
Total: 1 Total: 1 Total: 1 Total: 1
Good: 1 Good: 1 Good: 1 Good: 1
Bad: 0 Bad: 0 Bad: 0 Bad: 0
1 2 3 4
Ready
Device #1:
Fracinn Ok IAO0 13039441

3.2.4.5.1 The Program Manager tab

This tab serves for setting major programming parameters, carrying out programming operations and displaying

the CPI2-B1 status.

Control

Description

. Displays the active buffer to which the programming operations

Buffer: : .
(functions) will be applied. A full list of open buffers is available here
via the drop-down menu.

Functi Shows a tree of functions available for the selected target device.

unctions . .

Some functions represent CPI2-B1 commands while others group
several sub-functions and can be expanded or collapsed. Double-
clicking on a function invokes the command and is equivalent to
single-clicking the Execute button (see below).

Blank check Checks if the target device is blank

Program Programs the target device (physically writes the information from active buffer
to the target device).

Read Reads contents of the target device into active buffer.

Verify Compares contents of the target device with contents of active buffer.

Auto Programmin Executes a preset sequence of operations (batch operations). The sequence

g g can be defined using the Auto Programming[108 dialog. The Edit Auto

button opens this dialog.

Addresses Here you can set the addresses for the buffer and the target device to
which the programming functions will be applied.

Device start: Starting address of the target device physical memory which will be
programmed or read.

© 2021 Phyton, Inc. Microsystems and

Development Tools

108 CPI2_MODEL Device Programmers - CPI2-B1

Device end:

Ending address of the target device physical memory which will be
programmed or read.

Buffer start:

Starting address of the buffer memory from which the data will be written to the
target device or to which the data will be read from the device.

There are three alternative ways to activate a highlighted function: a)

Execute
to click the Execute button; b) to double click on the function line;) to
press Enter button on PC keyboard.

Repetitions: Any function can be executed repeatedly. The number of repetitions
can be set here.

Edit Auto

Clicking on this button opens the Auto Programminngos"l dialog.

Operation Progress

Displays progress bar and the status (OK, failed, etc.) of current
operation.

Besides generic functions such as Blank Check, Read, Verify, Program, Auto Programming, the Functions
window often includes collapsed submenu of functions specific to the selected target device. When expanded it
shows a list of commands for the parameters that can be set in the Device and Algorithm Parameters| s

editor window.

Any changes made in the ‘Device and Algorithm Parameters’ window do not
immediately cause corresponding changes in the target device. Parameter settings
made within this window just prepare a configuration of the device to be programmed.
Physically, the programmer makes all these changes only upon executing an
appropriate command from the ‘Program Manager’ window.

IMPORTANT NOTE!

3.2.4.5.1.1 Auto Programming

Each device has its own typical set of programming operations that usually includes: Erasing, Blank Checking,

Programming, Verifying and often Protecting against unauthorized reading. The ChipProg-02 stores default
batches of these programming operations for each supported device type. A batch can be executed by a simple
mouse click or pressing the Start button on the programmer panel. A sequence of functions (operations) can be
customized via the Auto Programming dialog. To open this dialog click on the Edit Auto button.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 109

—
Selected functions Awailable functions
B Blark Check]
Blank Check Code: 0..(c2FFF, Buf. Start: 0 - Program
Program Code: 0..¢ZFFF, Buf. Start: 0 . Read
Verfy Code: 0..(c2FFF, Buf. Start: 0 =
Data: Blank Check Data: 0..Bx7FF, Buf. Start: 0 - Veiify
Data: Program Data: 0..0«7FF, Buf. Start: 0 - Erase
Data: Verfy Data: 0..0«7FF, Buf. Start: 0 ¥ Remove = =- Data
Device Parameters: Fuse: Program - Blank Check
Device Parameters: Fuse: Verfy
- Program
- Read
- Verify
B~ User
- Blank Check
- Program
- Read
- Verfy

[=)- Dievice Parameters

Edit function addresses...

|[J18d{jng memary

| Erasing chip

’ Restore defaults [-g? Done]

Atree of all functions available for the selected device is shown in the right pane, Available
functions. To add a function to the batch highlight it in the right pane and click the Add button - the
function will appear in the left pane, Selected functions. The functions will be executed in the order in
which they are listed in the Selected functions pane, starting from the top. To edit a batch highlight
the command to be removed and click the Remove button.

3.2.4.5.2 The Options tab

This tab contains controls for setting additional programming parameters and options:

Control Description

) Radio buttons in the Split data group control programming of 8-bit
Split data[1) . 29 \

— memory devices to be used in microprocessor systems with 16-
and 32-bit address and data buses. In such cases buffer contents
have to be properly prepared in order to split single memory file
into several smaller files.

Options:

© 2021 Phyton, Inc. Microsystems and Development Tools

110 CPI2_MODEL Device Programmers - CPI2-B1

Check device ID This option is on by default, and the CPI2-B1 always verifies
target device identifier assigned by device manufacturer. If this
box is unchecked the program will not check device ID.

Reverse bytes order If checked, the ChipProg-02 will reverse byte order in 16-bit
words while it executes Read, Program, and Verify operations.
This option does not affect data in CPI2-B1 buffers.

If checked, the ChipProg-02 will make sure the target device is
blank before programming it.

Blank check before
program

If checked, the ChipProg-02 will verify the device content after it

Verify after program
y prog has been programmed.

If checked, the ChipProg-02 will verify device content once it has

Verify after read
y been read.

On Device Auto-Detect or The checked radio button in this group defines what CPI12-B1 will
‘Start’ Button: do upon when either 'Start' button has been pushed or when the
programmer detected the START signal applied to the pin #4 of the
CONTROL[24 connector.

3.24.5.2.1 Splitdata

Radio buttons in the Split data group of the Option[109 tab control programming of 8-bit memory
devices to be used in microprocessor systems with 16- and 32-bit address and data buses. In such
cases buffer contents have to be properly prepared in order to split single memory file into several
smaller files. Splitting the data allows to convert data read from 16- or 32-bit devices in a way
required to create file images for writing them to memory devices with byte organization.

Radio Button Description

This is the default. The buffer is not split and is treated as an array

No split of single-byte data.

The data in the buffer is treated as an array of 16-bit words. The
buffer-device operations are conducted using even bytes only.
For example, programmer reads one byte of device data at
address 0 and stores the byte in buffer location also at address 0.
The byte read from device address 1 will be stored in the buffer
location at address 2, etc.

Even byte

The data in the buffer is treated as an array of 16-bit words. The
buffer-device operations are conducted with odd bytes only. For
example, programmer reads one byte of device data at address 0
and stores the byte in buffer location also at address 1. The byte
read from device address 1 will be stored in the buffer location at
address 3, etc.

0dd byte

Byte 0 The data in the buffer is considered to be an array of 32-bit words.
The buffer-device operations are conducted with the byte #0 only.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 111

For example, programmer reads one byte of device data at
address 0 and stores the byte in buffer location also at address 0.
The byte read from device address 1 will be stored in the buffer
location at address 4, etc.

Byte 1 The data in the buffer is considered to be an array of 32-bit words.
The buffer-device operations are conducted with the byte #1 only.
For example, programmer reads one byte of device data at
address 0 and stores the byte in buffer location also at address 1.
The byte read from device address 1 will be stored in the buffer
location at address 5, etc.

Byte 2 The data in the buffer is considered to be an array of 32-bit words.
The buffer-device operations are conducted with the byte #2 only.
For example, programmer reads one byte of device data at
address 0 and stores the byte in buffer location also at address 2.
The byte read from device address 1 will be stored in the buffer
location at address 6, etc.

Byte 3 The data in the buffer is considered to be an array of 32-bit words.
The buffer-device operations are conducted with the byte #3 only.
For example, programmer reads one byte of device data at
address 0 and stores the byte in buffer location also at address 3.
The byte read from device address 1 will be stored in the buffer
location at address 7, etc.

3.2.4.5.3 The Statistics tab

This tab displays statistics of programming session - Total number of devices programmed during
the session, what was the yield (Good) and how many devices have failed (Bad). These statistics
are helpful when you need to program a series of same type devices. It is important to remember that
statistic counters are affected by executing the Auto Programming/ 108 only, execution of other
functions has no effect on statistics.

Description
Control
Clear statistics Resets the statistics.
Normally the Total counter increments after each Auto
_ _ Programming/ %}, the Good and Bad counters also count up. The
Device Programming . .
ChipProg-02 reverses the counters to decrement their content (to count
Countdown
down).
If checked the ChipProg-02 will count the number of the programmed
Enable countdown devices down.
Display message If checked the ChipProg-02 will issue a warning when the Total counter
when countdown reaches zero.
value reaches zero
Reset counters If checked the ChipProg-02 will reset all counters when the Total
when countdown counter reaches zero.
value reaches zero

© 2021 Phyton, Inc. Microsystems and Development Tools

112 CPI2_MODEL Device Programmers - CPI2-B1

Count only If checked the ChipProg-02 will count only successfully programmed
successfully (Good) devices. All other statistics will be ignored.

programmed

devices

Clicking on this button opens a field for entering a new Total number

Set initial that will then be decremented after each Auto Programming/108).
countdown value

Below you can see an example of Statistic tab displays programming session statistics for each of
four programming sites. Total number of devices that were programmed during the session, what was
the yield (Good) and how many devices have failed (Bad).

Program Manager [7]ES

Program Manager Options Statistics

Site# Total Remaining Good Bad
1 a8 a 0
2 a8 7 1
3 a8 a 0
4 a8 7 1
All 32 970 30 2
- Clear statistics

Device Programming Countdown

Enable countdown
Display message when countdown value reaches zero
Reset counters when countdown value reaches zero

Count only successfully programmed devices
Setinitial countdown value...

Current initial value: 1000

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 113

3.2.4.6 The Memory Card Window

The window displays information about projects stored on memory cards in programmers, about limit
counter, and about serialization record counter. The window can be brought up using menu " View" [52
->"Memory Card Window."

Memary cards window [F==E
Collapse All | Expand

n
M

ﬁupPoject @: Job: -, "<Unnamed>", Chip: "Macronix MX25L12873FM2I [ISP Mode]", Da
“-Project 1: Job: -, "TXY-@l-Atmel”, Chip: "SST SST25VF@4eB [ISP Mode]", Data: 1
ﬁuFiles loaded into buffers
gmLimit: Mone
=% Shadow areas (@ of 1000 devices programmed)
B Shadow Area Descriptors
- #0: Sublevel: @, Addr: Bx2008, Size: 4, Type: Serial Number
-#1: Sublevel: 0, Addr: Bx2020, Size: 4, Type: CRC
i #2: Sublevel: @, Addr: @x32, Size: 8, Type: User
B Shadow Areas Data (1000 total)
-S/N: DOOOABTSE, CRC: PODOQIFE, User: 00OQ0A32: 00 00 00 00 00 20 00 00
-S/N: DODOABTY9, CRC: PODOALFE, User: 00OQ0A32: 00 00 00 00 00 00 00 00
-S/N: DODOABTA, CRC: PODOALFE, User: 00OQ0A32: 00 00 00 00 00 20 00 00
-S/N: DOOOABTE, CRC: PODOAIFE, User: 00DOQ0A32: 00 00 00 00 00 20 00 00
-S/N: POOOABTC, CRC: PODOOIFE, User: 00DOQON32: 00 00 00 00 00 00 0P 00
-S/N: POOOABTD, CRC: PODOQIFE, User: 00DOQON32: 00 00 00 00 00 00 0P 00
-S/N: POOOABTE, CRC: PODOOIFE, User: 00DOQON32: 00 00 00 00 00 00 00 00
-S/N: PODOABTF, CRC: PODOQIFE, User: 00DOQON32: 00 00 00 00 00 00 0P 00
..992 more records

Click the Erase button in the window toolbar deletes selected project from the card. This is useful when
the card is filled up to capacity.

3.2.4.7 Windows for Scripts

ChipProg-02 provides windows for working with scripts.

(Script) Editor[88 window
Watches| 182 window

User 189 window
I/O Streaml 8% window

These windows cannot be opened from the View menuls2. They may only be opened when you work
with scripts. Operations with these windows are described in the Scripts Files[1 chapter.

3.3 Simplified User Interface

The CPI2-B1 default graphic user interface makes heavy use of menus, windows and controls that are
redundant in case of mass production. Furthermore, an unskilled operator is usually employed for such
production. Programming a lot of chips or boards of the same type with the same data is routine work
that consists of two operations: replacing target boards in a test fixture and executing a predefined
batch of programming operations (Auto Programming[% command). To prevent casual CPI2-B1
mismanagement and to simplify routine operations, the ChipProg-02 enables switching the CPI2-B1

© 2021 Phyton, Inc. Microsystems and Development Tools

114 CPI2_MODEL Device Programmers - CPI2-B1

araphical user interfacel 41 from the default mode to the Simplified User Interface mode (SUI). In this
mode, operator can see a very simple PC screen with very limited information: a single Start button and
three virtual LEDs that indicate CPI2-B1 status: Good, Busy or Error. Or, for the Gang Programming] 261
control mode, each site has its own Start button (see the SUI screen examples below).

4 CPI2-B1 Simplified User Interface [SUI 1] ‘ (eS|

Project: [STM32F437 - Debug 4 -

Device: STMicroelectronics STM32F437IGH [1SP SWD Mode]
Statistics: Total: 0, Good: 0, Bad: 0

Ready

@ Start

[|:|/' Retum to editing] [3’. Exit] [G Help]

The screen shot above displays SUI set for launching a single CPI2-B1 device programmer.

'® CPL_BI [Gang] Simplified User Interface (= |

Project: v|

Device: Atmel AT8958253 [ISP Mode]
Statistics: Total: 0, Good: 0, Bad: 0

Ready

Ready

’J Exit] ’E‘ Help

The screen shot above displays SUI set for launching two CPI2-B1 device programmers running in the
Gang Programming[21 mode when each of two device programmers can be launched asynchronously
and independently. Each site has its own Start button. The screen shot below displays the same but
when both device programmers starts synchronically by clicking one common Start button.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 115

~

@ CPI2-B1 [Gang] Simplified User Interface [E2 |

Project: |ABC test -

Device: Atmel AT8958253 [ISP Mode]
Statistics: Total: 0, Good: 0, Bad: 0

Ready

Ready

‘EEEQ Start ‘

% Bt | @ Hep

NOTE. Two conditions should be preserved for use of SUI mode. A programming session:
- should be configured by making a project;[+"
- can be started by executing Auto Programming[18) command, only.

Atypical use scenario consists of two steps: Preparation| 18 and Use| 120\

1. Preparation[18. An engineer or a technician (hereafter a supervisor) configures the programming
session using the default CPI2-B1 graphical user interfacel 48Y and saves the session project| . Project
file can be stored at any location on PC hard drive. To launch/20) the CPI2-B1 with the SUI, a supervisor
can create a PC desktop icon and specify the project and configuration files. After that supervisor
switches| 1 the user interface to SUI mode for use of the CPI2-B1 by a less skilled operator.

2. @lﬁﬁ. There are two methods launching the programming when it is controlled via SUI:
automatically by an ATE signal or manually by an operator. In case the ATE (test fixture) generates the
START signal on the CPI2-B1 CONTROL connector (for example, upon closing the fixture lid and
contacting test needles the target device) this launches preset programming session. An operator then
keeps replacing target boards and close the fixture lid to continue programming boards. Alternatively
launching the programming can be initiated by either clicking the Start button in the CPI2-B1 Simplified
User Interface window or by pressing the Start button on a top of the CPI2-B1 unit.

Settings of Simplified User Interface[118)

Operations with Simplified User Interface[1231

© 2021 Phyton, Inc. Microsystems and Development Tools

116

CPI2_MODEL Device Programmers - CPI2-B1

3.3.1

Settings of Simplified User Interface

A session project contains information on device type, file name, serialization[& parameters, check
sum, list of the functions included in the Auto Programming]1cé] batch and other options, including the
SUI windows and controls configurations| s21. The SUI interface settings[1181 contain a list of pre-
configured projects, so that operator can pick a project from the list in the Use project pane unless the
Allow operator to select project from the list box is unchecked. This option can be set by a
supervisor.

To control programming sessions using SUI you first need to create a project. Start with the following
steps.

« Configuration| s menu - select target device.

e Configurationl 571 menu - set up a buffer[¢7.

e Configuration| 51 menu - set options for device serialization| 7, writing check sum|[e and
signatures| %, and log file[73 controls.

e Device and Algorithm Parameters Editor| s window - specify the options different from default for a
chosen device.

e Program Manager[108l window > Program Manager|107 tab > Edit Auto[108 dialog - configure Auto
Programming/ 18] batch of functions.

e Program Manager/ 105l window > Program Manager/ 107 tab - set programming options.

e Program Manager[10%) window > Statistics[11 tab - enter the number of chips to be programmed and
select other options. When using SUI, countdown of programmed chips is disabled, and the program
only displays the numbers of successfully programmed and failed chips. Other options set in this tab
remain in force.

Once the above settings are done, create the project. In the menu select Project > New. In the Project
Options| 31 dialog enter project name, file name, format, and other information. Click OK button to save
the project to disk.

NOTE. Itis absolutely crucial that the project is stored on disk before use. The ChipProg-02 does not
protect the SUI project files and window configurations against unauthorized modifications by an
operator or any third party.

Once the project has been created and stored on the hard drive, set SUI options. In Configuration[571
menu select the Simplified Mode Editor command. This will bring up Simplified User Interface
Setup window docked to the SUI window at its left. The picture below displays the Setup pane only.
Any changes made in the Simplified User Interface Setup window immediately become visible in the
SUI window. Clicking the OK button in the Simplified User Interface Setup window completes the
SUI setup; the setup window is closed and Return to Editing button appears in the SUI window. This
allows quick switching back and forth between SUI session setup and actual device programming.

The Simplified User Interface Setup dialog has two tabs described below.

The General Settings Tab

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 117

" ™
Simpiified User Interface 5&_ L7 S|
General Settings |Appeamnce

Current corfiguration: [SUI 1 v]

[Save | | saveas. |

Auto-save configuration on ‘0K button
Projects

Use project:

(7) D\ Temp“UPP projects"MSD-55¢c Cortroller - Debug 1.upp

(73 D:\TempUPP projects"\MSD-55¢ Controller - Debug 2 (18 Hz).upp
i@ DM\Temp PP projects' STM32F437 upp

’i—.—i Add..] ’x Remove from list l ’ﬁ Open project

[Allow operator to select project from the list

Start Operation
When the device has been automatically detected in the socket
@ Bxplicitty by the “Start” button in dialog
Gang Mode
@) fts own "Start’ button in dialog for each site
(7 Single "Start” button in dialog for all stes

[Allow operator to terminate operation

(#/ 0K | (% Canced | [@ Hep |

The Current configuration field displays the name of currently active SUI configuration. SUI
configuration files with have name extension .smc and are stored in SMConfig sub-folder of ChipProg-
02 working folder.

The Save button writes current configuration to a file under the name shown in the Current
configuration field; the Save as... button allows saving configuration file under a different name. If the
Auto-save configuration on 'OK" button box is checked, clicking on OK button at the bottom
automatically saves current configuration before dismissing the dialog.

The Projects pane lists all projects associated with current configuration. When Simplified User
Interface Setup window is opened for the first time, the Projects list will be empty. To add a project
use the + Add button. Single configuration may include more than one project; this allows operator to

© 2021 Phyton, Inc. Microsystems and Development Tools

118

CPI2_MODEL Device Programmers - CPI2-B1

change projects without restarting the programmer. If Allow operator to select project from the list
box is checked, the SUI window will list all projects associated with current configuration. Otherwise,
only one project selected from the Use project list will be displayed. To remove a project from the Use
project list, highlight it and click the x Remove from list button. Removing project from the list does
not remove it from disk. The Open project button loads selected project from disk; this will not close
editor window.

The Start Operation pane specifies a method of manual launching programming operation.
The only batch command that can be launched in SUI mode is Auto Programming/ 8. This command

is executed either by pressing the physical button on the CPI2-B1 unit or by clicking the 'Start' button in
the SUI window.

NOTE. These settings do not block or influence in any other way launching CPI2-B1 by an external
START signal generated by ATE on the CONTROL connector.

If Allow programming termination by operator box is checked, the operator will be able to interrupt
programming by clicking Exit button in the SUI window, otherwise the operator will only be able to
initiate device programming.

The Appearance Tab

Here you can choose the type, size and color of the Default Font for each element in the SUI window:
Project name, Device part number, Statistics, Device operation status, and "Start" button.
Checking boxes in Display elements list makes corresponding elements visible in the SUI window.
Clicking Move up and Move down adjusts position of selected element within the window.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces

= ™
Simplified User Interface _ L9 eS|

Settings for "Project™

Default Fort
[Choose fort ...
Tahoma (11)
’ Choose color...
Display elements:
¥l Project
K Proj - Move up
Device part number
Device operation status
"Start" button

[Frame
Fort
i@ Default
() Custom: Tahoma (11) Choose...
Font color at left Fort color at ight
@ Default (@ Default
(™) Custom Custam Choose. .
(«# oK | (% Cancel | [@ Hep |

119

If an element is set to be visible in the SUI window, you can maodify its appearance to differ from the
default and from other elements. Checking the Frame box causes a thin blue frame to appear around

the element. The Font, Font color at left and Font color at right radio buttons modify appearance of
an element to make it distinct from other elements in the SUI window.

When the Statistics element is highlighted, Allow operator to reset statistics box will be displayed.

Check this box to allow operator clear displayed programming statistics.

When the Device operation status element is highlighted, two additional checkboxes, Serial number

and Checksum are displayed. Checking these boxes makes serial number| ¢ and check sum|[&
written into the last programmed device be displayed below the status line.

© 2021 Phyton, Inc. Microsystems and Development Tools

120

CPI2_MODEL Device Programmers - CPI2-B1

3.3.2

3.4

3.4.1

Operations with Simplified User Interface

To launch programming operations controlled by a configured Simplified User Interface[13 open the
Command|[1 menu, and double click the Switch to Simplified User Interface.. line.

To launch the ChipProg-02 with the Simplified User Interface[13) (or in the Simplified Mode) use
the /Y<configuration name> option key in Command linel 120l mode (there must be no spaces
between /Y and <configuration name>). If <configuration name> includes spaces, it must be
quoted. For example, if the configuration name is STM32F429BGT [ISP SWD Mode] - Release, the
command line may look like this:

C:\Program Files\ChipProg-02\6_00 20\UprogNT2.exe /Y"STM32F429BGT [ISP SWD Mode] -
Release" ,

When launched in the Simplified Mode, the ChipProg-02 only displays the SUI window. The main
ChipProg-02 window remains invisible unless an error occurs. If a programming operation fails, the
programmer performs actions according to error handling settings. These settings are available via
Configurel 571> Preferences[71 menu. If the Terminate device operation on error and do not
display error message... box in the Preferences dialog is unchecked (default setting), the ChipProg-
02 issues an error message and prompts the user to either ignore the error and resume operation or
terminate it. If this box is checked, any error will cause the programming session to come to a halt; in
such case no error message will be issued.

Command Line Interface

The ChipProg-ISP2 device programmers (both CPI2-B1 and CPI2-Gx) can be controlled from Command Line
using the UProgNT2.EXE executable.

Command line has the following format:
UProgNT2.exe [option 1] [option 2] ... [Name of the project file] [option 3] [option 4]...

Elements in square brackets are optional and may follow in arbitrary order, separated by spaces. These
elements are called options, square bracket characters themselves are not part of the option. Options specify
certain CPI2-B1 functions and settings. Some options are called keys. Command line may also optionally
contain the name of a pro'ectm"l file that will be used to control programmer operation.

Each option begins with either ‘/’ (slash) or ‘-* (hyphen) followed by an option name. The slash and hyphen
characters can be used interchangeably; for example: ‘/L’, is the same as ‘-L’. Valid names are listed in the

Command line options[128] table.

Option names, project names, and the application executable name are NOT case sensitive, so there is no
difference between the ‘/A’ and ‘/a’ options. Names containing spaces must be quoted, for example: -L"Data file
5.hex”.

Some options listed in Command line options[12%
Command Line Options

Option name starts with either /' (slash) or ‘-* (hyphen), followed by one of the reserved names listed
below. The slash and hyphen characters have the same effect and can be used interchangeably, for
example: /C’, -C’.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 121

-N<serial number>

If more than one CPI2-B1 programmers are connected to
one computer the -N key enables control of a certain
device programmer by specifying its serial number. This
key cannot be used in combination with the key -GANG
i.e. when multiple programmers were launched in gang-
programmingmﬁ (9ang) mode (see below).

The serial number can be found on the bottom of
programmer case or by using the Help > About...[90
menu command. Serial numbers of all programmers
connected to a PC are also available in the "Choose
programmer" dialog. The ChipProg-02 program shows
this dialog if the command line does not have the -N
option.

For example, the option -NSI2-10012 specifies that all
other command line options apply to the programmer
with serial number S12-10012 only.

-GANG

This option launches multiple CPI2-B1 device
programmers in gang-programmingmﬂ (gang) mode. In
this mode the ChipProg-02 software controls multiple
CPI2-B1 programmers connected to a single computer.
The -GANG key cannot be used in a combination with
the -N key.

The -GANG option can be used either alone, without
any specifiers, or with one of two following: <number of
sites> or #<list of serial numbers>. Each specifier
requires use of its own -GANG key. For example: -
GANG:4, -GANG#SI2-10014;S12-10022. You cannot set
both of these specifiers by a single -GANG key. Below
see detail descriptions of use the -GANG option with the
<number of sites> and #<list of serial numbers>
descriptors:

-GANG:<number of sites>

If the :<number of sites> parameter follows the -GANG
key then after launching the ChipProg-02 application it
is waiting until the program detects a specified number
of CPI2-B1 device programmers connected to a PC or
for 16 sec, whatewver is longer. For example, the -
GANG:2 key stops attempts to establish
communication after the first two CPI2-B1 device
programmers have been detected. The :<number of
sites> parameter may be omitted.

-GANG#<list of serial numbers>

If the -GANG key is followed by ‘# sign with a list of
serial numbers separated by semicolons, the
application waits until the number of connected single-
site programmers matches the number of serial
numbers in the list, then automatically assigns
sequence numbers according to the serial numbers in
the list.

For example, if the -GANG#SI2-10014;S12-10022 is
specified, the application waits for establishing
connections with two device programmers with serial

© 2021 Phyton, Inc. Microsystems and Development Tools

122

CPI2_MODEL Device Programmers - CPI2-B1

numbers SI2-10014 and S12-10022; the programmer
with serial number S12-10014 will be assigned the
sequence site number 1 and programmer with serial
number S12-10022 will be assigned the site number 2.

-ETH

This option initiates control one or more CPI2-B1 device
programmers connected to a local network (LAN) via
Ethernet (USB is a default option that does not require
use of any keys). The -ETH option can be used either
without any specifiers or with one of two following:
<number of sites> or #<IP addresses list>. Each
specifier requires use of its own -ETH key. For example:
-ETH:4, -ETH#192.168.1.{2-128}. You cannot set both
of these specifiers by a single -ETH key. Below see
detail descriptions of use the -ETH option with the
<number of sites> and #<IP address list>
descriptors:

-ETH:<number of sites>

If no parameters follow the -ETH key the program pings
IP-addresses of LAN adapters in a range automatically
detected by a computer. This process may take up to
16 seconds. To speed up connecting all the
programmers it is recommended to specify a <number
of sites> parameter. For example, for driving a single
CPI2-B1 programmer via Ethernet include the -ETH:1
option in the command line. In most cases this allows
to establish communications in a few seconds.

-ETH#<IP addresses list>

-ETH#192.168.1.32 - connect a device programmer with

This option specifies an individual IP address or a range
of multiple IP addresses to be pinged by a computer
while it tries to connect CPI2-B1 device programmer(s).
Normally, in a local network (LAN), IP addresses are
assigned by a DHCP server automatically. The DHCP
server dynamically distributes IP addresses used by
CPI2-B1 programmers.

Howe\er, it is possible to specify static IP address if it
is assigned to a particular CPI12-B1 unit or a list of IP
addresses or a range of IP addresses assigned to
multiple units. See the examples below:

the 192.168.1.32 static IP address.

-ETH#192.168.1.32;192.168.1.38 - connect device
programmers with either the 192.168.1.32 or the
192.168.1.38 IP address. After launching the program you
will be prompted to select one of two IP addresses above.

-ETH#192.168.1.{16-128} - scan IP addresses in a range
of 192.168.1.16 to 192.168.1.128.

-ETH#192.168.1.* - scan IP addresses in a full range of
192.168.1.1 to 192.168.1.254.

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 123

-ETH#192.168.1.{12-33,127,164-254} - scan IP addresses|
in a range of 192.168.1.12 to 192.168.1.33, then ping a
single address 192.168.1.127 and then scan a range of
192.168.1.164 to 192.168.1.254.

-ETH#192.168.1.* -ETH:1 - scan IP addresses in a full
range of 192.168.1.1 to 192.168.1.254 and stop scanning
upon connecting to the first detected device programmer.

-C"<manufacturerdevice>"

This option tells the ChipProg-02 program to use the
device specified as manufacturer name followed by a *
character followed by device part number specified here
exactly as it presents in the CPI2-B1 device list. The
device specified in a previously loaded project will be
replaced by a device specified by the -
C"<manufacturer”device>" key.

For example: -C"NXPA*MC9S08DV32MLF [ISP Mode]"

Note. The use of the -C option is less beneficial than
using pro'ectsm"l. Projects provide much more flexible
and effective control of device programming. Use of
projects is highly recommended, especially for mass
production, to create, configure, and save as many
projects as needed and use them with command line.

-L<file name>

This option loads the <file name> file into the CPI12-B1
buffer upon launching the ChipProg-02 program. If other
files were previously loaded using some project, then a
new one will be loaded in accordance to the file format
and start address. The loader determines file format[103
from the file name extension. If actual file format differs
from the one listed in the file format[108 list use the -F
option to explicitly specify file format (see below).

-F<file format>

This option sets format of the file specified by the -L<file
name> option. The <file format> must be one of the
following letters:

H - standard or extended Intel HEX format
B - binary format

M - Motorola S record format

P - POF (Portable Object Format)

J - JEDEC format

G - PRG format

O - Holtek OTP format

V - Angsrem SAV format

For example, -FH option loads file in the HEX format,
which contains starting address in CPI2-B1 buffer.

© 2021 Phyton, Inc.

Microsystems and Development Tools

124

CPI2_MODEL Device Programmers - CPI2-B1

If binary format (B) is specified by the -F option, it should
be followed by a destination starting address in the
format used in C language. For example: the option -
FBOxFFO04 loads binary file and places data starting at
the address 0xFF04 in the buffer.

In the absence of -L<file name> the -F<file format>
option is ignored.

-Albuffer number]

This option initiates the Auto Programmingl 108 session
upon launching the ChipProg-02 application. Upon
successful completion, the application terminates. In
case of error the ChipProg-02 application remains open
until it is manually closed by operator. If the [buffer
number] is omitted, the data for Auto Programming are
taken from buffer #0; otherwise the data are taken from
the buffer with the number that follows -A. For example:
the option -A2 specifies that data for the Auto
Programming session will be taken from the buffer numbef
2.

The -A option is only meaningful if a project name or an -
L<file name> option is also specified on the same
command line.

This key hides the ChipProg-02 main window. If an error
occurs during programming process, the window is
displayed on the PC screen along with the error
message. This option is only meaningful if an -A (Auto
Programming) options is specified on the same
command line; otherwise the -l option is be ignored.

This key is similar to the -l key except the -11 keeps the
ChipProg-02 main window hidden even if a programming
error occurs. The first occurrence of a programming error
terminates the ChipProg-02 program and returns the error
code 1. (Successful Auto Programming session ends with
return code 0.) Return codes can be used by external
applications that control the CPI2-B1 remotely, such as
LabVIEW, similar programs, or batch files.

This key is similar to the -I key; howewer, -I12 keeps the
ChipProg-02 main window hidden at all times, suppresses,
error messages display, but copies the error message to
Windows clipboard.

This key starts the ChipProg-02 software in the demo
mode, without use of the CPI2-B1 hardware and without
real data exchange between computer and programmer

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 125

hardware. This mode is convenient for evaluating the
product without use of CPI2-B1 hardware.

-S<file> This key replaces the default session configuration
filel 52 UPROG.ses with a new one named <file> (with
the extension .ses). Session configuration file stores
major CPI2-B1 settings, and includes the name of the
most recently used project; it resides in the ChipProg-02
folder. The new session settings will be used by the
ChipProg-02 when invoked from command line.

-O<file> This key replaces the default option configuration filel 52
UPROG.opt with a new one named <file> with the
extension .opt. Option configuration file stores target
device type, file options, etc.; it resides in the ChipProg-
02 folder. The new options will be used by the ChipProg-
02 when invoked from command line.

-D<file> This key replaces the default desktop configuration file[s2']
UPROG.dsk with a new one with name <file> and
extension .dsk. Desktop configuration file stores
computer screen configuration, i.e., positions,
dimensions, colors and fonts for all open windows; it
resides in the ChipProg-02 folder. The new desktop
configuration will be in force when ChipProg-02 is invoked
from command line.

-ES<file> This key executes a script whose file name follows the -
ES key, immediately after starting the ChipProg-02
application. If the command line does not include the -ES
key, the ChipProg-02 application searches for the script
file named ‘Start.cmd’ in the working folder and, if such
script exists, executes it.

3.4.2 Command Line Option Files

Command line options can be specified directly or by command line option files - response files.
Instead of specifying a command line option it is possible to put a character @ following by a name of
the file that includes the command line options. This character @ following by a file name can be
inserted in the command line anywhere. The ChipProg-02 reads the option file and inserts its content
into the command line. For example, specifying the command line as:

UProgNT2.exe -G1 @C:\Files\Programmer.txt
where the C:\Files\Programmer.txt file includes the following lines:

-LF\ARMAIARCPP\Debug\Exe\Test.hex
-FHEX

-A

-12

© 2021 Phyton, Inc. Microsystems and Development Tools

126

CPI2_MODEL Device Programmers - CPI2-B1

3.5

is equivalent to specifying the command line:
UProgNT2.exe -G1 -LF\ARM\IARCPP\Debug\Exe\Test.hex -FHEX -A -12

Each line in a response file may include one or more options. Blank lines, lines beginning with the a
semicolon (;) or double slash (//) characters are treated as comments and ignored them. For example,
see the C:\Files\Programmer.txt file with added comments:

; ----- Load file to buffer FAARMAIARCPP\Debug\Exe\Test.hex
-LFAARMAIARCPP\Debug\Exe\Test.hex

o Specify the HEX file format
-FHEX

;- Conduct Auto Programming

;== Hide GUI. Copy error messages to clipboard.

A command line may include several response files. For example:
UProgNT2.exe @F:\Configl @C:\Files\Programmer.txt

It is also allowed to include one response file into another - then a command line interpreter will extract
all the options of both response files.

On-the-Fly Control Interface

The On-the-Fly Control interface is very similar to command line[120 control interface. However, it can
control a CPI2-B1 programmer that has already been started and is running, without restarting it. On-
the-Fly Control interface can be used to start any operation available for target device, such as Read,
Program, load project| 47, execute script[178, etc. On-the-Fly Control utility can be used to control a
running CPI2-B1 programmer by Windows batch files coming with third-party graphical packages such
as National Instruments LabVIEW.[172)

The On-the-Fly Control utility is an alternative to a more advanced Application Control Interface[158)
(DLL control[18); using the latter requires some programming skills.

The OFControl.exe executable resides in the ChipProg-02 installation folder. We suggest you keep it
in that folder and start it from there. Once started, the utility does not modify its working directory..

After completion, On-the-Fly Control utility issues return codes[3h. The code is 0 (zero) in case of
success. Error codes are listed in the UPControl return codes section. The program writes error
messages to the Console[0% window and, optionally, to log filel 73" and/or Windows clipboard.

After the On-the-Fly Control process has exited, CPI2-B1 keeps running unless On-the-Fly Control
utility had been started with the -X key. You may re-launch the On-the-Fly Control utility to control the
same device programmer. However, please keep in mind that only one On-the-Fly Control utility can
control a running device programmer at the same time. In case you launch a second instance of the

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 127

On-the-Fly Control while the CPI2-B1 device programmer is being controlled by previously launched
instance, the second instance will not "find" the programmer.

The On-the-Fly Control command line format is as follows.
OFControl.exe [Options] [@<Option File>] [Options]

Each option starts with either /' (slash) or *-* (hyphen) character, followed by a name. Valid nhames are
listed below. The /' (slash) and *-* (hyphen) can be used interchangeably. For example, ‘/L’, -P".

The order of options[271in the command line is not important. Operations specified by options are
performed in logical order. For example, operations on target device will be performed after loading a
project and executing a script, regardless of the order in which options appeared on command line.
However, the -F<device operation list> and -A options are exceptions. These options define an
order of operations on target device, therefore they are always performed according in the order they
are appear on the command line.

Note. Brackets [] in option descriptions denote optional parameters; brackets should not be used when
specifying actual parameters. Angle brackets <> are used to denote entities and are not part of the
option notation. For example, replace -G[+] with -G+; replace -G[+][<C:\Temp\UPC.log] with -G+C:
\Temp\UPC.log.

If a file name used in an option includes spaces, full name with the path should be used. Any additional
part of an option should not be separated by spaces. For example, -L"H:\Program Files\ChipProg-
02\6_00_20\UprogNT2.exe /g". Here the file name and path is enclosed in quotation marks (") and
there are no spaces between the /L and the rest of the option

The @<Option File> construction specifies a text file containing additional options for On-the-Fly
Control utility. Each option in such file must be listed on a separate string. For example: :

UPControl .exe -D @response.txt -WK

In the option file, lines starting with semicolon (;) are treated as comments and are ignored. A
commented example file response.txt is shown in the Option File example[2)

3.5.1 On-the-Fly Command Line Options

On-the-Fly Control command line has the following format:
OFControl.exe [Options] [@<Option File>] [Options]

The following table provides detailed descriptions of available options.

-D Debug mode: include additional information in console log and in log file
This option is helpful for debugging On-the-Fly Control program.

-G[+][<log file name and |Send the ChipProg-02 Console[:0 window output also to a log file. If -
path>] G is followed by a + sign output will be appended to the log file if it
exists. If the + sign is omitted a new log file is created. By default the
log file is called OFControl.log and resides in the ChipProg-02
working folder; you can specify a new file name and location if desired.

© 2021 Phyton, Inc. Microsystems and Development Tools

128

CPI2_MODEL Device Programmers - CPI2-B1

Examples:

-G - create a new log file, named OFControl.log, in the
OFControl.exe working folder.

-G+ - append records to OFControl.log file if it exists; otherwise
create the file.

-G+C:\Temp\OFC.log - append records to C:\Temp\OFC.log file if it
exists; otherwise create it.

[Keep On-the-Fly Control program running until a key is pressed on thg
keyboard. This allows perusing messages in the Console[103 window
|before it terminates.

-L< ChipProg-02 executablejLaunch the CPI2-B1 device programmer if it is not running. If it has
file name and command line]been already launched the option is ignored. The On-the-Fly Control

options>

program executes the -L option before all other options on command
line, that is before loading a project, executing scripts, or performing any
operations with the device. The -L cannot be used together with -R
option (see below).

[Example: -L"UProgNT2.exe /g1"

-R<device programmer's
serial number>

If more than one CPI2-B1 device programmer is controlled by the PC in
[the gang mode, connect to the unit whose serial number is given by this
option. -R cannot be used in a combination with -L option. If more than
one programmer is controlled by the PC and On-the-Fly Control
command line does not contain an -R option, the program terminates
with error code #14.

Copy error message to the Windows clipboard. Whenever On-the-Fly
Control program terminates with a return code other than O (except
when -T option is used, see below), it means that an error has
occurred. If the the -C option is given, the error message will be copied
[to the clipboard; otherwise the clipboard contents remain unchanged.

If more than one operation specified on On-the-Fly Control command
line results in an error, error messages of all operations will be copied
[to Windows clipboard if the command line also contains the -I option
(ignore errors).

-M[=<timeout in seconds>]

Specifies timeout in seconds when waiting for device programmer to
|pbecome ready before performing certain operations. The operations
include loading a project, running a script, programming target device,
and terminating execution triggered by the -X option. If -M option is not
specified, On-the-Fly Control program does not check whether
ChipProg-02 is ready to perform the next operation. In case it is not, an
attempt to perform a programming operation will result in program
[terminating with an error.

If the -M option is not accompanied by a [=<timeout in seconds>]
|parameter, On-the-Fly Control program will wait for the programmer

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 129

ready state indefinitely. In this case you can interrupt program execution
and make it quit by pressing Ctrl+C on the keyboard.

Stop an operation with the device. If CPI2-B1 performs a programming
[function (Read, Program, Verify, etc.) on target device, it will be
interrupted. This action takes place prior to performing all actions
specified by the options -P, -S, -F, -X options. It is possible, however,
[that the -B option does not interrupt operation on target device. This
happens when the program displays an error dialog that requires
operator response. In this case On-the-Fly Control program exits with
an error code.

-P<project file>

[Load the specified project +71 file. Project files with .UPP extensions
contain all information and settings defining a programming session
(device type, file(s) to be written to the device, customized device and
algorithm parameters, interface settings, device serialization options,
scripts, etc.).

|Before loading the project file, On-the-Fly Control program waits for
the programmer to stop operations on device (see the -M option). If the
-P option is specified on On-the-Fly Control command line along with
-S and/or -F options, the project file will be loaded before running scripts
or performing any operations on target device.

|Exam ple: -P"C:\Prog\Projects\Antenna-01 Test.upp"

-S<script file>

|Run the specified script] 178 Before running the script On-the-Fly
Control program waits for the programmer to stop operations on
device (see the -M option). By default On-the-Fly Control program
waits for the script to complete. To allow On-the-Fly Control program
|to continue operations while the script is still running, add the -NWS
option to the option list.

|Example: -S"D:\Prog Scripts\Checksum.cmd"

-NWS

IDo not wait for completion of the script! 78 specified by the -S option.

-F<function list>

Execute listed operations (functions) on the target device. Names of the
functions in the list must be separated by semicolons (;). In order to
execute the Auto Programming function the -F option should be
[followed by an asterisk character (*).

If command line has more than one -F option, functions will be executeg
in the order in which they are specified on the command line.

If one or more -F options is specified in the command line along with -P
(load project) and/or -S (launch script) options, all functions specified by
-F option(s) will be performed after loading the project file and/or running
|the script.

© 2021 Phyton, Inc. Microsystems and Development Tools

130

CPI2_MODEL Device Programmers - CPI2-B1

By default On-the-Fly Control program waits for function to complete
before proceeding. To enable the program to proceed while function
specified by the -F option is still executing, add the -NWF option to
command line. In this case you may specify only one -F option on the
command line.

If an -F option specifies a sub-function displayed in the drop-down
menus of the Program Manager function tree, use both menu name
and function name separated by the caret '*' character. For example: -
FProgram (for the Code Memory chip layer) but -FData
Memory"Program (for the Data Memory) .

Examples:

-F* - launch the Auto Programming function.

-FErase;Blank Check;Program;Verify - erase the device, check if it is
[blank, write the file from the programmer buffer and compare the buffer
and device memory contents.

"-F*;Verify;Device Parameters’Program HSB and XAF" - execute the
Auto Programming function, then compare the buffer and device
memory contents, then launch the function Program HSB & XAF from
the Device Parameters sub-menu.

-NWF

IDo not wait for completion of the function specified by -F option. This
option is incompatible with -X.

Ignore errors during programming operations. By default On-the-Fly
Control program stops operations on target device in case of any error
The -I option enables the operations to continue regardless of error
conditions; this allows logging of all errors that occurred.

-T[+][W=<delay in
milliseconds>]

W ait for programmer status ['Ready" or "Busy"]. On-the-Fly Control
program returns code 0 (zero) when CPI2-B1 stops and becomes
ready to perform a programming operation ("Ready"), or 1 if an
operation on target device is underway ("Busy").

In addition, if '+' sign follows the -T and the programmer status is busy,
current function name (Read, Program, etc.) will be output to the
console window along with the completion percentage of the function
|[pbeing executed. For example: Program, 87%.

Optional [W=<delay in milliseconds>] parameter sets a delay before
getting the programmer status. Delays allow checking programmer
status within a settable period of time.

|[Examples:

-T - get the programmer status "Ready" or "Busy"

-TW=1000 - wait for 1 sec, then get the programmer status "Ready" of
IIBusyll

-T+ - get the programmer status "Ready" or "Busy" then output to the
Console window the name of currently executed function and

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 131

percentage of its completion. An example of the function status string:
Read 56%.

-v=[0] 1] |Hide (-v=0) or make visible (-vV=1) the ChipProg-02 main window.

If ChipProg-02 main window is hidden, the program will not be present]
among other open applications in the Applications tab of the Windows
Task Manager. In order to stop a running ChipProg-02 program you
will have to go to the Process tab of the Task Manager, then locate and
highlight the programmer executable name (UprogNT2.exe) and click
[the End Process button.

-X Stop the programmer and quit the program. To quit the ChipProg-02
|program, the programmer must complete all current operations on the
device. The On-the-Fly Control program waits for completion of the
current programming operation for the period of time specified by -M
option. If this option is omitted or the timeout period has expired, On-
[the-Fly Control returns an error.

-? or-H Show a brief description of the On-the-Fly Control program options
and exit.

3.5.2 On-the-Fly utility return codes

Upon completion On-the-Fly Control program returns code O (zero) in case of success. Otherwise it
returns one of the error codes listed below. There is one exception related to the use of option —T. If -T
option is specified On-the-Fly Control returns 0 if the programmer is stopped and 1 if an operation on
the target device is underway.

Error messages are set to the Console[04 and, optionally, to a log file and/or Windows clipboard.

Return codes:

0 | Successful completion.

1 | The —T option was specified and the programmer is busy performing an operation on taget
device.

2 | Invalid option or parameter on command line[120).

3 | Error calling a Windows API function; it could be caused by an abnormal exit of the programmer
software.

4 | The programmer application was closed while the On-the-Fly Control utility has been waiting
Ifor response. Possibly the operator has forced closing of the program.
5 | Timeout set by an -M option occurred.

© 2021 Phyton, Inc. Microsystems and Development Tools

132

CPI2_MODEL Device Programmers - CPI2-B1

3.5.3

6 | The programmer was launched in the gang mode but an option in the On-the-Fly Control utility,
tried performing a___function not applicable to multiple CPI12-B1 running in the gang mode.

7 | Failure to perform requested action because programmer is busy performing anoter operation
on the target device.

8 | Failure to load project file specified by -P option.

9 | Failure to run script specified by -S option.

10 | General error.

11 | Programming function specified by the -F option is not applicable to current target device.

12 | An error occurred while programmer performed operation on the target device.

13 | Programmer could not complete an operation and closed the program after receiving the -X
option request.

14 | More than one device programmer is running. -R option must be used.

On-the-Fly Control Examples

; Launch programmer in diagnostic mode unless it is already in use
-L"C:\Phyton\ChipProg-02\6_00_21\UProgNT2.exe /g1"

; Append records to the log
-G+

; If programmer is busy, wait for 30 seconds max
-M=30

; Load project file. The FuelPump-08.upp project file is in D:\Projects folder
-PD:\Projects\FuelPump-08.upp

; Execute csm-16.cmd script located in the D:\Scripts folder
-SD:\Scripts\csm-16.cmd

; Execute auto programming using parameters defined by the FuelPump-08.upp project
-F*

Standalone Operation Mode

CPI2-B1 device programmers can be operated in the standalone mode that does not require a
computer for driving device programmers. The major difference between the computer and standalone
control modes is a physical location of the memory which stores the data to be programmed into target
devices. These data includes:

e Target device type;

© 2021 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 133

¢ Static data - usually the same code, which should be replicated inside of a series devices belonging
to the same type;

« Dynamically changing data, unique for each device in the series: serial numbers| e3), signatures| 7,
date stamps, etc.

e User-specified Device and Algorithm Parameters| e,

o Factory programmed serial number of the CPI2-B1 units.

While the programmer is under computer control, all the data above form an image (or several images)
physically located in the computer RAM. In case of the standalone control mode, these images are
physically stored on an SD card inside of a CPI2-B1..

An SD card is a kind of flash memory media that connects directly to master MCU inside the
programmer. Storing data on this media inside of device programmer enables much faster
streaming the data into a target device. Moreover, even if the programmer is controlled by a PC, utilizing
the benefits of faster streaming images from SD cards to target devices allows to speeding up the
mass programming. To store the data image on the SD card for both standalone and faster PC control
modes, the data should be first configured in the GUII %1 mode and then cashed| 13 onto SD cards.
Capacity of SD card used in the CPI2-B1 device programmer may vary from 8 to 64 GB - Phyton has
the rights to use the cards of any capacity without prior notice.

Preparing the data above for the standalone control unavoidably requires use of projects[+. A user
should conduct the following steps:

1. In the GUIl 47 mode create a project and store it on a computer as a file with the .UPP extension.
The project should include all the data and parameters above - target device type, static and
dynamically changing data, etc.

Connect the device specified in the project to a device programmer;

Enable data caching] 134,

Program one device using the Auto Programming[108 command.

Assign a number for the created Standalone Jobl 138\,

arwN

Upon completion of the steps above the programmer creates a replica of the project above on the SD
card. A project replicated on the SD card is hereafter called as a Standalone Job[126), The programmer
enables to create and to store as many as 256 independent standalone jobs, which can be launched in
the GUI by the job number. Only 32 of them can be assigned for launching by applying a 5-bit code to
the JOB_SELO...JOB_SEL4 inputs on the connector CONTROL. After the job is selected by the
JOB_SEL code, it launches by applying the START signal to the CONTROL connector| 241 or by
pressing the Start button on the top panel .

4.1 Preparing Standalone Mode Jobs

Preparing of use a CPI2-B1 device programmers in the Standalone Mode (SA) includes the following
steps:

Enabling data caching;

Creating projects to be run in standalone mode;

Converting these projects into standalone jobs by caching data on the embedded SD card;
Assigning numbers to prepared standalone jobs, so they can be called by a certain number by the
Start signal or from the GUI;

Open the Configure[s71> Data caching, Standalone jobs... menu:

© 2021 Phyton, Inc. Microsystems and Development Tools

134 CPI2_MODEL Device Programmers - CPI2-B1

Project Commands Scripts Window Help

% B ™ Select device.. F3
] Device selection history... Alt+F3

&l Buffers... F5
fd Serialization, Checksum, Log file... F6

ct Devi

Data caching, stand-alone jobs...

This will open the Standalone Mode and Data caching Settings dialog. Open the Settings tab and
check the Enable caching check box.

Stand-Alone Mode and Data Caching Settings

Seftings | Stand-Alone Jobs | Serializatic:n|

Buffer data caching to the programmer memory card(s)

VE

Cnrfant rarhinn otata

This is the first step. The green text in this dialog indicates a real data caching status. This status is
also indicated by the icon

a Awaiting AutoProg

located in the top right corner of the main window, at the right of the button Auto on main toolbar.

4.1.1 Data Caching

Data Caching is a process of copying data to be programmed into the target device onto the SD card
inside of the CPI2-B1 device programmer. Then the programmer streams the data stored on the SD
card to the target device instead of streaming them from the computer RAM that greatly speeds up all
the programming operations.

This mechanism of fast programming can be used in two ways: a) in trues standalone mode when the
programmer is disconnected from a PC and is controlled by electrical signals from a fixture or ATE and
b) when it is driven from the ChipProg-02 GUI. Taking data for device programming from the SD card
allows to speed up device programming in the computer control mode as well as in the true standalone
mode.

If you plan to control the programmer by electrical signals from your fixture or ATE in the true
standalone mode, caching data to the SD card is a mandatory. But, if you plan to control the
programmer from the ChipProg-02 GUI, data caching makes sense in case of programming devices
with relatively large flash memory, only. Otherwise, the time spent of the data caching procedure will
not be paid off by saving time on the faster device flashing.

© 2021 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 135

Data Caching function is off by default. The Data caching status is displayed in a very right position of
the ChipProg-02 main window toolbar:

g [|| Check Program Verify Read Erase Auto || [Awaiting AutoProg

7)

The following Data Caching statuses can be observed when you operate in the standalone mode:

The SD card was not found by the programmer's hardware or it
malfunctions. Data caching is not possible.

B cacring is off Data caching is turned off by an operator.
The programmer is ready to cash data. To perform caching, start Auto
Programming| 108 operation on the target device.

Data caching was completed. Since then the programmer will take data
cashed on the SD card, not from the buffer.

Data caching was completed. Project was assigned to standalone job with
a specified number (#2 here) and is ready for launching.

a Awaiting AutoProg
n Cached

B cached, Job: #2

To bring up settings for caching, standalone jobs, and serialization, click on the image of caching status
(Awaiting AutoProg), or use the Configurel_sﬁ > Data caching, Standalone jobs... menu command.

First, create a project that can be then convert to a standalone job. Use a universal mechanism of
creating a project described in the Project Options Dialog[s31. What is important is to name each
project to simplify assigning a number for each standalone job and to easily navigate in the line of jobs
in the Stand-Alone Jobs tab.

After storing your first project under a certain name (for example, RTX-12 (2016-11-21)) connect a
target device specified in this project to the CPI2-B1 device programmer and click the Auto button on
the main toolbar or click twice on the Auto Programming line in the Project Manager window. If the
data caching was enabled[133), the first run of the Auto Programming macro command ends with
issuing a short warning "Accessing memory card(s)" and the icon

H Cached

will appear in the right position in the main toolbar. Similarly, you can create and store on one SD
card(s) as many standalone jobs as you need - up to 256. ChipProg-02 application automatically
assigns numbers to each job from the #0 up to #255.

The ChipProg-02 program uses the following rules of assigning job numbers stored on the SD card:

o Ifthere is an open project in the ChipProg-02 GUI, the program searches a standalone job with the
same name on the SD card. If it finds such an SA job, the program updates it with the data and
parameters stored in the project in the GULI. If the program cannot find the SA job with the same
name, then the program assigns to this job the lowest number, not taken yet by an unnamed project.

© 2021 Phyton, Inc. Microsystems and Development Tools

136

CPI2_MODEL Device Programmers - CPI2-B1

4.1.2

If there is no such an unnamed project, the ChipProg-02 application assigns the lowest available
number. If there are no free numbers ssues an error message.

o [f there is no open project in the ChipProg-02 GUI, then the cashed data are considered as a
"unnamed job". Then the program checks whether the SD card already stores another job with the
same parameters, the caching procedure completes. Otherwise, the program assigns the "oldest"
number earlier assigned an unnamed job. If there is no an available jobs to be assigned, the program
issues an error message.

All created SA jobs are visible in the Stand-Alone Jobs tab of the dialog. First 32 SA jobs addressed by
the 5-bit JOB_SELO...JOB_SEL4 selector can be launched by applying the START signal to the
CONTROL connector[241 or by pressing the Start button on the top panel..

Standalone Jobs

All SA jobs, created by caching data to SD card(s), are visible in the Stand-Alone Jobs tab of the
Standalone Mode and Data caching Settings dialog. Any SA job can be launched either by electrical
signals applied to the CONTROL[241 connector (below displayed as "Selected by
Control.Job_Sel[x...0]") or from the ChipProg-02 GUI (displayed in the tab as "Defined
programmatically".

First 32 SA jobs addressed by the 5-bit JOB_SELO0...JOB_SEL4 selector can be launched by applying
the START signal to the CONTROL connector| 2+ or by pressing the Start button on the top panel..

In the Stand-Alone Jobs tab picture below you can see how to assign SA job numbers. The jobs are
displayed here in the ascending numerical order: from 0 to 255. Click the {, (arrow down) sign at the
job line to open the list of cashed SA jobs, pick the project name to assign the job number. Only a
named project can be associated with an autonomous job. Each project can only be associated with a
single job.

© 2021 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 137

Stand-Alone Mode and Data Caching Settings @

Settings | Stand-Alone Jobs |Seria|ization|

Active Stand-Alone job number

(@) Selected by Control.Job_Sel[x.0] pins

(7) Defined programmatically: | Job #0 -

Stand-Alone Job Assignment:

Job #0:| RTX-12 (2016-11-21) (Macronix MX25L12873FM2I [ISP Mode]) -1
Job #1:| Left Wing Controller (Atmel AT8358253 [ISF Mode]) hd |E|
Job #2:| MavigationMadulel08 (Altera EPCS4SI8N [ISP Mode]) -]

Job #3:| <Mot assigned=

Job #4- (RN EEEEES

TXY-01-Atmel (SST SST25VF040B [ISP Mode])
Job #5:| Left Wing Controller (Atmel AT8358253 [ISP Mode])

RTX-12 (2016-11-21) (Macronix MX25L12873FM2I [ISP Made])
Job #6:| NavigationModule008 (Altera EPCS4SIEN [ISP Mode])

Job #7:| <Not assigneds 'i

Jnh #8-| <Mnt accianads v-

Two radio buttons "Selected by Control.Job_Sel[x...0]") and "Defined programmatically”" enables
to choose a method of the standalone launching. Clicking the OK button at the bottom of the dialog
window fixes the method of launching standalone jobs: by ATE signals or from the GUL.

After assigning a number in the Stand-Alone Jobs tab a project becomes a standalone job. This job
physically locates on the SD card, it has a unique humber and can be launched by this number either
by the ATE signals or by a mouse click from the GUI. However, any SA job can be updated by adding
dynamically changing data (Serialization[1s8]) and a limitation[1] of the devices to be programmed that
is described in the following chapters.

4.1.3 Standalone mode settings

To setup the standalone mode options open the Configure > Data caching, Standalone jobs...

dialog:
Configure Commands Scripts Window Help
e Select device... F3
Device selection history... Alt+F3

) &l Buffers... F5

3 [i@ serialization, Checksum, Log file... F&

= Data caching, Standalone jobs...
| 52 IP address settings...

{5 Preferences... Ctrl+F6
[Simplified User Interface editor...

[Environment...

S —— L

The dialog enables to set all possible standalone mode options:

© 2021 Phyton, Inc. Microsystems and Development Tools

138 CPI2_MODEL Device Programmers - CPI2-B1
@ standalone Mode and Data Caching Settings ? >
Settings Standalone Jobs Serialization

Buffer data caching to the programmer memory card(s)

[] Enable caching

Current caching state:

Awaiting a successful Auto-Programming of a device to complete data caching/memory

card image checking.

Checking integrity of data on the programmer memaory card(z) in Standalone mode

[+ When a Standalone job iz activated

(] After programming of each 100 device samples

Demultiplexer Mode

O Channel A These options are

O Channel B accessible for CPI2-Gx

® Channel A then B +«——— gang programmers and if

O Channel B. then A the gang programmer has

(O Channel is selected with Control MUX signal an activated CPI2-

DEMUX license, only
" OK # Cancel & Hep
If you operate with the CPI2-B1 device programmer in the Standalone mode the Enable caching box
must be checked. When it is unchecked, the programmer can be operated from the GUI[4, only.
4.1.4 Device serialization

Very often the image to be written into the target device is comprised of the static data, common for all
the devices to be programmed in one session, and the data unique for each device in this series.
Usually such data represent unique serial numbers| 9, checksums| &7, signatures[71 and custom data
stored in the custom shadow memory[711 areas. Such dynamically changed data blend with static data
before physical writing the image into the target device. The ChipProg-02 enables to program complex
images in the standalone mode as well in the computer controlled mode.

© 2021 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 139

Dynamically changed data mentioned above should be prepared in the project by means of the serial
numbers| 91, checksums|), signatures| 701 and custom shadow memory[711 dialogs below.

Serialization, Checksum, Log File @

General | Serial Number |Chec|-csum | Signature String | Custom Shadow Areas | Lag File|

(V] Write S/M to E%CH'ESSZ 0x2008 - in layer: [Code vl
Current serial number: 0x87 B?rte Order D_|5F'|E'¥ S/N as:
(@) LSB first [)Decimal
5/N size, in bytes: - .
/N size. inbytes: |4 Yl ©wsBfist ©) Hex
(@) Increment serial number by: 1 hd
(7)) Use scriptto increment serial number: hd Browse...

In context of the standalone programming, preparing all dynamically changes data is defined here in
one term: "Serialization". Each SA job has its own serialization settings. These settings must be done

before generating serialization information for standalone mode. See the picture below.
Serialization information for a project must be generated beforehand. Settings that control generation

can be done in a dialog brought up by clicking on the image of serialization status, or by menu
command "Configuration" -> "Data Caching, Standalone Jobs..." as it is shown below.

Stand-Alone Mode and Data Caching Settings @

| Settings | Stand-Alone Jobs | Serialization |

For stand-alone programmer operation you can generate senalization information (senal numbers,
checksums, etc. in advance. When generated, information will me written to the programmer's memaory card.

See help for details.

Project TXY-01-Atmel

Generate seralization information for ¥ device samples, max.: 1827817

If programmer(s) contain still unused records:

(@) Discard them and replace with new ones

() Add new records to existing ones

Start generation

Serialization information is stored in a fixed part of the SD card memory. The maximum number of
target devices is the project specific. For example, in the picture above the maximal number of the
devices to be programmed is 182781.

When operating in standalone mode, the programmer fetches serialization records one by one, and
programs them into target devices. The number of the next record to be fetched is preserved even if the

© 2021 Phyton, Inc. Microsystems and Development Tools

140

CPI2_MODEL Device Programmers - CPI2-B1

programmer is powered off. Once all records have been written into devices, the ChipProg-02
terminates the programming process and issues an error message. To continue programming
process, additional serialization information should be generated.

The dialog above enables two alternative options of how to handle unused records if they remain in the
programmer - either to discard them and replace with new ones or to add new records to remaining
unused. In the last case, the added serial number will continue to carry out the number of numbers.

Since it is impossible to predict a capacity of free memory on the SD card that can be assigned for the
serialization information, the Serialization records can be generated by a new data caching, only.

Note! To perform a new generation click the "Start Generation" button in the
dialog. Clicking the "OK" button at the bottom of the dialog does not start
generation of the device serialization in the standalone mode.

If multiple CPI2-B1 device programmers run in the gang[1e7l mode, serialization records are equally
distributed among SD cards in all CPI2-B1 device programmers joint in the gang cluster .

Current serialization information can be viewed in the Memory cards window/[42] (see an example
below). In this window serialization records are called "shadow areas" (which they actually are).

Memary cards window B==E
Collapse All | Expand | Erase

$~PPoject @: Job: -, "<Unnamed>", Chip: "Macronix MX25L12873FM2I [ISP Mode]", Da
S Project 1: Job: -, "TXY-@l-Atmel”, Chip: "SST SST25VF@4eB [ISP Mode]", Data: 1
$~File5 loaded into buffers
gmLimit: Mone
= Shadow areas (@ of 1800 devices programmed)

B Shadow Area Descriptors

- #0: Sublevel: @, Addr: Bx2008, Size: 4, Type: Serial Number
-#1: Sublevel: @, Addr: Bx2020, Size: 4, Type: CRC
- #2: SublLevel: @, Addr: @x32, Size: 8, Type: User

B Shadow Areas Data (1000 total)

-5/N: DODOABTS, CRC: PODOOLFE, User: 00000032: 00 00 00 00 00 00 00 00
-S/N: DODOABTY9, CRC: PODOOLFE, User: 00000032: 00 00 00 00 00 00 00 00
-S/N: DODOABTA, CRC: PODOQLFE, User: 0DOQ0A32: 00 00 00 00 00 00 00 00
-S/N: DODOABTB, CRC: PODOQLFE, User: 0DOQ0A32: 00 00 00 00 00 00 00 00
-S/N: DOOOABTC, CRC: PODOQLFE, User: QDOQOA32: 00 00 00 00 00 00 00 00
~S/N: DOOOABTD, CRC: PODOQLFE, User: 0DOQ0A32: 00 00 00 00 00 00 00 00
-S/N: DOOOABTE, CRC: PODOQLFE, User: 0DOQ0A32: 00 00 00 00 00 00 00 00
~S/N: DOOOABTF, CRC: PODOQLFE, User: 0DOQ0A32: 00 00 00 00 00 00 00 00

..992 more records

Limitations of Serialization in Standalone Mode

Besides a necessity to remember to add in serialization records in time, the following limitations should
be kept in mind:

¢ If programming of a target device causes an error, serialization record is still used up, in spite of the
application program settings. In such case, serial numbers of target devices will not remain
consecutive, they will include gaps.

© 2021 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 141

4.1.5

e If you use scripts[17 for generating serial numbers, checksums, and other dynamically changing data
take in account the difference of launching the scripts in ChipProg-02 application. in the GUI control
mode scripts launch immediately before programming of a next target device. However, when
generating records for standalone mode, scripts launch immediately after generation of a next record.
If the script includes some real-time related parameters, such script will not work correctly. If the
scripts modify the data to be written into target device, that is not going to work either.

Permissions and setting limits

A CPI2-B1 user is able to set the number of target devices to be programmed in standalone mode.
Before setting the limit this function should be permitted through the Project Option| s dialog. Open
the dialog, browse the project file (.UPP file) and click the button Permissions| 7.

@® Project Options o '@
Project File Name
F\tmp\ TXY-D1-Atmel upp v| | [EBaBrowses] % Pemissions.. |
Project Description (optional) Desktop

(@) Project has its own desktop

(") One desktop for all projects

Files to Load into Buffers
File Farmat Buffer Layer StartAddr Offset

CRay\UProgNT20xFbin|_Binary image |_Buffer#0] Codel 0 o0

= Add file... I l x Remove file l l [Editfile options... I
Scriptto execute before loading files: -
Scriptto execute after loading files: -

["] Automatically reload files if they are modified by an extemnal application

< 0K] [2 Cancel] [0 Help]

This brings up the Project Permission Settings dialog, in which you can specify the number of
devices to be programmed. To enable this setting, you must check the Protect the project with
password box and specify a password.

© 2021 Phyton, Inc. Microsystems and Development Tools

142 CPI2_MODEL Device Programmers - CPI2-B1

3 Project Permission Settings @

[¥|Protect the project with passward: 123 -

Choose items to disable when the projectis protected:

Changing the buffers memaory, including file loading

Changing device and algorithm parameters

Changing the programming addresses, auto functions list and statistic settings
Changing the programming addresses, auto functions list and statistic settings
Changing interface settings

[¥] Access to scriptfiles

[¥] Project closing

Limitations for Stand-Alone mode

[+] Allow programming of not more than 500 * device samples

Disabling of the project editing protects it against incidental changes of important
settings and data. However, it does not protect the project settings intentional changes
by experienced users.

0K | |i Cancel | ‘0 Help

A current state of the device counter can be monitored in the Memory cards[142) window. See an
example below.

Memory cards window [B=l=lE
Collapse AII| Expand| Erase |
EI--S_/N: SI2-10883, Card: 7.42 GB
--iject @: Job: @, "RTX-028", Chip: "Atmel AT89LS51 [ISP Mode]"™, Data: 1.0 MB
£lProject 1: Job: 1, "TXY-@1l-Atmel”, Chip: "SST SST25VF@4@B [ISP Mode]", Data: 1
--Files loaded into buffers
§-|-Limit: 497 of 500 devices remaining |
#-Shadow areas (3 of 1000 devices programmed)

Once the limit was achieved, ChipProg-02 issues an error warning and the programming stops. To
continue programming, it is required to confirm or remove limitation using Project Permission
Settings dialog.

416 SD card window

Memory cards (or SD cards) window can be used to examine information stored on the card, as
shown on the figure below. Use the View[521 menu to open this window.

© 2021 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 143

Memory cards window PEEE

Collapse All | Expand | Erase
e ———————
= g

$~Project @: Job: -, "<Unnamed>", Chip: "Macronix MX25L12873FM2I [ISP Mode]", Data: 16.0 MB (0.21%)
9~Project 1: Job: 1, "Caching3", Chip: "Macronix MX25L12873FM2I [ISP Mode]", Data: 16.2 MB (@.21%)
$~Eiles loaded into buffers
 L"C:\Ray\UProgNT2\@xFF.bin", Buffer: @, Sub-Level: @
?~Limit: Mone
=-Shadow areas (0 of 10008 devices programmed)

é~8hadow Area Descriptors
#0: Sublevel: @, Addr: @x108, Size: 4, Type: Serial Number
. #1: SubLevel: @, Addr: Ox1A, Size: 4, Type: CRC
f-Shadow Areas Data (10006 total)
#-Project 2: Job: 2, "Left Wing Controller", Chip: "Atmel AT89S8253 [ISP Mode]", Data: 1.8 MB (0.81%
F-Project 3: Job: -, "RTX-12 (2016-11-21)", Chip: "Macronix MX25L12873FM2I [ISP Mode]", Data: 16.@ NI
H-Project 4: Job: -, "NavigationModule@®8", Chip: "Altera EPCS4SI8N [ISP Mode]", Data: 1.0 MB (08.01%

During subsequent programming operations, the programmer uses buffer layers data from SD card.
The ChipProg-02 application tracks changes in the settings that may cause maodification of data stored
in the SD card. If necessary the program launches data re-caching. This may be triggered by the
following changes:

¢ Writing data into the memory buffer - manually or by reading a file or by a script or communication via
the ACI[1s¥;

¢ Modification of the target device settings;

« Modification of serialization[3% settings:

« Modification of the Auto Programming[18] parameters.

4.2 Switching to Standalone Mode

After powering-up, a CPI2-B1 device programmer keeps staying in the idle mode until it will be launched
either in the computer controlled mode from the CPI2-B1 startupl 201 dialog or in the standalone[133
mode. In turn, launching the programmer in the standalone mode can be done either programmatically,
or by applying electrical signals to appropriate pins on the connector CONTROL[241

Launching the CPI12-B1 in the SA mode programmatically can be done in two ways:

e From the ChipProg-02 GUI menu Commands -> Standalone Mode. This will open the Switch to
Standalone Mode dialog below. In this dialog you can specify a method of selecting SA jobs - by the
signals applied to the connector CONTROL[241 or programmatically from the drop down Job menu in
this dialog.

© 2021 Phyton, Inc. Microsystems and Development Tools

144

CPI2_MODEL Device Programmers - CPI2-B1

Cﬁ Switch to Stand-Alone Mode @

Programmer(s) will be switched to Stand-Alone mode and Stand-Alone mode
monitor will be launched. The programmer shell will exit

Active Stand-Alone job number

Selected by Control. Job_Sel[x..0] pins

@ Defined programmatically: |Job: #1, Project TXY-01-Atmel - |

i Cancel | |'i? Help |

e By clicking the Start Standalone Mode Monitor button in the CPI2-B1 startupl 201 dialog. Or just by
calling the SAMonitor.EXE executable that locates in the same folder where the ChipProg-02 was
installed. This will open the Standalone Mode Monitor[43 window (read the next chapter).

Launching the CPI2-B1 in the SA mode by applying electrical signals from ATE can be done by one the
way below

« By applying a logical 1 signal to the SAMODE pin of the connector CONTROL[241 right after
powering the CPI2-B1 unit, while it remains in the idle mode.

¢ By applying and holding for at least 2 sec logical O signal to the START pin of connector
CONTROL/ 24.

e By pressing and holding for at least 2 seconds the START button on the programmer top panel..

Once CPI2-B1 switches to standalone (SA) mode, the green (GOOD) and red (ERROR) LEDs start
blinking. These LEDs will keep blinking until the programmer is switched back to computer controlled
mode. When the CPI2-B1 remains running in the SA mode, a SA job can be launched by either one of
the signals above.

ChipProg-02 software allows real-time monitoring of activity device programmers driven by this
software by a special utility - the Standalone Mode Monitor| 143, This monitor window displays status(es)
of the device programmer(s) along with a current Standalone Job humber, device counters, statistics of
failures, and other useful information.

To interact with ATE or test fixture CPI12-B1 device programmers running in the standalone mode output
three status signals onto appropriate pins of the connector CONTROL/ 241 : BUSY, GOOD and
ERROR. These signals - log. 0 means active - indicate statuses of the device programming
operations:

e BUSY=log.0 while the operation lasts, then returns to the log.1 state,

¢ GOOD-=log.0 in case the device was programmed and successfully verified and stays low until a
new programming cycle starts;

¢ ERROR=log.0 in case of failure.

These signals, outputted to the connector CONTROL, are duplicated by, respectfully, yellow, green and
red LEDs on the top panel of the CPI2-B1 units.

© 2021 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 145

4.3

If the programming session involves programming of different data into two or more devices of different
types, by means of the same CPI2-B1 programmer, standalone jobs must be switched by external ATE
or other equipment, not programmatically. For this purpose, the CONTROL/ 241 connector contains five
pins (Job_Sel [4..0]) used to select a standalone job. For example, if Job_Sel code = 000001B the
programmer will run the Job #1, if the the code = 100001B -- Job #33 (or 21H). When no electrical
signals are applied to these pins, the Job #0 will be automatically selected..

If multiple CPI2-B1 device programmers run in the gang[197l mode, the ChipProg-02 program takes care
of synchronizing Standalone Mode Jobs on all single device programmers in the gang cluster.

Standalone Mode Monitor

Standalone Mode Monitor is an application program for watching the states of programmers
operating in standalone mode. This application can also perform certain operations with the
programmers.

The application can be launched in the following two ways:

e By clicking the Start Standalone Mode Monitor button in the in the CPI2-B1 startup[20 dialog
below. Or just by calling the SAMonitor.EXE executable that locates in the same folder where the
ChipProg-02 was installed.

" ChipProg-02 v. 6.07.00 fo] @ s

Programmer Startup Options
|#| Create a shortcut with these options

‘@ Start ChipProg-02 &1 Open shortcuts folder

Gang Mode Diagnostic Mode

4 M Connection: (@ USB Ethernet

Additional Command Line Parameters:

‘ (.{E Start Stand-Alone Mode Monitor Demonstration Mode (without hardware)

| Close this window after programmer start

e From the menu "Commands" -> "Switch to standalone mode in the GUI mode.

Being launched in one way or another, the Standalone Mode Monitor switches all the programmers,
which it is able to communicate with to,into the standalone mode[13% (SA mode) unless these units
are already running in the SA mode. The Monitor can "see" only those programmers which are not
being used at the moment by the ChipProg-02 application; this is because at any given time a
programmer cannot be be under control under more than one application. On the other hand, the
ChipProg-02 application does not "see" the programmers already running in the SA mode.

The Standalone Mode Monitor does not disturb running the launched programmers; it does not slow
them down. The monitor displays their current state, only. See below an example of the Standalone
Mode Monitor window for a gang cluster comprised of three CPI2-B1 device programmers with serial
numbers SI2-10002, SI2-10003 and SI2-10004.

© 2021 Phyton, Inc. Microsystems and Development Tools

146

CPI2_MODEL Device Programmers - CPI2-B1

GIN

#1 S12-10002 1
[#2 1210003 1
[#3 sI2-10004 1

B Stand-Alone Programmer Mode Monitor \E’
Job Project Good Bad Lmit Function Progress % LEDs Device S/N Error Device
Left Wing Controller 2 0 None Stopped DHNE o Atmel AT8958253 [ISP M
TXY-01-Atmel 4 o 493 Program [| 49% MM A798 SST SST2SVF040B [ISP I
* RTX-12 (2016-11-21) 5 5 488 Program M] 5% HOIME A792 erSD_EmptyJob:1,erDeviceBad:5 Macronix MX25L12873FM2

* Project on memory card must be updated

[Select active job: 1 -

IQ Start programming l l Switch to Online mode l
d Terminate programming ® Exit
V
Where:

The programmer number in the list.

SIN Serial number of the device programmer.

Job Order number of the active SA job.

Project Name of the project associated with the SA job (it specifies the data being written into
the target device).

Good Counter of successfully programmed devices. This counter resets to zero when the
programmer is powered off or when a new job is selected.

Bad Counter of devices programmed with errors.

Limit Number of devices remaining before achieving the limit defined in the project settings.
Limit counters are preserved upon powering off the programmer.

Function Name of the currently performed programming function.

Progress Indicator of the function execution process.

% Percent completeness of the function.

LEDs LEDs that indicate the programmer status.

Device S/IN | Current target device serial number, if it was defined in the standalone mode
serialization settings.

Error Error codes following the error counts. Programmer keeps up up to 8 types of errors.

Device Target device as it was selected in the project.

All buttons in the dialog above are exclusively applicable to the CPI2-B1 device programmers marked in
the check boxes in the very left column of the Monitor window.

Select Active Job button: For selected device programmers, set active SA job number in the field at
the right of the button. Setting the SA job number by itself does not activate the job - only clicking this
button does activate it. If the selected job was not associated with any project, then an attempt to start
programming aborts with an error SD_EmptyJob. The Select Active Job button is accessible if all
selected device programmers are stopped, only.

Start Programming button: Start device programming on selected CPI2-B1 device programmers that
are currently in the stopped state.

© 2021 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 147

Terminate Programming button: Abort target device operations on all currently selected CPI2-B1
device programmers. Completing of this command can be delayed for a while.

Switch to Online Mode button: Here Online mode means the computer controlled mode. Clicking this
button immediately switches selected device programmers from the SA mode into the GUI computer-
controlled mode. This could be used for restarting the Standalone Mode Monitor and to make the
programmers running in the SA mode visible for the GUI. The problem is that the ChipProg-02 GUI does
not "see" the programmers running in the SA mode. Once the programmers are switched into the
online (computer controlled) mode, the Monitor is no longer able to communicate with them. For
refreshing communications between the GUI and the Standalone Mode Monitor it should be
restarted. Then the monitor re-establish communications with the device programmers.

Show Errors button: Show table of errors for all selected device programmers. Error counters are
reset to zero when the programmer is powered off. At switching an active SA job, the error counters are
not reset.

If a project name is displayed in red characters, this indicates that the project data were written by an
older version of the ChipProg-02 software and must be refreshed. In many cases this is crucial
because updating the ChipProg-02 version automatically causes updating the CPI2-B1 firmware that
include device programming drivers. If you see the project name displayed by red characters you must
cycle the power, launch the ChipProg-02 in the GUI mode, open the project, make sure the data
cachingl 34l is enabled, connect a board with a target device selected in the project to the programmer
and launch the Auto Programming| 108 command once to re-cash the project data on the programmer's
SD card.

4.4 Example of Setting Up Standalone Mode
This example lists all operations necessary for setting up a standalone mode.

e Target device: Microchip/Atmel AT89LS51 [ISP Mode].

¢ File C:\Work\Monitors\RTX-028.hex (in standard hex format) has to be loaded into the ChipProg-02
memory buffer.

o A 32-hit serial number has to be written into each target device at address 0x200. Serial numbers are
increased by 1 for each device.

Connect a CPI2-B1 device programmer to a computer via a USB cable, launch the ChipProg-02
software and launch the programmer in the GUI mode.

Click on "Select device" button: m Select Device...

Select device type Atmel AT89LS51 [ISP Mode]:

© 2021 Phyton, Inc. Microsystems and Development Tools

148 CPI2_MODEL Device Programmers - CPI2-B1

@R Select Device Lo B e

Devices to list Devices
EPROM. EEPROM. FLASH Search mask:
[V|PLD. PAL EPLD AT89LS -

7| Mi froll
R Atmel AT89LS51 [ISP Mode

Atmel ATBILSEZ [ISP Mode]
Atmel AT89LSE3 [ISP Mode]
Programmable In-System Atmel ATB9LS8252 [ISP Mode]
Atmel ATBILSE253 [ISP Mode]

Programmable In-Socket

() Selected manufacturer gnly

(@) All manufacturers

Open the menu Project -> Create New:

@® Project Options =
Project File Name
C\Waork\Projects\RTX-028| - 2 Browse..] l S Permissions... l
Project Description (optional) Desktop

(@) Project has its own deskiop

() One desktop for all projects

This brings up project creation dialog. In the field "Project file name" enter the name of the project file.
Alternatively, click on Browse button and select folder and file using standard Windows dialog:

© 2021 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode

149

@® Project Options

Project File Name

= o =X

C:\Work\Projects\RT)(-DZBl

Project Description (optional)

-) Browse...] l S Permissions...

Desktop

(@) Project has its own desktop

-
(") One desktop for all projects
Files to Load into Buffers
File Format Buffer Layer StartAddr Offset
E Add file... I l x Remove file l l [Editfile options... I

Ay
Add a file To The Tist. The "Load File” dialog will be displayed. l

[] Automatically reload files if they are modified by an extemal application

Scriptto execute before loading files: - L Browse..

Scriptto execute after loading files: -) Browse...

< 0K] [22 Cancel] [& Help]

Select file C:\Work\Monitors\RTX-028.hex to be loaded:

© 2021 Phyton, Inc. Microsystems and Development Tools

150

CPI2_MODEL Device Programmers - CPI2-B1

&R Load File

File Mame:

C:‘LWOrk‘LMonitors‘;RTX-DZB.hE)d

File Format:

- 1 Browse..

Buffer to load file to:

6 Standard/Extended Intel HEX (*.hex* mcs)
(") Binary image (* bin)

(")Motorola S-record (*.hex:™.s™* mot)
-.:_.'F-‘OF (*.pof)

(") JEDEC (*jed)

(JPRG (*prg)

(") Holtek OTP (*.otp)

(T)Angstrem SAV (* sav)

(C) ASCI Hex (" bd)

(C)ASCI Octal (* bxt)

(@) Buffer #0

Layerto load file to:

@) Code (128 KB), bytes

Start address for binary image: |0

Offsetfor loading addresses: 0

oK l lﬁ Cancel] l& Help

In file selection dialog enter C:\Work\Monitors\RTX-028.hex, or use Browse button. Select

"Standard/Extended Intel HEX":

© 2021 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 151

&R Load File

File Mame:

C:‘LWOrk‘LMonitors‘;RTX-DZB.hE)d

File Format:

- 1 Browse..

Buffer to load file to:

(@) Standard/Extended Intel HEX (*.hex*.mcs)

() Binary image (*.bin)

(")Motorola S-record (*.hex:™.s™* mot)
(IPOF (* pof)

(7) JEDEC (" jed)

(D)PRG (prg)

(") Holtek OTP (*.otp)

(T)Angstrem SAV (* sav)

(C) ASCI Hex (" bd)

(CIASCI Octal (*)

Start address for binary image: |0

Offsetfor loading addresses: 0

(@) Buffer #0

Layerto load file to:

@) Code (128 KB), bytes

oK l lﬁ Cancel] lﬂ Help

Confirm file selection by clicking OK, and the settings dialog will show the name of selected file.
Confirm project settings by clicking OK; the project will be saved as the file C:\Work\Projects\RT X-
028.upp. If the folder :\Work\Projects does not exist, the program will prompt you to create it.

© 2021 Phyton, Inc. Microsystems and Development Tools

152

CPI2_MODEL Device Programmers - CPI2-B1

Project File Name

CiWork\Projects\RTX-028 - 5 Browse...] l & Permissions... l

Project Description (optional) Desktop
@ Project has its own desktop
(") One desktop for all projects

Files to Load into Buffers

|Fi|e Format Buffer Layer StartAddr Offset

C:AWork\Monitors\RTX-028.hex | Standard/Extended Intel HEX| Buffer #0 __‘

= Addfile... | [% Removefie] [[Editfile options... I
Scriptto execute before loading files: -
Scriptto execute after loading files: -
[] Automatically reload files if they are modified by an extemal application
& OK l ¥ Cancel I l @ Help]

y

Now we are working with a project, as shown in the window title:

“Gx — —

File View Project Configure Commands Scripts Window Help

B-P58 | 0RH HNeabde|@ecHb

M, Select Device... ||[AmelAT8ILS51 [ISP Mode]

Now we need to set parameters of serial numbers written to each target device. To do this, open
serialization settings:

roject |C{:-nfigure Commands Scripts Window Help
Window Help & s Select device... F3

% @ - [7] Device selection history... Alt+F3
X @ 2 ort Devi L

b — - i Buffers... Fs
| Serialization, Checksum, Log file... [F&]

I8 Serialization, Checksum, Log file... h‘ F6

B Data caching, stand-alone jobs..

In the appeared dialog select the "Serial Number" tab:

© 2021 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 153

[

Serialization, Checksum, Log File

General

Serialﬁumber

Checksum | Signature String | Custom Shadow Areas | Log File|

Lrl.f

|:|Write S/M to address:

0 - inlayer. |Code

Check off the "Write S/N address" box and enter 0x200 into the address field. Set serial number size
equal to 4 bytes, set increment to 1, then click OK:

Store serial numbers in registry
D Separate storage for each Windows user

Separate serial number for each device type

Serialization, Checksum, Log File @
General | Serial Number |Chec|~csum | Signature String | Custom Shadow Areas | Log File|
[¥] Write S/M to address: =200 - in layer: [Code VI
Current serial number: 0 B}de Order D_ISp|EI‘y’ SN as.
(@) LSB first [)Decimal
5/N size. in bytes: |; ~ _
[N'size. inbytes: |4 | @ MsB first @ Hex
(@) Increment serial number by: 1 -
_ Use scriptto increment serial number: - Browse...

N\

‘?\ OK | [% cancel || @ Help

We are almost done setting project options but now we need to turn on the data caching; to do this, run
menu command Configure -> Data Caching...

© 2021 Phyton, Inc. Microsystems and Development Tools

154 CPI2_MODEL Device Programmers - CPI2-B1

Project [Cﬂnfigure Commands Scripts Window Help
& a M Select device... F3

— | [@ Device selection history... Alt+F3
ct Devi|

-~ T =7 gl Buffers... F5
Serialization, Checksum, Log file... F&

Data caching, stand-alone jobs...

L'

This brings up a dialog for serialization parameters. Check off the Enable Caching box, then click OK:

Stand-Alone Mode and Data Caching Settings

Seftings | Stand-Alone Jobs | Serializatic:n|

Buffer data caching to the programmer memory card(s)

Cnrfaent rarhinn stata

Data caching status now looks like this: H a Awaiting AutoProg ‘

File View Project Configure

Since projects are not saved automatically in the ChipProg-02 - C =1
application, you not must save the project by clicking the Save project [ﬁ E‘& @ € le
icon on the main toolbar: e sele. . oroject [Atme

Preserving the connection diagram for the chosen AT89LS51 device connect it to the connector
TARGET/ 28 on your CPI2-B1 device programmer and launch the Auto Programming command in the
Program Manager window:

© 2021 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode

155

Program Manager [F]ES
Program Manager | Options | Statjsﬂcs|
| Cevice Status: Auto-detect off
Buffer: |Buffer #0: Code (128 KB), bytes v|
Functions
- Blank Check
Prcgram % NEHECUT-E
- Read g
-~ Verify Repetitions:
- Erase 1 -
- Read Lock Bits
[+H-Lock Bits . . |
= Auto Programming) EditAuto..
(7] Hel
|Aum FProgramming ‘ -

If the Auto Programming operation has completed successfully, the history field will display a line saying
"Caching datato the programmer SD card enabled"; caching status will read "Cached."

Operation Progress

Ready

File loaded: "C:\Work\Monitors\R TX-028 hex"

Device #1: S/N: 00000000, Checksum: 0x000000F0

Erasing... Ok [0:07, 14:01:36]

Checking... Ok [0:00, 14:01:38]

Programming... Ok [0:04, 14:01:42]

Verifying... Ok [0:00. 14:01:44]

Caching data to the programmer SD card enabled d4——

Auto

. Cached A

) 9

\

Now we need to generate the serial number information for writing serial numbers into target devices.
To do this, either click on the caching status field or select menu Configure -> Data Caching...:

ProjectICc:-nﬁgure Commands Scripts Window Help

\uto H”i Cached H

. nnm

‘& a M Select device..,

ct Devi

[0 Device selection history...
&l Buffers...

Serialization, Checksum, Log file...

Data caching, stand-alone jobs...

F3
Alt+F3
F5
Fo

This brings up standalone mode options dialog. Select the Serialization tab and specify amount of

10000 devices to generate serial numbers for. Then click Start Generation button:

© 2021 Phyton, Inc. Microsystems and Development Tools

156

CPI2_MODEL Device Programmers - CPI2-B1

Stand-Alone Mode and Data Caching Settings

| Settings | Stand-Alone Jobsl Serialization ||

See help for details.

Project RTX-028

For stand-alone programmer operation you can generate serialization information (serial numbers,
checksums, efc. in advance. When generated, information will me written to the programmer's memory card.

Generate serialization information for| 10000| -

device samples, max.: 57663

If programmer(s) contain still unused records:

(@) Discard them and replace with new ones

() Add new records to existing ones

Start generation {

Assign our project to a standalone job #0 by selecting "Standalone Jobs" tab and selecting project

RTX-08 for job #0:

Stand-Alone Mode and Data Caching Settings

| Settings I Stand-Alone Jobs I Serialization|

Active Stand-Alone job number
(@) Selectad by Control.Job_Selfx.0] pins

Defined programmatically:

Stand-Alone Job Assignment:

Job #0:| «<Mot assigned>

<Mot assigned=

Job #1:

RTX-026 (SST SST25VE040B

Job #2:

=Mot assigned=

Job #3:

<Mot assigneds>

The dialog now looks like this:

© 2021 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 157

Stand-Alone Mode and Data Caching Settings @

Settings | Stand-Alone Jobs |Seria|ization|

Active Stand-Alone job number

(@) Selected by Control.Job_Sel[x.0] pins

(7 Defined programmatically: | Job #0 -

Stand-Alone Job Assignment:

Job #0:| RTX-028 (SST SST25VFH40B [ISP Mode]) &
Job #1:] <Not assigned> '.|E|
Job #2:| <Not assigned: '._
Job #3:| <Not assigned: ':

Confirm settings by clicking "OK™ at the bottom.

This completes preparation of the standalone job associated with the project RTX-028. Contents of the
memory buffer and all settings have been stored as a project on programmer internal SD card,
information for 10000 serial numbers has been generated, the project has been associated with
standalone job #O0.

The simplest way to switch the programmer into standalone mode is to call the menu command
Commands -> Switch to Standalone Mode:

Commands | Scripts Window Help

Blank Check F8
Program F9
Verify F10
Read F11
Erase F7
Auto programming F12
self-Tests

Switch to Stand-Alone mode... s

This brings up the dialog below allowing you to to select the job #0 to be activated for execution from the
GUI:

© 2021 Phyton, Inc. Microsystems and Development Tools

158

CPI2_MODEL Device Programmers - CPI2-B1

5.1

fﬁ Switch to Stand-Alone Mode @

Programmer(s) will be switched to Stand-Alone mode and Stand-Alone mode
monitor will be launched. The programmer shell will exit

Active Stand-Alone job number

(") Selected by Control. Job_Sel[x.0] pins

(@) Defined programmatically: IJub: #0. Project RTX-028 -

mil
v

o OK | ‘i}' Cancel ‘ ‘i? Help

Software Development Kit (SDK)

This section describes Phyton ChipProg-02 Software Development Kit (SDK) called ChipProg-02
Application Control Interface (or Application Control Interface).

Developers can use Application Control Interface to control CPI2-B1 programmers by means of their
own software.

Application Control Interface provides a comprehensive set of features to control the programming
process, including selection of device type, accessing data buffers, loading files, launching
programming procedures (also in gang mode), and more.

ACI Components

Application Control Interface Files
The CPI2-B1 SDK includes the following components:

1. ACIL.DLL dynamic-link library which implements Application Control Interface functions.

2. AClLlib export library.

3. Header file aciprog.h to be included in user software written in C/C++ programming language.
The header contains declarations of all ACI functions| 168, structures and constants. The
windows.h file must be included in user program before the aciprog.h.

4. Aset of example files illustrating the use of Application Control Interface.

Platform Requirements

1. Phyton Application Control Interface requires Windows 7, 8 or 10 operating system.

2. ChipProg-02 software must be installed on the computer that controls the CPI2-B1 hardware.
The latest ChipProg-02 software version is available for free download from the
http://www.phyton.com/htdocs/support/update.shtml webpage.

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.phyton.com/htdocs/support/update.shtml

Software Development Kit (SDK) 159

Usage with 32- and 64-bit Applications

32-bit applications must use the ACI.DLL dIl and the ACLlib export library.

64-bit applications must use ACI64.DLL and ACI64.lib.

Otherwise, there's no difference between 32- and 64-bit applications.

There's no need to develop 64-bit applications for use with 64-bit operating system: both 32- or 64-bit
applications can be used in such case.

Programming Languages

Developers can use any programming language of his choice when working with Application Control
Interface; ACIL.DLL exports its functions according to the standard rules for Windows operating system.

5.2 Using ACI

To control a CPI2-B1 programmer, user program calls functions in the ACL.DLL. When user program
calls the ACI_Launch()[s function, ACI.DLL launches ChipProg-02 executable UProgNT2.exe and
then controls its operations.

ChipProg-02 GUI can be made hidden or visible. In most cases there is no need to display GUI
windows or daialogs; however, this may be used for debugging purposes. User program can also use
ChipProg-02 partially, for example to bring up dialogs that show settings, target device selection, file
loading and others. Once the programming environment has been set up, the ChipProg-02 GUI can be
hidden to free more screen space for the controlling application.

When launching a programmer by means of the ACI_Launch()[=1] function, ACI creates internal object
called connection that identifies a launched programmer or multiple programmers working in the
Gang-programming| 191 mode.

ChipProg-02 enables launching multiple CPI2-B1 device programmers and control each of them
individually. The ACI_SetConnection| 378 function is used to select a particular connection to work with.
Once a connection is selected, all further calls to ACI functions will be applicable to this connection
use that connection (i.e. they all will affect only the selected device programmer). If there is only one
programmer, the connection is selected automatically.

If, for example, a cluster of six CPI2-B1 programmers is launched in the gang mode, a whole cluster
driven by the ACI will represent a single connection, but not six connections.

All ACI functions, when called, take either no parameters or one parameter which is a pointer to a
structure. Each such structure has its first field set to the structure size; this ensures compatibility of
different ACL.DLL versions. The only exception is the ACI_IDECommand() function; this sacrifices
uniformity in favor of simpler pseudo-function declaration. The aciprog.h header file provides
declarations of the parameter-carrying structures.

Names of all the ACI objects (functions and structures) conform to the same naming convention. All
names begin with ACI_ prefix. Names of the parameter structure patterns end with _Params suffix.

Numeration of all memory buffers and layers of memory buffers startins with zero. All addresses are
64-bit long and consist of two 32-bit parts (lower and upper), to make them compiler-independent. For

© 2021 Phyton, Inc. Microsystems and Development Tools

160

CPI2_MODEL Device Programmers - CPI2-B1

5.3

example, if the compiler recognizes the uint64 type, then the structure ACI_Memory_ Params can be
initialized as follows:

ACl _Menory_Par ans npar ans;
*((uint64 *)nparans. AddressLow) = 0x123456789ABC,

Note. All addresses in the structures are shown in the format specified by the device manufacturer, i.e.
in Bytes, Words, etc. For example, for any 16-bit microcontroller the address format is always a word
not a byte.

ChipProg-02 automatically allocates buffer number 0 so that it always exists and does not have to be
explicitly created.

All ACI functions provide return code to the calling application. The return code constants -
ACI_ERR_xxx - are defined in the aciprog.h file included into the ACI software set.

ACI Functions

This section provides an overview of Application Control Interface functions. Detailed description of
each function can be found in the ACI Fuctions| s reference section.

Calling some functions requires filling in and passing structures that specify memory locations, pointers
and other objects associated with the called function, while other functions do not take any parameters.

Table below shows ACI functions grouped by functionality. Most functions are grouped in "bidirectional
couples" (In-Out or Get-Set).

© 2021 Phyton, Inc. Microsystems and Development Tools

Software Development Kit (SDK)

161

Application Control
Interface function name

Brief description

Associated Associated Application
windows and Control Interface
dialogs structures

1. ACI functions that start and stop programming sessions and control connections
with device programmer(s)

ACI_Launch[37h

Starts the ChipProg-02 program. This
function must always be the very firstin the
chain of other Application Control Interface
functions that form the programming
session.

NA ACI_Launch_Params/[383)

ACI_Exit[38R

Closes the ChipProg-02 program. This
function must always be the last one in the
chain of other Application Control Interface
functions. It completes the control session
via AClI.

NA

ACI_SetConnection[37

Specifies a current device programmer(s)
connection. Use this function when you
control a number of device programmers by
means of multiple calls of the
ACI_Launch[37function.

ACI_Connection_Params

ACI_GetConnection[3%

Allows getting the identifier of a current
device programmer connection.

AC|_Connection_Params

ACI_ConnectionStatus[368

Checks and returns a current connection
status.

NA NA

2. ACI functions that configure the programmer or

get its current configuration

Loads the programmer configuration
parameters from the host computer to the

computer.

ACI_LoadConfigFile[37h NA ACI_Config_Params[383
programmer.
Saves the programmer's current

ACI SaveConfigFiIelm configuration parameters 1o the host NA ACI_Config Params| 389

3. ACI fun

ctions that get the target device properties or

set them

Gets the manufacturer's name (brand) and
the part number of the device currently

. . Select .
ACI Devi 36 o ACIl_Devi Params/38h
ACI_GetDevice[363 being programmed from the programmer to Device| 58 ACI_Device_Params
the host computer.
Sets the manufacturer's name and the part
ACI SetDevice [T number of the device to be programmed in Sglect ACI Device Params%h
- the programmer. Devicel 581 \— — ——

them

4. ACI functions that get current parameters of the buffers and layers or configure

© 2021 Phyton, Inc. Microsystems and Development Tools

162

CPI2_MODEL Device

Programmers - CPI2-B1

Application Control Brief description Associated Associated Application
Interface function name windows and Control Interface
dialogs structures

Gets the parameters of a specified memory Buffer

ACI_Getl ayer[37 buffer and layer from the programmer to the —— ACI_Layer Params|3e8)

Dump[%

host computer.

ACI_CreateBuffer[360 Creates a memory buffer with specified Blis ACI_Buffer_Params[37
parameters in the programmer. Dump[%

AC| ReallocBuffer[372) Changes a size of the layer #0 in a specified Buffer ACI Buffer Params[38)

- memory buffer in the programmer. Dump[o = =

5. ACI functions that read the content of the buffer layer or write into it

Reads data from a specified memory buffer

. Buff
ACI_Readl ayer[3™ in the programmer to the host computer. Dtﬁ%ﬁ ACI_Memory_Params(38%
Writes data into a specified memory buffer of
) the host computer to the programmer Buffer
ACI WnteLayerl?é’l memory buffer. Dumpl o ACI_Memory Params(383)
Fills a whole selected layer of a specified Buffer
ACI_FillLayer[368 memory buffer with a specified data pattern. Dumpl < o ACI_Memory_Params[383)

6. ACI functions that

get programming parameters fro
in the programmer

m the programmer or set them

ACI_GetProgrammingParam | Gets current programming parameters from NIIDarrc‘)graer:L ACI_Programming_Para
sl 3z the programmer to the host computer. nag ms| 39
Options[10%

. . Program :
ACI_SetProgrammingParam | Sets programming parameters from the host Manager > ACI_Programming_Para
s[37h computer to the programmer. . ms| 39
- P prog Options 109 |7

7. ACI functions that get device-specific programming

options from the programmer
or set them in the programmer

Gets current programming options from the | Device and)
ACI_GetProgOption[3® programmer to the host computer. Algorithm | AGL_FrogQption_Params
Parameters | [389)
[9%
Sets programming options from the host Device and)
ACI_SetProgOption[37 computer to the programmer. Algorithm | ACL_FrogOption_Params
Parameters [38R)
[oY
) Sets default programming options and Device and)
ACI_AlIProgOptionsDefault programming algorithms in the Algorithm ACI_ProgOption_Params
[368) programmer Parameters | [3%)
' [93Y
8. ACI functions that control programming operations

ACI_ExecFunction|[36h

Initiates a specified programming operation,
keeping under control its successful
completion or failure. It controls a single
programmer.

Program
Managerll_oﬁ

ACI_Function_Params
383

© 2021 Phyton, Inc. Microsystems and Development Tools

Software Development Kit (SDK)

163

Application Control Brief description Associated Associated Application
Interface function name windows and Control Interface
dialogs structures
Initiates a specified programming operation
and then does not check the operation Program ACI_Function_Params

ACI_StartFunction[373

result. It controls a single programmer.

Manager 10A

ES)

ACI_GangStart@

Used to control multiple device
programmers. Initiates auto programming in
the gang (gang-programming[19%) mode.

Program
Manager[10A

ACI_GangsStart Params
[38)

ACI_GetStatus[3h

Gets a current programmer status
information.

Program
Manager[107

ACI_PStatus_Params[3%

Serialization
AC| Serializ ationDialoal 378 Th|§ macro sepds a command that opens Checksum NA
All=eralizalionbialod! Serialization dialog. and Log
Dialog[63"
ACI TerminateFunction[378) Terminates a current programming Program NA

operation.

Manager 107

AC|_GangTerminateFunction
36

Terminates a current programming
operation on a specified site of the gang
programmer.

Program
Manager 107

AC|_GangTerminate_Par
ams| 38

ACI_ErrorString[369

Get the string describing the result of the last
ACI function call

Program
Manager 10R

NA

9. ACI functions that save files from the programmer and load projects or files to the

programmer
Select
Device| 58
Loads a specified project that mustbe Buffer
ACI_LoadProject[373 previously prepared and saved manually in | 2UMRI %L | Ac| project Params[39
the programmer GUI. Device and
Algorithm
Parameters
[%Y
Saves a specified file from a specified Buffer
ACI_FileSave[368 buffer's layer of the programmer into the Dm ACI_File_Params[38h
instrumental computer. 2ump
Loads a specified file from the instrumental Buffer
ACI_FileLoad[38 computer to a specified buffer's layer in the Dumpl & | ACI_File Params|38h

programmer.

10. ACI functions that display programmer's windows and dialogs for setting up and

debugging external programming sessions

; Configure >
ACI SettinasDialoa 3 D_|splays the programmer Preferences breferences | NA
= . d dlalog. W
ACI_SelectDeviceDialog[37 | Displays the Select Device dialog. sl NA
Device[581
ACI_BuffersDialog 368 Displays the memory buffers setting dialog. FiLliz NA
= Dumpl 9
ACI_LoadFileDialog[37) Displays the file loading dialog. bl NA
Dump@

© 2021 Phyton, Inc. Microsystems and Development Tools

164 CPI2_MODEL Device Programmers - CPI2-B1
Application Control Brief description Associated Associated Application
Interface function name windows and Control Interface
dialogs structures
ACI_SaveFileDialog[37 Displays the file saving dialog. Filie NA
Dump@
5.4 ACI Structures

This section provides an overview of the structures used in calls to ACI functions| 6. Detailed
description of each structure can be found in the ACI Structures| =7 reference section.

Structure The ACI function that uses the structure
ACI Launch Params| s ACI_Launch(s)

ACI_Config_Params| sa ACI_LoadConfigFile[s71), ACI_SaveConfigFile[s74)
ACI_Device Params| a0 AC|_GetDevicel 69, ACI SetDevice[37),

ACI Layer Params|asd) ACI GetLayer[s0)

ACI Buffer Params|s7) ACI CreateBuffer[ss7, ACI_ReallocBuffer[s74)
ACI Memory Params[a) ﬁg: Eiﬁﬁgl_:rvl%éﬂ@' ACI WriteLayer[37),
AC|_Programming_Params/>) e e o

ACI| _ProgOption_Params|ssd ACI|_GetProgOption[s7), ACI SetProgOption[s7)
ACI_Function_Params|3s) ACI_ExecFunction[3sh, ACI StartFunction[s7)
ACI|_PStatus_Params|[2] AC|_GetStatus| 37

ACI File_Params| sl ACI FileLoad[8, ACI_FileSave!zes)
AC|_GangStart Params| 3 ACI_GangStart[3s3), ACI_GetStatus|371)

ACI GangTerminate Params| zs) ACI_GangTerminateFunction|zes)

Here is an example of the structure syntax:

typedef struct tagACl_Buffer_Parans

{
Ul NT Si ze; 1/
DWORD Layer OSi zeLow, I
DWORD Layer 0Si zeHi gh; /1
/1
supported by programer.
LPCSTR Buf f er Nane; /1
Ul NT Buf f er Number ; 11
/1
Ul NT NunBuf f er s; I
Ul NT NunmlLayers; /1

} ACI _Buffer_Parans;

(in) Size of structure, in bytes

(in|] out) Low 32 bits of layer O size, in bytes

(in || out) High 32 bits of layer 0 size, in bytes
Layer size is rounded up to a nearest val ue

(in) Buffer nanme

For ACI _CreateBuffer(): out: Created buffer nunber
For ACI _Real | ocBuffer(): in: Buffer nunber to realloc
(out) Total nunber of currently allocated buffers
(out) Total nunber of layers in a buffer

Each structure includes a number of parameters (here Size, Layer0SizeLow, NumBuffers, etc.). The
parameter's name follows its format (UINT, DWORD, LPCSTR, CHAR, BOOL, etc.). The comment to

© 2021 Phyton, Inc. Microsystems and Development Tools

Software Development Kit (SDK) 165

the parameter begins with a symbol in parentheses showing the direction in which the parameter is
passed, as follows:

e (in) - the parameter is sent from the instrumental computer to the programmer;

e (out) - the parameter is sent from the programmer to the instrumental computer;

e (in || out) -the parameter can be sentin either direction, depending on the ACI function
context.

5.5 Examples

Phyton ChipProg-02 SDK comes with several usage examples of Application Control Interface
functions and structures. Examples reside in the AC\Programmer ACI Examples subdirectory of
CPI2-B1 installation directory.

Examples are written in the C language and are projects that can be built using Microsoft Visual
Studio® 2008. Project sources can also be compiled using other C/C++ compilers, sometimes with
minor adjustments. Building a project creates a Windows console application executable.

To adjust an example project (or a part of it) for use in your application, in the main() function adjust
paths to the ACI functions. This includes paths to the CPI2-B1 executable file, to file loaded into
programmer memory buffer or saved from buffer to disk. You also have to specify real target device
type. Sample main() function fragment is shown below.

¥+ main ° 01.07.09 17:37:24*/

/I Launch the programmer executable
if (! Attach("C:\\Program Files\ChipProg-02\\6_00_01\\UPrognt2.exe", "', FALSE)) return-1;

/I Select device to operate on
if (! SetDevice("Microchip”, "PIC16C505 [ISP HV Mode]") return-1;

/I Load .hex file to buffer O, layer O
if (! LoadHexFile("C\\Programi\test.hex", 0, 0)) return -1;

All examples use the ACILDLL file, therefore that file must be located in the same folder where the
example executable file resides, or in a folder listed in the PATH environment variable. For provided
examples, ACI.DLL file has already been copied to the folder in which Microsoft Visual Studio creates
executable files.

Description of the Examples

Each example has an opening comment briefly describing the program purposes; more comments are
added to the code. All examples start with calling the ACI_Launch()[3 function that launches the
programmer.You will have to adjust the path the CPI2-B1 executable that is passed as parameter to the
Attach() function. After that, target device type is selected; you will need to modify that accordingly.

AutoProgramming.c

This is the simplest and most frequently used example of the CPI2-B1 control by an external program.
User program launches the programmer, selects the PIC18F242 target device, loads the test.hex file

© 2021 Phyton, Inc. Microsystems and Development Tools

166

CPI2_MODEL Device Programmers - CPI2-B1

5.6

into programmer buffer, sets default programming options, and then executes a preset Auto
Programming batch of functions: Erase, Blank Check, Program, Verify.

SaveMemory.c

This example shows how to save a binary image of a device to a file on disk. First, the user program
makes sure a device is insertion into the programmer socket by calling the ACI_GetStatus(&Status)[s71)
function. After detecting correct and reliable insertion, the program reads data from the specified
address range of SST89V564RD device's memory and saves it to the file test.bin on disk.

Checksum.c

This example shows how to calculate a checksum of data read from a device. First, user program
verifies device insertion into programmer socket by calling the ACI_GetStatus(&Status)[=71 function.
After detecting correct and reliable placement, the program calculates the real size of the
SST89V564RD device flash memory by executing the ACI_ExecFunction[ze/ function. It then allocates
the buffer 'buf' in the host computer memory for holding data read from the device, reads the data into
this buffer, and calculates buffer content checksum.

LongProgramming.c

This example shows how to monitor the AutoProgramming procedure that takes a long time.
Programming is launched by calling the ACI_StartFunction| 3. Completion percentage of the operation
is then checked by calling the ACI_GetStatus|s/1) function. If the operation fails, the programmer issues
an error message; otherwise operation is continued.

ProgrammingOptions.c

This example shows how to read, display, and change options set in the Device and Algorithm
Parameters Editor| 8" window. First, the program checks device insertion in the programmer's socket
by calling the ACI_GetStatus ()71l function. After detecting correct and reliable insertion of the device,
the program reads current set of options by calling the ACI_GetProgOption()[37 function, and prints
them the options. Then the program changes the Vpp from default value to 10.5V and disables device
Brown-out Reset feature.

APl Explorer

API| Explorer is a GUI application program that allows experimentation with ACI functions without writing
custom code. You can vary ACI function call parameters, study return codes, and see code in C
programming language recommended for performing function calls. API Explorer is shipped as part of
Phyton ChipProg-02 package. Figure below shows API Explorer window.

© 2021 Phyton, Inc. Microsystems and Development Tools

Software Development Kit (SDK) 167

AP Explorer for Application Control Interface SDK EI@
) e : What is ACI? e
Function: |ACL Launch < B G] (@ Hep PESTorToro ®oEt |
Parameter structure ACI_Launch_Params: C code snippet: Copy code to clipboard
UINT Size = | sizeof(ACI_Launch_Params) - | BOOL result;
ACI_Launch_Params ln_params;
LPCSTR ProgrammerExe =| UProghT2.exe v | memset(&1ln_params, @, sizeof(ln_params));
LPCSTR CommandLine =| /ml - . .
In_params.Size = sizeof(ACI_Launch_Params);
BOOL DebugMade =| TRUE = | 1n_params.ProgrammerExe = "UProgNT2.exe";
- 1n_params.CommandLine = "/ml";
UINT NumSites - T | 1n_params.DebugMode = TRUE;
LPVOID ConnectionId = -
result = ACI_Launch(&ln_params);
CHAR ProgrammerName = v | if (result != ACI_ERR_SUCCESS)
{
}
[
Result: Clear results

ACI_Launch() = ACI_ERR_SUCCESS: Success
ACI_Launch_Params on return:
Size a8

De de
NumSites
ConnectionId

Programmeriame

1
Bxl13B2AER
"CPIZ2-B1"

The name of ACI function to call is shown In the upper left corner of the window. In the figure the
function is ACI_Launch. The drop down list contains names of other functions. Help button brings up
description of the selected function.

Below function name is the title of the structure used to pass parameters to the function. in the figure
this is ACI_Launch_Params structure. Structure body follows its name and contains field names and
types. Each field can have its value set for the function call. Input parameters are shown in bold type; on
the figure these are Size, ProgrammerExe, CommandLine n Debug.

To the right of the list of structure fields is sample code in C programming language that performs the
call with parameter passing. This code can be copied to clipboard to be pasted into user program.

To call the function, press the Call button. Results pane will show the return code, a string describing

the result, and structure field values. Output parameters that are results of the function call are shown
in black, input parameters that the function does not change are gray. To get the string description of

the result, the program automatically calls ACI_ErrorString function once the selected function returns
control.

How to set values for structure fields.

The first field of each structure is Size which is the size of the structure itself. When a function is
selected, AP| Explorer sets this value to the 'sizeof' of the structure; in the figure it is
sizeof(ACI_Launch_Params). This field should be left as is; while experimenting, a number can be
entered here.

If a field type is string, the text in the field can be quoted. The program missing quotation marks
automatically. The special string NULL is treated literally, as a null pointer.

© 2021 Phyton, Inc. Microsystems and Development Tools

168

CPI2_MODEL Device Programmers - CPI2-B1

If a field type is int or Boolean, you can enter 1 or TRUE, and 0 or FALSE which will be placed as is into
generated code. In the figure TRUE value is entered in the DebugMode field.

Numeric values may be entered in decimal or hexadecimal format according to C language
conventions. An example of hexadecimal number is OXFFFO.

Fields left blank will be set to zero. This is true also for fields of type string; for example, LPCSTR
pointers will be set to NULL, and function call will result in error.

Generated Code Fragment
As shown in the figure, the parameter structure initially is filled in with zeros:
memset(&In_params, 0, sizeof(In_params));

Then follows the code to set values of structure field for which values are non-empty. All other fields will
contain zeros because the structure has already been zero-filled.

Specifics of ACI_ReadLayer, AClI_WriteLayer functions

When calling ACI_ReadLayer[s the program allocates its own data buffer. If data size specified in
ACI_Memory_Params.DataSize field exceeds 128, the program will impose size limit if 127 cells.

To define data to be written by ACI_WriteLayer call, ACl_Memory_Params.Data must contain
hexadecimal numbers without the Ox prefix, for example: CO 03 FF. Value of the
ACI_Memory_Params.DataSize field must be equal to the count of specified numbers.

Using APl Explorer

All function call are carried out and not simulated. APl Explorer allocates and fills in structures and
actually calls functions in the ACL.DLL library.

When API Explorer is started, the ACI_Launch function is automatically selected because without
calling it first other functions cannot be activated. Filename of the CPI2-B1 executable is specified
without full path since it resides in the same directory as API Explorer executable. The CommandLine
field contains option /1 which launches programmer in demo mode. If you would like to use one or more
real programmers connected to the computer, option /1 must be removed.

When developing custom programs that controls programmers using ACI, please be sure to update the
library ACI.DLL and aciprog.h header file in the directories where you executables reside. The ACI.DLL
may be updated in future CPI2-B1 releases.

Integration with NI LabVIEW

The National Instruments LabVIEW ™ (hereafter LabVIEW) is a popular graphical development
environment that makes possible integration of a variety of design, production, and testing tools. CPI2-
B1 programmers can be controlled by LabVIEW using two methods:

e ChipProg-02 Command line[128 table;
e Application Control Interface (ACI[).

© 2021 Phyton, Inc. Microsystems and Development Tools

Integration with NI LabVIEW| 169

Each method is described in an appropriate section below.

The ChipProg-02 software includes a few examples[173 of the Virtual Instrument (.VI) files.

6.1 LabVIEW Integration Using Command Line

This is the most simple way to integrate ChipProg-02 with LabVIEW that involves two steps.
e Set up a programming session using ChipProg-02 user interface.
e Operate device programmer using LabVIEW user interface.

Here is an example:

1) Create a folder for controlling ChipProg-02 software from LabVIEW user interface, for example C:
\LabView\1.

2) On Windows desktop make a copy of ChipProg-02 icon. Rename it for use exclusively with
LabVIEW. The path to the program referred to by this icon is usually "C:\Program Files\ChipProg-
02\x_xx_xx\UprogNT2.exe", where the 'x_xx_xx" is the version of ChipProg-02 software. Right-click
on the icon, select Properties, Shortcut tab, and in the Start in field change path to C:\LabView\1 as
in the following figure:

Phyton ChipProg-02 Properties)
#& Phyt pProg pe
Security I Details | Previous Versions
General | Shortcut | Compatibility | Carbonite

@ Phyton ChipProg-02

Target type: Application
Tanget location: &_00_23

Target: C:APhytonChipProg-02%6_00_23\UProgh T2 exe

Start in: "CALabWIEW"

Shortout ey Mone

3) Power on CPI2-B1 device programmer, connect it to a USB port on your PC, and launch the
ChipProg-02 program by clicking the icon in C:\LabView\1 folder. When programmer user interface
opens, start setting programming session options by choosing the target device (for example by
pressing the F3 hot key). After choosing the device set up programming options and parameters using
ChipProg-02 windows, menus, and dialogs if these options differ from default ones. The following
options can be set within the ChipProg-02 GUI:

- Settings in the Program Manager [0 window, such as selecting functions to be included into the
Auto Programming batch (button Edit Auto...); these include Split data, Insert test, Auto Detect, and

© 2021 Phyton, Inc. Microsystems and Development Tools

170

CPI2_MODEL Device Programmers - CPI2-B1

other settings in the Options[d) tab; the number of chips to be programmed during a programming
session and other options in the Statistics[1] tab.

- Settings in the Device and Algorithm Parameters Editor/[e window that are device-specific, such
as boot vectors, fuses, lock bits, Vcc voltage, oscillator frequencies, etc.

- Settings in the dialogs accessible via Serialization, Checksum, Log file...[e31menu, such as
algorithms for writing serial numbers and custom signatures into the devices being programmed, buffer
checksum calculation, custom shadow areas, dumping data to log files, etc.

- Miscellaneous settings in the dialogs accessible via Preferences| 71 and Environment[7 menus,
such as color, fonts, sounds, etc.

Complete the definition of programming session by including appropriate Command line options[28) .

- Specifying method of control through the programming session (key /S);

- Choosing target device (key /C<manufacturer>"<device>);

- Loading the file to be programmed and its format (key /L<file name> /F<file format>);
- Specifying the Auto Programming| 108l mode (key /A);

- Launching programmer in hidden mode, when the ChipProg-02 GUI is hidden (key /12).

Notes:

- Device specified by the /C key on command line must be the same as chosen in the ChipProg-02
user interface.

- Specifying /12 key on command line hides ChipProg-02 application main window, suppresses display
of error messages but copies them to the Windows clipboard. If the session terminates successfully
ChipProg-02 application returns exit code 0; in case of errors exit code 1 is returned.

For example, if you want to program a HEX file myfw1020.hex located in the Program Files (x86)
\ChipProg-02\6_00_21 folder into the flash memory of a number of NXP MK20N64VFT7 [ISP EzPort
Mode] devices, then the command line should have the following format:

"C:\Program Files (x86)\ChipProg-02\6_00_21\UprogNT2.exe" /L"Program Files (x86)\ChipProg-
02\6_00_21\myfw1020.hex" /FH /C"NXP*MK20N64VFT7 [ISP EzPort Mode]" /A /12

4) To start CPI2-B1 in command line mode use the standard LabVIEW module SystemExec.

The figure below shows a screen shot of LabVIEW GUI front panel with the cp48_01.vi module loaded.

© 2021 Phyton, Inc. Microsystems and Development Tools

Integration with NI LabVIEW| 171

3 cp48_01.vi Front Panel

File Edit View Project Operate Tools Window Help

[|| @ [n][17pt Appication Font |~ |[8=~ |[«da~ &~ | [28~] - A [2]2lo zﬁ
| [
I Working directory

C:\LabView\l

Call Chip Prog program
"C:\Program Files (x86)\ChipProgUSB\5_21_00\UproghT2.exe"
Firmaware path

JL"C:\Program Files (x86)\ChipProgUsB\5_21_00\myfw1020.hex" /FH
Device selecting

JC"Texas Instruments~CC2540F256" /A /12
Result commandiine

"C:\Program Files (x86)\ChipProgUsB\5_21_00\UprogNT2.exe" /L"C:\Program Files (x86)\ChipProgUsB}
5_21 00\myfw1020.hex" /FH [C"Texas Instruments~CC2540F256" [A /12

0Os error report

ChipProg Error report
OsError ETNo

I_ Wrong device identifier
@

ChipProg Exit
System output string P 10g Std output std error

s N

And below is the same module block diagram:

© 2021 Phyton, Inc. Microsystems and Development Tools

172 CPI2_MODEL Device Programmers - CPI2-B1
I B cp48_01.vi Block Diagram
Flie Edt View Project Operate Tools Window Help 3
- e - - - = - .‘:-'—p.
2 [@] @[] [&][28][wa]m" -+ [17pt Appication Font |~ |[Se [~ | [E~ [[eal][- o 1 [
Cal Chip Prog —‘J
[ac
= Std output
Result commandiine
O C -
Firmaware path =M = st
— |wait until completion] —
E e —:‘:Ti‘—
[Device selecting
[abz ChipProg Exit Code
L i
Os error report
Waorking directory i
s et App Emj
ﬁ N Clears clipboard o : ChipProg Error report
S Clipboard.Read!
A" App a Hisia =
Clipboard.Write Be
[}t Text
Tl]l]ls [x|
X .
A
2=l
@|e S
Kl | o
The <CPI2-B1 starts in hidden mode, its GUI remains invisible during the programming session. If no
errors occur, the ChipProg Exit box returns exit code 0, otherwise exit code 1 is returned. The error is
displayed in the ChipProg Error box report.
6.2 LabVIEW Integration Using ACI

The ChipProg-02 software package includes the Virtual Instruments (VI) library developed in the
National Instruments' LabVIEW ™ graphical development environment. It also includes a few usage
examples[173) of these virtual instruments. The library files reside in the LabVIEW folder located in the
ChipProg-02 installation directory. The library is created using the 2013 SP1 version of LabVIEW.

The DLL control is based on use of the Application Control Interface. Each Vlis a wrapper over the
appropriate function exported by the ACI.DLL library. You should be quite familiar with the Application
Control Interface in order to use the Virtual Instruments library.

Because of limitations imposed by LabVIEW on passing parameters to functions exported from DLLs,
the virtual instruments do not call the ACL.DLL functions directly. Instead, they call functions exported

© 2021 Phyton, Inc. Microsystems and Development Tools

Integration with NI LabVIEW| 173

from the intermediate DLL - the ACI_LV.DLL. This DLL packs parameters into structures required by
ACIL.DLL and then calls its functions. The declarations of functions exported by ACI_LV.DLL are placed
in the C/C++ header file named ACIProgLabVIEW .h.

Each virtual instrument has its own front panel. It allows calling an appropriate Application Control
Interface function. In order to do this, before launching this function, you should launch the CPI2-B1 by
means of the VI with the name ACI Launch. Each virtual instrument has input and output terminals for
inputting and outputting parameters of the ACI function served by the virtual instrument.

See the VI file examples here[17,

6.2.1 LabVIEW Integration Examples

The ChipProg-02 software includes a few examples of the Virtual Instrument files (VI files) that illustrate
control of the CPI2-B1 programmers by the NI LabVIEW software. These examples are located in the
folders:

- For the 32-bit LabVIEW version - C:\Phyton\ChipProg-02\x_xx_xx\LabVIEW\x86\Examples\
- For the 64-bit LabVIEW version - C:\Phyton\ChipProg-02\x_xx_xx\LabVIEW\x64\Examples\

Currently, these folders contain three Virtual Instrument examples below but Phyton may add new
examples further:

- Device Programming Example.vi
- Programming Params Control Example.vi[173

- Gang_serial.vi 173

The Device Programming Example.vi demonstrates use of all major ACI functions, namely:

¢ launch a device programmer;

¢ |oad a project;

 display the device programmer buffer content in the GUI;

¢ display a chosen device in the GUI;

¢ display the device programmer socket's status (if a chosen programmer type supports this feature);
o write a serial number and increment it automatically in the device programmer buffer;

o perform programming functions on target device and display the results in the GUI;

o count numbers of successfully programmed and failed devices, and display them in the GUI;

To evaluate the example, start the CPI2-B1 and launch Device Programming Example by clicking
Run continuously button in the LabVIEW GUI. Then click the Launch Programmer button on the VI
front panel. This will open front panel of the virtual instrument ACI Launch. Enter full path to the
ChipProg-02 executable file, for example: "C:\Program Files\ChipProgUSB\6_00_00\UprogNT2.exe"
and (optionally) specify the command line parameters. To avoid prompts to restart programmer you
can specify the path to the UprogNT2.exe in a constant string in the virtual instrument diagram and un-
check the Prompt for programmer name, switches, etc... box on the front panel (see the diagram
below).

© 2021 Phyton, Inc. Microsystems and Development Tools

174

CPI2_MODEL Device Programmers - CPI2-B1

B! ACI_LV Iviib-Device Programming Example.vi Block Diagram

File t View Project Operate Tools Window Help
S[n][G][e5]alet] 2| [170t Font - |[3o-[[a- | [~ [[lsearc

Serial Number:

@] 3 Error Message Function Failed % Complet
: —— e v . & Complete
] g';E Device Status
o : B i ; o

[1] "LeuncMProgrammer"- Value Change ~P————— Executing Slide

Source [0 <F] Device Status

i

[Specify the correct file name for the programmer e e
Type ble file, its d line switches and other [A000
Time of ACI_Launch if you do not want to display the New Device
CtiRef | |prompt.
&= OldVal i =]
Newval] Prompt for pmgramame, stm‘lches, etc.. L R out2 ef) {True

ProgUSBI5_25 00\UprogNT2.exel fi=—{ A Total

C:\Program Files\Chi

False -

" [Foor] -
[True ‘t

fi

+#Serial Number |

Embed at Address:

o

[False 'k

I — e~

T

Launch Prog

 Programmer Connedted
: Fosened
- Disabled
cid Embed st Address: 55011 Buffer Dump | [MExor)

Disabled|
Serial Number:

T <
Erbad serial rumbar [LIue ~H

E -+

Launch Programmer Load Project Program Clear All

B

Good:

.

L« | P

After launching the programmer its current status becomes visible in the virtual instrument's front panel.
Clicking the Start button launches the operation with the name that you can enter into the Function
Name field, for example: Blank Check. If the Function Name field is left blank, the programmer will
execute Auto Programming| 108 function. This process is illustrated in figures below.

B ACI_ LV Iviib:ACI Launch_vi
File Edit View Project Operate Tools Window Help =

S I_I_‘@ n Lunch

ProgrammerExe
% C:\Program Files\ChipProgUSB\6_26_00WprogNT2 exe hl

CommandLine

/g

¥ Programmer window visible (Debug)
Launch Programmer

Programmer Name Mumber of Sites
0
error out %
status code source
ri 0 -

© 2021 Phyton, Inc. Microsystems and Development Tools

Integration with NI LabVIEW| 175

k. ACI_LV Ivlib:Device Programming Example_vi

File Edit View Project Operate Tools Window Help

»@[@n]

Address Buffer Dump

¥ Prompt for programmer name, switches, eic Project File Name: ’): 0 00 |oo oo |oo
= |o
aunch Broarammer L 00 00 (00 |00
— - 00 (00 (oo [oo
Load Brofect, 00 00 |00 |00
. Programmer Connected 0 o0 00 (oo
Device Selected: SST SSTA9VSE4RD B EtezrlsEl mrEy
Good: |2 Embed at Address:
Device Status Unknown (Auto Detect is probably off) am New Device - HDxSSFE
ad: 1
Serial Number:
Function Name Program . Executing Total: 3 ;HUX:UUUUUUIIZ
_ 78 % Complete Clear All ¥ Auto-Increment Serial Number
‘ Start l
error out
E M F ion Failed Rl
—a cti
rror Message unction Failes il HU— _
source
—1
—1

B o

The Gang_serial.vi example is a modification of the Device Programming Example described
above and illustrates of how to operate with multiple CPI2-B1 device programmers running in the gang
programming[191 mode (or gang mode). The structure of the Gang_serial example is identical to the
structure of the Device Programming Example.

To add a new site:

1. Copy all the contents of the last "case" structure containing the "Get status” function to a free space.
Create a new "case" inside the structure and paste the copied data into it. Attach the data outputs in the
same manner as in the previous "case" (it is necessary to copy and paste instead of duplicating the
"case" entirely because copy/paste creates new variables required for the program to work. Duplicating
the "case" will use old variables.

2. Create local variables from the newly created 'Total', 'good', 'bad' (Right Mouse Button (hereafter
RMB) - > Create - > Local variable. Add them to
the event structure of the "Clear all* event. Connect these variables just like others.

3. Create a local variable from the new 'Executing' element in the 'Read’ mode. Include it into the
iteration block via the logical 'OR" just like the other 'Executing’ variables are.

4. Copy and paste the last (by number) 'Program Site' button. Duplicate the last (by number) "case" of
the "Program site value change" in the event structure. As a condition set a change of the newly
created button value.

When adding new ACI Functions[32 make sure to set the correct site number in the appropriate
variables. (Steps 1, 4 in particular).

The last thing to do is to arrange all new indicators on the front panel.
Adding "site online" light is optional.

© 2021 Phyton, Inc. Microsystems and Development Tools

176

CPI2_MODEL Device Programmers - CPI2-B1

7.1

7.1.1

Scripting

Scripting Overview

ChipProg-02 application can execute commands contained in script files. Scripting is a convenient
way to automate programming process when using CPI2-B1 programmers.

Scripts can be used to perform various operations, such as automatically load data into memory buffers,
calculate checksums, initiate device programming, pause programming in case of an error, manipulate
windows, and others.

For the purpose of customizing CPI2-B1 user interface (and for debugging purposes) scripts can create additional
windows of two types: the User window [183 and the I/O Stream window |83, Scripts can also create
custom menus.

Scripts can send messages to Console window/[0% or to User| 3 window created from within the
scripts. User windows can display text and graphical data.

ChipProg-02 scripting language is similar to C programming language; most C language features are
supported, except structures and pointers. However, there are some differences(209. The scripting
subsystem supports many built-in functions, such as printf(), sin() and strcpy().

Scripts are stored in files with filename extension .CMD.

The scrips controls and associated dialogs and windows are concentrated under the Script menu| ss1.
The major dialog that controls scripts is the Script Files dialog[7.

How to write a script file

Script is similar to a in C language program. You can use the ChipProg-02_built-in editor[189 or any other text
editor to create or edit scripts. You can store script files in your working directory or in the ChipProg-02
installation directory.

Note that you must not use special characters (braces, dash, etc.) in the script file names.

How to run a script file

To start, stop, restart, and debug a script file use the Script Files [178dialog[173

The Reference section contains detailed information about scripting.

Simple example

This sample script loads a file, performs automatic programming, and displays the result.

#include <system.h>
#include <mprog.h>

woid main()

{

LoadProgram(“test.hex", F_HEX, SubLewel(0, 0)); /I load file "test.hex" that is an Intel
HEX file
/I to buffer 0, sub-level O

© 2021 Phyton, Inc. Microsystems and Development Tools

Scripting 177

InsertTest = TRUE;

to "on"
if (ExecFunction("Auto Programming") == EF_OK)
{
if (ExecFunction("Verify", SubLewel(0, 0), 10) = EF_OK)
{
printf("Verify failed: %s", LastErrorMessage);
return;
}
printf("Verify ok.");
}
else

printf("Programming failed: %s", LastErrorMessage);

}

7.2 The Startup Script

/I set testing of chip presence
/I perform an automatic programming
/I verify 10 times

/I display error message if verify failed
/I terminate script

/I display Ok result

/I display error message

When the ChipProg-02 application starts, it automatically runs the start.CMD script if it exists. This is similar to
execution of the autoexec.bat file in Windows. ChipProg-02 first looks for start.CMD file in the current directory; if
it is not found, ChipProg-02 then looks for start.CMD in its installation directory. If the START.CMD is not found, the

default CPI2-B1 GUI shell will open.

7.3 Running Scripts

Scripts can be started and restarted in several ways. The easiest one uses the commands of the Script
Files[178 dialog. A script can be also be started by calling the StartCommandFile() function from another

script.

© 2021 Phyton, Inc. Microsystems and Development Tools

178 CPI2_MODEL Device Programmers - CPI2-B1

7.3.1 The Script Files Dialog

This dialog is used to start, stop, and debug scripts.

« Script Files
Scriptfiles list
ROLLING "ROLLING" Id: 1. Stopped. PC=00010000 ("ROLLING" Terminate
SCANNER "SCANNER" Id: 2, Stopped, PC=00020068 ("SCANNER") =
Terminate All
Restart
Debug
Start new scriptfile
Scriptfile name:
|y:\ray‘tuprognf&hscanner.cmd w) Browse..
Defines:
| v]
#include-file folders:
| v]
Debug (open Script Source window)
stn .
[] Auto-save scriptfile sources
« Done @ Help

In the top pane of this dialog you see the list of loaded script files along with the state of each script. A script
can be in one of the following states:

State of Script Description

Stopped Execution of the script file is temporarily stopped.

Running The script file is being executed.

Waiting The script is waiting for an event. This state is initiated by calling certain wait

functions in the script file text (for example, Wait).

Cancelled The script execution is terminated, but the script file is not yet unloaded from
the memory.

To select a script highlight its name in the window. The four buttons on the right of the list affect the highlighted
script:

© 2021 Phyton, Inc. Microsystems and Development Tools

Scripting 179

Button Description

Terminate Unloads the selected script file if it can be unloaded. Otherwise, it sets up the
Unload Request flag for the selected script that then goes to the Canceled
state.

Terminate All Unloads all script files visible in the window.

Restart Restarts the highlighted script.

Debug Switches to the Debug mode for the highlighted script. This command stops

execution of the script and opens it in the Script Window[181 for debugging. If
the script is in the wait state, execution will be stopped immediately after the
script returns from the Waiting state.

When you use several script files simultaneously and unload or restart some of them, remember that script files
can share global data and functions. If one script accesses data or functions belonging to a script that is
already unloaded, the script interpreter will issue error messages and the active script will also be unloaded
(terminated).

The buttons and fields in the lower part of the dialog box determine how scripts are run:

Dial ntrol Description
Script File Name Specifies the filename of the script for loading. You may type in file name with

full path, or select it from the drop-down history list, or browse files on disk.

Browse Opens the Load/Execute Script File dialog for locating and loading script
files into the Script File Name box.

Defines Defines preprocessor variables. For more information, see Preprocessor
Variables below.

#include-file Specifies directories to search for files specified in the #include <file_name>
Directories directive(s). To specify more than one directory separate them by semicolons.
The current directory is searched as well.

Debug (open Script If this box is unchecked, a script file automatically start execution upon the

Source window) file loading. If the box is checked, then upon loading script file a window for
debugging is opened. See also How to Debug a Script File[183

Auto-save Script File If this box is checked, clicking the Start button automatically saves the source

Sources texts of all script files \isible in the Script Source windows.

Start Starts the script file specified in the Script File Name box.

Preprocessor Variables

The content of the Defines text box is equivalent to the #define directive in C language. For example, if you type
DEBUG in this text box, the result will be as if the #define DEBUG directive is placed in the first line of the
script source.

You can use Defines to specify values for variables. For example, DEBUG=3 is equivalent to #define DEBUG 3.
You can list seweral variables in a line, separated by semicolons. For example:

DEBUG, Passes=3; Abort =No
Also, see Predefined Symbols at the Script File Compilation[23h.

© 2021 Phyton, Inc. Microsystems and Development Tools

180 CPI2_MODEL Device Programmers - CPI2-B1

7.3.2 The User Window

User window is a window created by calling built-in OpenUserWindow function from within a script. User
window provides the following functionality:

o displaying text;
e displaying graphics (indicators, LEDs, buttons, arrows, etc. by calling built-in graphic functions);
e responding to events (see WaitWindow Event).

These capabilities allow write scripts working in interactive mode.

All functions working with windows (including User windows) take window identifier (handle) as a parameter.
Because of this you can have several windows of the same type open at the same time.

User window does not have context menu. Howe\er, it provides a toolbar with 16 buttons (0...F), and each
button can be programmed to perform a certain function. Pressing a button generates the
WE_TOOLBARBUTTON event.

7.3.3 The I/O Stream Window

I/0 Stream window is created by calling built-in OpenUserWindow function from a script. Script use
windows of this type to display text I/O streams. The most common examples of I/O streams are the
characters input from PC keyboard and text messages output by the script. Also, you can assign I/O streams
to files and input data from those files.

Functions that operate on windows (including the 1/0O Stream window), receive window identifier (handle) as a
parameter. Therefore, several windows of the same type can be open simultaneously.

When a function sends some text to this window, the text is appended at the current cursor position. To start
the next line the function outputs \n' (line feed character).

I/0 Stream window features two text display modes, with or without automatic line advance (wrap). In
automatic line feed mode, text that does not fit into current line is wrapped to the next line. If auto wrapping
mode is off, then a line that does not fit in the window it is truncated. The Wrap button in the toolbar toggles the
this modes. The Clear button clears the window contents.

Windows of this type do not have context menu.

7.4 Debugging a Script

A script can be started in Debug mode. This is usually necessary while you test the script to see if it works
properly, and make necessary corrections. To start a script in debug mode, highlight its name in the Script Files
dialog[17 and click the Debug button. This brings up the Script Window[181,

The ChipProg-02 application is designed for source-level debugging. Scripts are debugged in the same way the
programs are debugged, executing script step-by-step or up to cursor, setting breakpoints, watching variable
values, etc. Debugging process uses Script Source[181) and Watches windows. If the Debug option is set in the
Script Files @M@, the Script Source[188) window opens automatically when starting the script.

When the StartCommandFile() function in a script is called to start another script, you can specify parameter
instructing it to start the new script in debug mode and open the Process window.

To view the value of a script variable in the Watches 182Wwindow[183, use the Add Watch command in the Script
window menu or the Add Watch toolbar button. This can also be done manually in the Watches window. For
example, if you need to view the value of the addr variable, which is used in a script named TEST, place the
#TEST#addr construct in the Watches window. If addr is declared public, that is, outside the function, then it
should be written as ##addr.

© 2021 Phyton, Inc. Microsystems and Development Tools

Scripting 181

7.4.1 The Script Window

The Script window is divided into two panes; the left pane displays the script source, while the right pane is the

AutoWatches pane[183)

Syntax constructions and the lines that correspond to the current Program Counter (PC) value (blue strip) and the
breakpoints (red strips), are highlighted in the script file text (for more information, see Syntax Highlightingl@).

Script: Rolling.cmd (20,32)

ﬁ Save ‘ Step ‘ Run | | Break |+Watch| Origin |New PC|Restar‘t|

¢« if (handle != -1)

{ [}H Save file

. r‘_ea-:(handle, rollingTmp, si Step Cirl«T
. close(handle);
) Run Ctrl+U
Run to cursor F4
uint8 RAD_SYNC_L = rollingTmp Origin Ctrl+0
uint8 RAD_ID H = rollingTmp[g New PC Ctrl+N
uint8 ID = RAD_ID H = RAD_ID_ Toggle breakpoint F2, Ctrl+B

uint8 RAD_SYNC_H = rollingTmp

rollingTmp[2] = RAD_SYNC_H; Restart
rollingTmp[3] = (@x00FF & (RA i
rollingTmp[4] = 1ID2; [] Right pane on

rollingTmp[5] = (@x00FF & (RA [JLine numbers
rollingTmp[6] = ID;

uint8 ID2 = RAD_SYNC_H + RAD_ Add to Watches window Ctrl+W

Ctrl+E

rollingTmp[7] = (@x@OFF & Ip2 Help onwindow..

Help on word under cursar

g Properties
"ROLLING" Id: 3. Stopped. PC=00030271 ("ROLLwvay

3

Setup

~ ||handle=oxFFFFFFFF

EEEE

handle=@xFFFFFFFF, rollingTmp="\@\@IMIKY\@"

handle=@xFFFFFFFF

RAD_SYNC_L=0, rollingTmp="\@\@IMIKY\@"
RAD_ID_H=0x59, rollingTmp="\@\@IMIKY\Q"
ID=0x59, RAD_ID_H=0x59, RAD_SYNC_L=0
RAD_SYNC_H=0xB2, rollingTmp="\0\@IMIKY\8",
ID2=0xB2, RAD_SYMC_H=0xB2, RAD_SYNC_L=0

rollingTmp="\0\0IMIKY\@",
rollingTmp="\0\0ImIKY\Q",
rollingTmp="\0\0IMIKY\@",
rollingTmp="\0\0ImIKY\Q",
rollingTmp="\0\0IMIKY\@",
rollingTmp="\0\0IMIKY\Q",

<

RAD_SYNC_H=0xB2
RAD_SYNC_H=0xB2
1D2-0xB2
RAD_SYNC_L=0
1D=0x59
1D2-0xB2

Note. To get help on a function or a variable, click mouse button on the function or variable name in the script

source.

7411 Menu and Toolbar

The context menu contains the following commands, most of which are duplicated by the toolbar.

Menu Command Toolbar Button
Step Step
Run Run

Run to Cursor

Stop

Origin Origin

Description

Executes one operator of the script.

Starts continuous execution of the script in the window.
The script execution can be stopped either by reaching
a breakpoint or by the executing Stop command.

Executes the script up to the line containing cursor.
Alternatively, you can double-click the line to carry out

this command.

Stops the running script.

Shows script source from the line whose address
corresponds to the script file Program Counter. This
operation is not available when source lines do not exist
for the program addresses.

© 2021 Phyton, Inc. Microsystems and Development Tools

182 CPI2_MODEL Device Programmers - CPI2-B1
New PC New PC Sets the script’s Program Counter to the address
corresponding to the line containing cursor.
Toggle Breakpoint Break Sets or clears breakpoint at the address corresponding
to the line containing cursor. When you execute the
Run or Run to cursor command, the program execution
will be stopped at the breakpoint.
Add to Watches +Watch Opens the Watches[162 window[82} (if not already open)
Window and places the name at the cursor into it.
Restart Restart Restarts execution of the highlighted script.
7.4.1.2 The AutoWatches Pane
The ChipProg-02 application displays the visible portion of the script in the Script window. The names of
variables, called AutoWatches, which belong to the visible script lines, are listed along with their values in the
right pane of the window. When you scroll through the Script window, contents of the AutoWatches pane
refreshes automatically.
The AutoWatches can be displayed in binary, hexadecimal, decimal or ASCII format. To select a format, click on
the Setup toolbar button or right click anywhere in the pane to open context menu.
7.4.2 The Watches Window

AutoWatches[18 pane of the Script window displays values of currently visible script variables. In addition, you
may want to monitor other explicitly specified script variables and expressionsm. To do so, ChipProg-02
provides the Watches window. For each variable, the window displays its name, value, type and address, if any.

A newly opened Watches window has one Main tab. You can add custom tabs (using Display Options
command in context menu) or rename any existing tabs. The tabs operate independently of each other, each tab
being functionally equivalent to a separate Watches window. However, if desired, you can open several Watches
windows.

Each Watches window has the +Watch toolbar button. Clicking on this button opens a dialog for adding a
selected object to the Watches window.

Grids in the Watches Window

For better readability, the Watches window can be divided into cells by vertical and horizontal grid lines. Enable
the grid by checking the corresponding boxes in the Configure menu > Environment > Fonts tab.

Context Menu

The window context menu contains the following commands, most of which are duplicated by toolbar buttons.

Command Description
Add Watch Adds one or more objects to the window. Opens the Add Watch[18h dialog to

choose an object by name. Also, you can enter an expression| 2021 as a hame.

© 2021 Phyton, Inc. Microsystems and Development Tools

Scripting 183

Delete Watch

Delete All Watches

Modify

Move Watch Up

Move Watch Down

Display Options

Deletes a selected object from the Watches window.
Deletes all watches from the window.

Opens the Modify dialog to set a new value for a selected variable. Alternatively,
just enter the new value.

Mowes selected watch up the list.
Mowes selected watch down the list.

Opens the Display OptionslTBQ dialog to change the display settings for selected
object and also to add/delete tabs to/from the window.

7.4.2.1 The Display Watches Options Dialog

Use this dialog to set the display options for the selected variable or expressionlE?I in the Watches[3 window.

Dialog Control

Watch Expression

Display Format

Pop-up Description

Display Bit Layout

Description

Contains selected expression. The drop—down list contains the previously
used expressions.

Specifies the format for displaying selected expression (binary,
hexadecimal, decimal, or ASCII).

Contains check boxes that choose format for displaying pop-up SFR
descriptions.

If this box is checked the SFR bits will be displayed in the pop-up layout
descriptions.

Display Bit Descriptions Checking this box enables displaying the pop-up descriptions for the SFR

Auto-size Name Field

Tabs
Add Tab

Remove Tab

Edit Tab Name

Global Debug/ Display

Options

bits, if any.

When this box is checked and when vertical grid is visible (see note
below), the window automatically adjusts the Name column width to fit
the longest record in the column.

Lists all tabs present in the window.

Opens the Add New Tab to Watches Window dialog for entering a new
tab name. The window adds the new tab upon pressing OK.

Remowes the tab selected in the Tabs list.
Opens the Edit Watch Window Tab Name dialog for editing tab name.

Opens Debug Options dialog.

Note. To make grids visible in the Watches window, open Configure E"Imenu, the Environment dialog, the
Fontsl 8" tab and check the corresponding boxes in the Grid field.

© 2021 Phyton, Inc. Microsystems and Development Tools

184 CPI2_MODEL Device Programmers - CPI2-B1

7.4.2.2 The Add Watch Dialog

Use this dialog to add symbol names (for example, a variable name or an expressionl 202)) to the Watches
window. The dialog contains a list of symbol names defined in, or known to, the program.

Dialog Control Description

Name or expression to Enter the symbol name or expression to be added. You can specify
watch: seweral names and expressions either manually (separated with
semicolons) or by selecting from the list with the Ctrl key pressed.

History List of previous names and expressions.

7.5 Script Editor

A script is similar to a source program written in C programming language. Scripts can be created and edited
using ChipProg-02 built-in editor described below or by using any other text editor. Scripts can be stored as
files in your working directory or in the directory where the ChipProg-02 is installed.

To open a built-in editor select Script menu > Editor window. The Editor toolbar that contains all buttons
related to editing is normally hidden. To customized editor toolbar right click on a blank area in the main toolbar,
select Customize in the drop-down menu, and check the boxes for editor functions that you want to make
visible.

To create a new script file and open it for editing, select Script menu > Editor window > New. This will open
a blank window shown below. Right clicking in the window brings up the Editor menu with buttons you can add
to the local Editor toolbar. On the figure the toolbar is shown above the window.

© 2021 Phyton, Inc. Microsystems and Development Tools

Scripting 185

DHEAS[® -8R0]|BR& <[k b

?noname? (1,12}

Now you can edit the script in the window.

Undo | Save |Save As| Copy Cut Paste | Search | Search Next | Search/R
hﬁ Undo Ctrl+Z, Alt+Backspace
H Save file Ctrl+S
B Save file as...
= Print...
®3 Copy Ctrl+C, Ctrl +Ins
<4 CUE Ctrl +3, Shift+Del
il Paste Ctrl+V, Shift+Ins
[Search for text... Ctrl+F
il Repeat search F3
& Search/Replace... Ctrl+H, Ctrl+P
& Display multi-file search results.., shift+F9
Display from line number... Ctri+L
ki Set bookmark... Alt+[
Iy Retrieve bookmark... Alt+]
< *y Condensed mode F12
“# Condensed mode setup Ctrl+F12
Device and Algorith
Edit | winvan [Line numbers
Name Match brace/comment Alt+
ok Return to last editing context
- Tablewrite pro{ ~ User Scripts b
- Table read pro (
[CONFIGT Help on window... F1
FH-CONFIG2 Help on word under cursor Alt+F1
- COMFIG3 p i N
- CONFIG4 roperties

Note that you should not use the punctuation characters (braces, dash, etc.) in the script file name.

To finish editing click on the Save button in the Editor toolbar, the program will prompt you for script file name

and location.

© 2021 Phyton, Inc. Microsystems and Development Tools

186

CPI2_MODEL Device Programmers - CPI2-B1

7.5.1 The File Menu

Commands in this menu act on the currently active Edit[188) window.

Button Command Description
D New Opens the Editor window [188) for a new script file.
.Jﬁ‘ji Open... Brings up Open file dialpg to load a script file for editing. The file
ol name and path can be either entered or browsed here.
H Save Sawes contents of the active window to a file on disk.
_Ei Save As... Opens the Save as... dialog.
,u Print Opens standard Print dialog for default printer. You can print entire
- file or just the selection.
Properties.. Common properties for open files.

7.5.2 The Edit Menu

Commands of this menu act on the active Edit[188] window.

Button Command Description
ﬁa Undo Undoes the last text editing action performed in this window. For
example, if the last action deleted a line, then deleted line will be
restored. The number of steps provided by the Undo function is set in
the of the Configure > Editor Options > General[83\ tab.
@ Copy Copies selection to clipboard. The text format in the clipboard is
standard and the copied block is accessible to other programs.
: Cut Mowes selection to clipboard..
-
Cﬂ Paste Pastes text from clipboard, starting at the cursor position.
Clipboard Opens the Clipboard History/Repository dialog.
History/
Repository
Append to Copies and appends selection to clipboard contents.
Clipboard
Cut & Append to Cuts selection and appends it to clipboard.
Clipboard
Fast Copy Copies selection to a specified position in the same window.
Fast Move Moves a block from one position in a window to another position in the

same window.

© 2021 Phyton, Inc. Microsystems and Development Tools

Scripting 187

Block Off

Unmarks a marked text block.

Search

Opens the Search for Text[199) dialog.

Next Search

Repeats search with parameters used in the previous search.

Replace

Opens the Replace Text[19} dialog.

vIBE| B

Display Multi-file
Search Results

Re-opens the last multi—file search results in the Multi-File Search
Results[19 dialog.

Display from line
number...

Opens the Display from Line Number[19h dialog for you to specify a
line number. Source text will be displayed from this line.

Set bookmark...

Opens the Set Bookmark[193) dialog to set a local bookmark.

Retrieve
bookmark

Opens the Retrieve Bookmark[199 dialog to retrieve a local
bookmark.

Condensed mode

Toggles Condensed display model 183 on and off.

QR |7

Condensed mode
setup

Opens the Condensed Mode Setup[eA dialog.

Line numbers
on/off

Toggles line numbers on and off.

D e

Return to last
editing context

Activates the most recently edited Source window, and places the
cursor in its final position during the edit.

7.5.3 Block Operations

Block operations are operations on blocks of text. The script Source window supports persistent blocks and
performs a full range of operations with standard (stream), vertical (column) and line blocks of text.

Non-persistent blocks In this mode, once a block is marked, you have to immediately carry out an operation
with it (delete, copy, etc.). Any movement of cursor turns the marking off. If a block is marked, then any entered
text will replace the block with the typed text.

Persistent blocks In this mode, the block remains marked until the marking is explicitly removed (hot key
Shift+F3) or the block is deleted (Ctrl+X). The Paste operation for persistent blocks has certain specifics. Two
additional block operations are available for persistent blocks: fast copy and fast move. These operations do not
use clipboard and require fewer keyboard manipulations.

To enable persistent block mode check corresponding box in the Main menu > Configure>Editor Options>
Generall & tab.

Standard blocks A standard (stream) block contains a "text stream” that begins at the initial line/column of the
block and ends at the final line/column.

The Standard blocks mode is enabled by default.

Line blocks A line block consists of lines of text. To mark a line block, put the cursor anywhere in the first line
and press Alt+Z; then put the cursor anywhere in the last line of the block and press Alt+Z once more (the
latter is not necessary if the block is to be immediately deleted or copied to the clipboard).

Line blocks are always available.

© 2021 Phyton, Inc. Microsystems and Development Tools

188 CPI2_MODEL Device Programmers - CPI2-B1

Vertical blocks - A vertical block contains a rectangular text fragment. Characters within the block that go
beyond line ends are considered to be spaces.

Vertical blocks are convenient in cases like the following:

char Tinmer0O far ;
char Tinmerl far ;
char IntO far ;
char Int1l far ;

Assume the word "far" is to be moved to the place right after the word "char" in each line. The stream blocks
are of little help here. However the task can be easily done with one vertical block. Mark the persistent vertical
block containing the word "far" in each line, place the cursor on the first letter of word "Timer0" and press
Shift+F2 (fast mowe the block):

char Timer® far;
char Timerl far;
char 0Osc tar;
char DMA Fak;

uint8 RAD SYNC L = rollingTmp[7];

sam A= DA T LI mm 1T e Tomem [T

The Vertical Blocks checkbox in the the Main menu > Configure>Editor Options> General[8 tab
toggles between the vertical block and the stream block modes. Standard blocks are enabled by default; i.e. the
Vertical Blocks checkbox in the Editor Options dialog is unchecked by default. Line blocks are always
accessible, independent of the state of the Vertical Blocks checkbox.

To mark a block, move the mouse while pressing its left button or use the arrow keys on the keyboard while
holding the Shift key. To unmark the block, press Shift+F3.

Copying / moving blocks

A marked block can be copied or moved in two ways within the same Source window: directly (fast copying,
fast moving) or using clipboard (Copy/Cut/Paste). Copying and moving blocks across Source windows or to
another application is always done using clipboard.

Note. The result of copying a stream or vertical non-persistent block depends on the INSERT mode. If the mode
is enabled, the block is inserted into the text starting at the cursor position; otherwise the copied block
owverwrites the text in an area of equivalent size.

Fast copying / moving

Fast copying or moving of the blocks in the same window happens without the use of clipboard. It is convenient
because it requires pressing the keys only once per operation. Mark a persistent block, then place the cursor to
the destination position and press Shift+F1 to copy, or Shift+F2 to mowe the block.

7.5.4 Condensed Mode

In the Condensed mode, only lines that satisfy a specific criterion are displayed in the window. There are two
available criteria:

e Line must contain the given substring;
¢ The first non-space character in a line must be at a specified position (column).

© 2021 Phyton, Inc. Microsystems and Development Tools

Scripting 189

Examples:

(a) with the substring criterion and the substring set to "counter,” only the lines containing the word "counter”
are displayed;

(b) with the second criterion and the position set to four, only the lines in which text starts at column 4 will be
displayed.

Condensed mode brings lines having some common feature to "one place." If you attentively follow the rule to
begin a declaration of data at position 2, procedures at position 3, and interrupt handlers at position 4,
Condensed mode will help you find necessary declaration. If you comment certain lines with the same or similar
comments and use the Condensed mode with substring, you will be able to benefit from your composing style.
In Condensed mode, you can move the cursor just the same way as in normal mode.

The criterion for display is set in the Main menu > Script > Text Edit > Condensed Mode Setup[9A dialog.
To toggle Condensed mode on/off, use the Edit menu command, the Condensed Mode command of the local
menu or the F12 hot key. To exit Condensed mode, press Esc; at exit the cursor returns to the position at
which it was before the mode was turned on. To exit condensed mode leaving cursor in the same line as while
in the mode, press Enter or begin editing the line.

7.5.5 Syntax Highlighting

When the Source[189 window displays script source, it marks certain language constructs with different
colors. This feature improves readability. The following constructions are highlighted:
e Punctuation and special characters: ()[]{} ., :; etc.
e Comments starting with // are highlighted.
e Comments enclosed in the /* */ pairs are highlighted only if the opening and closing pairs are placed in the
same line.
Strings enclosed in double or single quotation marks.
Keywords of the scripting language (for, while, and so on).
Type names of the language (char, float, and so on).
Library function names (printf, strcpy, and so on).

You can disable syntax highlighting through the Main menu > Configure>Editor Options> General[8N
tab>Syntax Highlighting flag. In addition, you can change the color of each construction; to do so use Main
menu > Configure> Environment > Colors[8 tab.

7.5.6 Automatic Word Completion

It is normal for words (labels, names of variables) to be repeated within some part of a file; the Source window
helps you typing such word.

When the cursor is at the end of line being composed, upon typing a letter the editor scans the text above and
below the current line. If a word beginning with the letters you just typed is found, the editor will "complete" this
word for you by writing the remaining part of the word from the current cursor position. To accept the completion
press Alt+Right (Alt+<right arrow>) and the editor will append the remaining part of the word to the text as if
you have typed it yourself. To discard completion, just continue typing and the editor will accept whatever you
type. At any point during typing you may press Alt+Right to accept editor's completion suggestion.

You can press Alt+Right at any time (not only when the editor offers you to complete a word). In this case the
editor will open a list of words that begin with the typed letters. If the list does not contain an applicable word,
just ignore the prompt. The right pane of the Source window, if it is open, also displays the word completion list.

To disable automatic word completion, uncheck the Automatic Word Completion box in the Main menu >
Configure>Editor Options> Generall 831 tab. When the box is checked, a number placed in the Scan
Range box defines the number of lines for the editor to scan. The default is 24 lines below and 24 lines abowve
the current line. When this parameter is greater than the total number of lines in the file (for example, 65535),
then program composing will become slower because the whole file will be scanned.

© 2021 Phyton, Inc. Microsystems and Development Tools

190

CPI2_MODEL Device Programmers - CPI2-B1

71.5.7

7.5.8

7.5.8.1

The Quick Watch Function

The Quick Watch function works as follows: if you roll the mouse pointer over a variable name in the Source
window or the Script Source window, a small box containing the value of the variable will be opened. This box
disappears upon moving the mouse off the object.

Dialogs
This section describes dialogs used by Script Editor.

The Search for Text Dialog

This dialog sets criteria to search for text in files. This dialog and the Replace Text dialog have a number of
features in common. To specify file names, you can use one or several wildcards. Also, the hames may contain
paths. You can search more than one file by using parameters of the Multi-File Search area.

Dialog Control Description

String to Search for Text to search for.

Case Sensitive Unchecked by default. Checking this box makes the search case sensitive.
Whole Words Only Unchecked by default. If checked, the editor will search only for whole words:

the string will be found only if it is enclosed between punctuation characters or
delimiters (spaces, tabs, commas, quotation marks, etc.).

Regular Expressions Unchecked by default. Checking off this box specifies that the search string is a

regular exgression 193,

Global Search entire file for the string. Enabled by default.

Selected Text Search for string in the selected block.

From Cursor Search from the current cursor position.

Entire Scope Search from the beginning or end of the file (depending on the search direction).

Enabled by default.

Perform Multi-File If checked, the editor will search in all project files (see the notes below). If
Search unchecked, the search will be performed in current Source window only.
Search All Source If checked, the editor will search in all the source files included in the project.

Filesin Project

Include If checked, the editor will search in all the source files included in the project
Dependency Files and all files on which the source files depend, whether explicitly or implicitly.
Search Wildcard(s) Check this box to search for one or several wildcards specifying the files to be

searched. Separate wildcards with semicolons. No quotes are required to
denote Windows-style long names. Example: *. t xt; *. c; c: \ prog\ *. h.
This option and the Search All Source Filesin Project option act
independently of each other: you can search in all files of the project AND in
other files that comply with the specified wildcard(s).

Search If checked, the editor will search in subdirectories of all directories specified by
Subdirectories the Search All Source Files in Project option and by wildcards.
Starting Path Begin search from the directory specified in this text box. This directory serves

as the common path and is useful when there are several wildcards such as the

following ones:

© 2021 Phyton, Inc. Microsystems and Development Tools

Scripting 191

c:\prog\text\source*.txt;c:\prog\text\source*. doc

In this case, make use of wildcards (*. t xt ; *. doc) and common path
(c:\ prog\text\source).

Notes

1. When you search in the file opened in the Source window, then only the window buffer will be searched, not
the file on disk.

2. Multi-file search is performed in all source files of the project. Upon finishing, the Multi-File Search
Results[192 dialog remains open.

7.5.8.2 The Replace Text Dialog

This dialog sets parameters for search-and-replace operation. This dialog and the Search for Text dialog have
a number of common parameters, which function in the same way in both dialogs. To specify file names, you
can use one or several wildcards. Also, the names may contain paths. You can search in more than one file at

once by using parameters of the Multi-File Search area.

Element of dialog

Descrigtion

Text to Search for

Specifies the text string to look for (search string).

Replace with

Specifies the text string to replace the found one.

Case Sensitive

Unchecked by default. Checking this box specifies that the case of the string is
to be matched.

Whole Words Only

Unchecked by default. If checked the editor will search only for whole words: the
string will be found only if it is enclosed between punctuation or separation
characters (spaces, tabulation symbols, commas, guotation marks, etc.).

Regular
Expressions

Unchecked by default. Checking of this box specifies that the search string is a
regular expression| 193

Prompt at Replace

Checked by default. If checked, the editor will always pop up the Confirm
Replacemﬂ dialog requiring your permission to replace the found text. If
unchecked the editor will automatically replace the searched-and found text.

Global

Search entire file for the string. Enabled by default.

Selected Text

Search in selected block.

From Cursor

Search from current cursor position.

Entire Scope

Search from beginning or end of the file (depending on the search direction).
Enabled by default.

Perform Multi-File
Search and
Replace

Checked by default. If checked, the editor will search in all project files (see the
notes below). If unchecked, the search will be performed in the current Source
window only.

Search All Source
Filesin Project

If checked, search in all the source files included in the project.

Include
Dependency Files

If checked, search in all the source files included in the project and all files on
which the source files depend, whether explicitly or implicitly.

Search Wildcard(s)

Check this box to search for one or several wildcards specifying the files to be
searched. Separate wildcards with semicolons. No quotes are required to

© 2021 Phyton, Inc. Microsystems and Development Tools

192

CPI2_MODEL Device Programmers - CPI2-B1

denote Windows-style long names. Example: *. t xt; *. c; c:\ prog\ *. h.
This option and the Search All Source Filesin Project option act
independently of each other: you can search in all files of the project AND in
other files that comply with the specified wildcard(s).

Search If checked, search in subdirectories of all the directories, which are specified by
Subdirectories the Search All Source Filesin Project option and by wildcards.
Starting Path Begin search from the directory specified in this text box. This directory serves

as the common path and is useful when there are several wildcards such as the
following ones:

c:\prog\text\source*.txt;c:\prog\text\source*.doc

In this case, make use of wildcards (*. t xt ; *. doc) and common path
(c:\ prog\text\source).

Notes

1. When you search in the file opened in the Source window, then only the window buffer will be searched, not
the file on disk.

2. Multi-file search is performed in all source files of the project. Upon finishing, the Multi-File Search
Results[193 dialog remains open.

7.5.8.3 The Confirm Replace Dialog

This dialog asks permission to replace the found string. You can turn the prompt on/off by checking/clearing the
Prompt at Replace box in the Replace Text[19h) dialog.

Button Function
Yes Replace the found string.
No Cancel this replacement. If the procedure is started with the Change All

button for all occurrences in the search area, then the search-and-replace
process will continue.

Non-Stop From this moment, replace all found strings in this file without prompt.
Cancel Cancel the search-and-replace process.

Skip this File Stop searching in this file and switch to the next one.

Replace in All Files Replace all occurrences in all other files without asking for confirmation.
Move cursor to the If checked, the cursor will be automatically placed on the Yes button on
Yes/No Buttons each inquiry for confirmation.

7.5.8.4 The Multi-File Search Results Dialog

This dialog displays the multi-file search results. To learn about the multi-file search, see the Search for
Text[199 dialog.

The List of Matched Files shows files in which the search string is found. File name is on the left and its
directory is on the right. The line with green text beneath this box displays information about the file selected in
the box. "File in memory" means that the file is opened in the Source window. General information from FAT
means the file is on disk, not loaded. The Preview area shows the source line with the found text string.

© 2021 Phyton, Inc. Microsystems and Development Tools

Scripting 193

The Sort Files by area includes a radio button with four file sorting options. When the Consider Directory box
is checked, the files are sorted with respect to their directories.

The Edit button opens selected file in a new Source window and places the cursor on the line with the found
string. The found string background is highlighted. To check for other occurrences of the search string in the file,
press Ctrl+R or use the Next Search command of the Edit menu.

The Close button closes the dialog but search results are not lost. To reopen the dialog use the Display Multi-
file Search Results button. You can also use the same command of the Edit menu or press Shift+F5. The
files in the List of Matched Files box, which are opened in the Source window, will be marked with asterisks
on the left.

7.5.8.5 Search for Regular Expressions

Text editor supports "regular expressions." Regular expressions contain control characters in the search string:

? Means any one character in this place. Example: if you specify ?ell as the search string,
then "bell," "tell," "cell," etc. will be found.

% Means beginning of line. The characters following ‘%' must begin from column 1. Example:
%Counter - find the word "Counter," which begins at the first column.

$ End of line. The characters preceding the '$' should be at the trailing positions of the line.
Example: Counter$ - find the word "Counter" at the line end.

@ Match the next character literally; '@’ lets you specify the control characters as usual
letters. Example: @7 - search for the question mark character.

\XNN The hexadecimal value of the character. Example: \xXA7 - find the character with the
hexadecimal code of A7.

+ Indefinite number of repetitions of the previous character. For example, if you specify
1T+2, then the editor will find the lines containing "1" followed by "2", which are separated
with any number of the letter T.

[c1-c2] Match any character in the interval from c1 to c2. Example: [A-Z] means any letter from A
to Z
[~c1-c2] Match any character whose value is outside the interval from c1 to c2. Example: [~A-Z]

means any character except for the uppercase letters.

textl|text2 The "|" character is the logical "OR" and the editor will look for either textl or text2.
Example: LPT|COM|CON means search for "LPT" or "COM" or "CON."

7.5.8.6 The Set/Retrieve Bookmark Dialogs

Bookmarks help you return to a marked cursor position in a source file.

You can set and retrieve up to 10 local bookmarks. Every local bookmark has an individual numbered button
assigned to it.

To open the Set Bookmark dialog, press Alt+[. To open the Retrieve Bookmark dialog, press Alt+]. To
set/retrieve a bookmark, press its numbered button. The number of the bookmarked line, the bookmark position
in the line (in brackets) and the text of the line are shown at the right of the button.

Local bookmarks are stored in the configuration file and you can work with them in the next session.

© 2021 Phyton, Inc. Microsystems and Development Tools

194 CPI2_MODEL Device Programmers - CPI2-B1
7.5.8.7 The Condensed Mode Setup Dialog
This dialog sets up the parameters for the Condensed mode[188 of the Source [189 window.
Display Lines of Text area has radio buttons for switching between two alternative criteria for condensing text
in the Source window: Containing String and Where First Non-blank Column Is:
1. If you check the Containing String radio button, Source window displays only lines with text that matches
the sub-string specified in the text box at the right. Additionally, you can specify case-sensitivity, that whole
words only should be used, and that the sub-string is a regular expressionl@.
2. If you check the Where First Non-blank Column Is radio button, the Source window will display the lines
where text begins from the position specified in the Column box. Then you should select one of four options by
checking an appropriate radio button:
e Equal to - the first non-space character should be exactly in the specified column. For example, if you
specify position number 2, the window will display only the lines whose text begins in column 2.
e Not Equal to - the first non-space character should be in any column except the position specified here. For
example, if you specify position number 2, the window will not display all the lines beginning in this column.
All other lines will be displayed.
e Lessthan - display only the lines in which text begins at a position less than the specified one.
e Greater than - display only the lines in which text begins at a position greater than the specified one.
Once setup is complete click OK to switch the Source window into Condensed mode.
7.5.8.8 The Display from Line Number Dialog
Use this dialog to display source file in the active Source[188 window starting with specified line. Enter the line
number or select any previous number from the History list. Line numbers start with 1.
8 Reference
8.1 Howto ..
This chapter describes typical operations with a CPI2-B1 device programmer running in the Single-
programming| 261 control mode. The description refers to the operation made withing the ChipProg-
02 GUI[20, only.
8.1.1 How to check if device is blank

1. Select the target device type: press the Select Device button in the Main toolbar or select
command Main menu > Configure > Select device.

2. Connect a CPI2-B1 programmer to the device.

3. a) Click the Check button on the main toolbar, or
b) Double click on the Blank check function line in the Function list of the Program Manager [109)
window, or
c) Select the Blank check function line in the Function list of the Program Manager [109 window
and click the Execute button, or
d) Select the Main menu > Commands and click on the Blank check line.

Wait for the message Checking ... OK in the Program Manager [1% window, or for the warning
message if the device is not blank.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 195

8.1.2 How to erase adevice

1.

2.

Make sure the device is electrically erasable. Some devices are not erasable; these may be
programmable once or over-writable — in this case the Erase button is disabled (grayed out).

If the device is electrically erasable:

a) Click the Erase button on the main toolbar or

b) Double click on the Erase function line in the Function list of the Program Manager | 10!
window or

c) Select the Erase function line in the Function list of the Program Manager /051 window and
click the Execute button or

d) Select the Main menu > Commands and click on the Erase line.

Wait for the message Erasing ... OK in the Program Manager/[05 window or for the warning
message if the device is not blank after erasing.

8.1.3 How to read data from device

There are several ways of reading device content into the active buffer:

- click the Read button on the main toolbar, or

- double click on the Read function line in the Function list of the Program Manager|[103 window,
or

- select the Read function line in the Function list of the Program Manager[181 window and click
the Execute button, or

- select Commands > Read menu command.

In every case above, wait for the message Reading ... OK in the Program Manager |19 window
or for the warning message if the device could not be read.

8.1.4 How to program a device

In order to write (program) a device you need to perform a few consecutive operations:

load the file[193 that you want to write to the device;

edit the file[199) (if necessary);

configure[194 the device to be programmed (if necessary);

write[19] the prepared information into the device and verify the programming.

8.1.4.1 How to load afile into a buffer

1.

2.

In the main menu select File > Load or click the Load button on the local toolbar of the Buffer
window.

In the pop-up dialog box that appears enter file name, select file format, addresses, buffer[187 and
sub-level to load the file to.

3. Wait for the message File loaded: "......" in the Program Manager [105] window, or for a warning

message if the file cannot be loaded for some reason.

© 2021 Phyton,

Inc. Microsystems and Development Tools

196

CPI2_MODEL Device Programmers - CPI2-B1

8.14.2

8.1.4.3

8.1.4.4

How to edit data before programming

1. If you need to modify source data before writing it into the target device, open the Buffer Dump| e
window. Please keep in mind that the View button must be released to enable editing.

2. Make necessary changes using Modify[10d) dialog or select the data to be modified and type new
data over old data.

How to configure target device

1. Parameters displayed in the Device and Algorithm Parameters| «1window that can be modified
are shown in blue.

2. Click on the name of the parameter to be changed to open a dialog. Set a new value for the
parameter or check/uncheck appropriate boxes and click OK. Modified parameter will be displayed in
red.

3. Repeat the above procedure for other parameters that you wand to modify.

Note. All changes above will become effective in the target device only upon programming by the
Program Parameters function in the Program Manager [109 window.

How to write information into the device

1. Click on the Options[d tab in Program Manager/[18l window. Check the options you need. We
recommend you always check Blank checkl:sf before programming and Verify[s7 after
programming to ensure reliable programming.

2. Click on the Program Manager[0 tab. Select the Program line in the Function box and double
click on it to start programming of the primary memory layer (Code). Click on the Execute button
to launch the process. Alternatively, you can do the same by clicking on the big Program button or
by selecting the menu command Commands > Program.

3. Wait for the message Programming ... OK in the Operation Progress box of the Program
Manager [0 tab. If an error has occurred, ChipProg-02 issues an error message.

4. Execution of the main Program function (always shown at the top of the Function list) writes the
specified buffer layer to the Code memory of the device. However, other buffer layers may exist for
the selected device (Data, User, etc.). If more than one buffer layer exists for the selected device,
go down in the list of functions, expand those that are collapsed and execute the Program
functions for as many types of memory as device has (Data, User, etc.). Skip those steps if only
the Code layer exists in the device.

5. IMPORTANT. If any options in the Device and Algorithm Parameters Editor window[% have
been modified, you have to program the options set after programming all memory layers (Code,
Data, User, etc.). Go down to the Device parameters & ID line, expand it if collapsed, select the
Program function and double click on it. Continue until every parameter that has been changed in
the Device and Algorithm Parameters window is successfully programmed.

6. Some microcontrollers can be protected against unauthorized reading of the code stored in them
by setting Lock bits. You can selectively lock only certain parts of the device memory. Go down to
the Lock bits line, expand it if collapsed and double click on the lock bit# lines one by one. Continue

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 197

until every lock bit you want is set.

7. After every operation described above make sure that you see Ok [xxxxx... Ok] message in the
Operation Progress box of the Program Manager tab. In case you get an error message stop
programming and troubleshoot the issue.

8.1.5 How to verify programming

There are several ways to check if device was programmed correctly:

- click the Verify button on the main toolbar, or

- double click on the Verify function line in the Function list of the Program Manager/ 08 window,
or

- select the Verify function line in the Function list of the Program Manager /13 window and click
the Execute button, or

- select the Commands > Verify menu command.

Wait for the message Verifying ... OK in the Program Manager/[103 window or for a warning
message if the device verification has failed.

8.1.6 How to save data to disc

1. After you have read device content into the Buffer[17 or specified Buffer layer[171 you may want to
save the data to a PC hard drive or other media. To save the data:
a) Click the Save button on the local toolbar of the Buffer window, or
b) Select menu command File > Save.

2. In the pop-up dialog enter destination file path and name, format, start and end addresses in the
buffer, source sub-level, then click OK.

8.1.7 Multi-Target Programming

Multi-target device programming

In production environments, maximum programming efficiency is an important goal. It is possible to
organize several CPI2-B1 programmers into multiple virtual programmer clusters in order to achieve
concurrent parallel programming that takes the least amount of time to accomplish. Consider the
following example.:

- A panel has four identical boards;
- Each board carries three devices of different types;
- Each device should be written with its own file.

For concurrent, parallel programming, 4x3=12 CPI2-B1 device programmers would be required. A
typical scenario of use is as follows:

1. Split 12 programmers in 4 groups by 3x CPI2-B1 programmers in each. Each group will
independently and concurrently program three different devices on one board. Consequently, all 12
devices will be independently programmed in parallel.

© 2021 Phyton, Inc. Microsystems and Development Tools

198 CPI2_MODEL Device Programmers - CPI2-B1

2. Prepare a matrix of the CPI2-B1 programmers' serial numbers assigned to programming a
particular target board and a particular device on each board. Connect the programmers to a USB
hub or a LAN switch, connected to a PC.

3. Make three programming projects| +71- one for each target device. Save their .upp files that
includes device types, file names and other options. It is assumed that these are well debugged
projects. This can be accomplished prior to gang programming by using one CPI2-B1 programmer
working in a single-programming mode for each of the devices on the boards.

4. Launch three instances of the ChipProg-02 program in the gang mode. In the command line of the
startupl =81 dialog specify serial numbers of the programmers - four numbers per project. The
program itself will "connect" appropriate device programmers to appropriate USB or LAN ports and to
appropriate target devices and load appropriate files to appropriate buffers.

5. Then place the first panel into the fixture and start device programming either by the ATE signall 24
or manually by executing the Auto Programming[18l command in the GUIl 4. Then replace target
panels upon successful programming of all 12 devices.

8.2 Error Messages
8.2.1 Error Load/ Save File
5005 "Error reading file"
5004 "CRC mismatch, loading terminated"
5003 "Invalid .HEX file format”
5043 "Address out of range"
5078 "End address should be greater than start address"
5151 “Invalid file format"
5007 "Error writing file"
6899 "Cannot load file '%s": buffer #%u does not exist"
6900 "Cannot load file '%s": sub-level #%u does not exist"

7019 "Unable to open project file: '%s'.\n\nAfter start, the programmer attempts to load the most recent project.
This error means that the project file does not exist on disk."

8.2.2 Error Addresses

5189 "Device start address (0x%LX) is too large.\nMax. address is Ox%LX."
5190 "Device end address (0x%LX) is too large.\nMax. address is 0x%LX"
5191 "Buffer start address is too large"

4024 "Address %s is out of range (%s...%s)"

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference

4106

4019

6626

6627

6628

8002

"File format does not allow addresses larger than OxFFFFFFFF"
"Address in device: 0x%08X, Address in buffer: 0x%08X\n"
"Buffer start address must be even"”

"Device start address must be even"

"Buffer end address must be odd"

"Buffer named '%s' already exists. Please choose another name for the buffer.

8.2.3 Error sizes

6372

6495

6441

6431

6859

4107

5192

"Buffer size is too small for selected split data option"
"Requested buffer size (%lu) is too large"
"Size of file is greater than buffer size:\nAddr = %08IX, length = %u"

"Source block does not fit into destination sub-level"

199

"File size is %u bytes that is less than header size (%u bytes), loading terminated. Probably, you have
specified an invalid file format."

"Cannot allocate %Lu MBytes for the buffer, maximal buffer size is %Lu MBytes"

"Invalid number: '%s™

8.2.4 Error command-line option

5329

5330

5331

5332

5333

5334

4104

"/%s command-line option: Device name required"
"/%s command-line option: Missing file name"
"/%s command-line option: Missing file format tag"
"I%s command-line option: Invalid file format tag"
"Command line: unable to determine the file format"
"I%s command-line option: Invalid address value"

"Command-line option /I ignored because /A option is not specified"

8.2.5 Error Programming option

6409

6410

6902

"Invalid programming function or menu name:\n'%s"
"Invalid programming option name '%s"

"Invalid '%s' programming option value string: '%s

© 2021 Phyton, Inc. Microsystems and Development Tools

200

CPI2_MODEL Device Programmers - CPI2-B1

8.2.6

8.2.7

8.2.8

6411 "Programming option '%s' cannot be changed"

6412 "Programming option string is too long.\nMax. length is %u."

6854 "Programming option '‘%s' has type of '%s'. Use '%s()' script function to get the value of this option."
5188 "Value %.2fis out of range of %.2f...%.2f for programming option '%s"

6561 "Value %Id is out of range of %Id...%ld for programming option '%s"

4001 "Not all of the saved auto-programming functions were restored. Check the auto-programming functions list."

Error DLL

6499 "Cannot find bit resource with id 0x%Xin DLL:\n'%s™
6500 "Error handling bit resource with id 0x%X in DLL:\n'%s™

6502 "Unable to find device '%s' in DLL:\n'%s™

Error USB

4015 "USB device driver error 0x%04X in '%s'.\n\nCannot recowver from this error, exiting.\n\nPlease check if the
programmer power is on. If yes, disconnect the USB cable from computer and connect it again, then restart the %s
shell."

4016 "All sites reported USB device driver error.\n\nCannot recowver from this error, exiting.\n\nPlease check if the
programmer(s) power is on. If yes, disconnect the USB cable from computer and connect it again, then restart the
%s shell."

4017 "The following site(s):\n\n%s\n\nreported USB device driver error.\n\nThese site(s) will be removed from the

gang programming process.\n\nPlease check if the programmer(s) power is on. If yes, disconnect the USB cable
from computer and connect it again, then restart the %s shell."”

Error programmer hardware

6546 "Source area does not fit into destination address space”

4005 "Attempt to read memory beyond buffer end: Addr = %s, len = %u bytes"

6988 "Unable to establish connection with programmer hardware. Please check if:\n\n"

4006 "Attached programmers have duplicate serial number '%s"

4010 "This programmer with serial number '%s' has been already assigned the site number = %u"

4011 "This gang programmer with serial number '%s' has been already assigned the site numbers = %u..%u"
4013 "The programmers attached are of different types and cannot be used for gang mode.\n\nExiting."

4014 "ExecFunction() does not work in Gang mode"

4020 "%s reported hardware error 0x%X, error group Ox%X. If problem persists, please contact Phyton."

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 201

4000 "The attached programmer with id = %u is not supported"

4102 "Device programming countdown value is zero%s"

8.2.9 Error internal

6527 "Internal error:\nCORE() for %s %s returned NULL.\nPlease contact your %s distributor."

4025 “Internal Error: Unable to allocate %u bytes for the buffer. Please contact Phyton."

8.2.10 Error configuration

6503 "No programmer configuration files found (prog.ini)"
5325 "The device type '%s %s' stored in configuration "
"or choosen from script file function 'SetDevice()' is not supported by %s.\n"
"The device '%s %s' will be selected.\n"
"Use 'Configure / Select device' to choose the device "
"you need to operate on."

4002 "The '%s' configuration option has been set to an illegal state due to the data read from file. Setting this
option to its default state ('%s')."

8.2.11 Error device

5326 "Device selection error”

4018 "Device '%s'is not supported by the %s. Please choose another device."

8.2.12 Error check box

6852 "Error in check box option specification string: '=' expected"

6853 "Cannot find check box option string '%s™

8.2.13 Error mix

5195 " Number of repetitions cannot be zero"

5206 "The 'View only' option is on; editing disabled. Click the 'View' button on toolbar to enable editing."
6501 "No power-on tests defined in:\n'%s™

6903 "%s'is a sub-menu name, not a function name"

6401 "No more occurences”

6387 "Invalid fill string"

5172 "Checksum = %08IX"

5311 "No more mismatches"

© 2021 Phyton, Inc. Microsystems and Development Tools

202

CPI2_MODEL Device Programmers - CPI2-B1

8.2.14 Warning

8.3

8.3.1

5338 "Warning: JEDEC file has no file CRC"
5339 "Warning: JEDEC file has invalid CRC"
6933 "Warning: no file end' record in file"

6845 "Attention! The %s %s device must be inserted into the programmer's socket shifted by %d row(s) relative to
the standard position as shown in the Device Information window."

6846 "Attention! Insert device into socket shifted by %d row(s) as shown on the picture.”

Expressions

Expressions are mathematical constructs for operations 208} on one or more operands [20h,

When a number is required, you may use an expression; ChipProg-02 will accept the value expression. For
example, when using the Modify command in the Buffer window, you can enter the new value in the form of a
number or arithmetic expression.

Interpreting the expression result
The expression result is interpreted in accordance with the context in which it is used.

In the dialog box, when an address is required, the program tries to interpret the expression’s value as the
address. If you enter a variable name, the result of the expression will be the variable’s address but not the value
of the variable.

If the dialog expects a number to be entered, the expression’s value will be interpreted as a humber (for
example, the Modify Memory dialog box of the Buffer Dump window). If you enter a variable name there, then
the result will be the value of the variable, but not its address.

Nonetheless, you can follow the default rules:

If you need to use the variable’s value, where an address is expected, then you can write something like var
+ 0. Inthis case, the variable’s value will be used in the expression.

If you need to use the variable address, apply the & (address) operation, that is, &var .

Operations

The program supports all arithmetic and logical operations valid for the C language, as well as pointer and
address operations:

Designation Description
() Brackets (higher priority)
[1] Array component selector

Structure component or union selector

-> Selection of a structure component or a union addressed with a pointer

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 203

! Logical negation
~ Bitwise inversion

- Bitwise sign change

& Returns address

* Access by address

(type) Explicit type conversion

(si zeof) (returns size of operand, in bytes)

* Multiplication

/ Division

% Modulus operator (produces the remainder of an integer division)
+ Addition

- Subtraction

< Left shift

>> Right shift

< Less than

<= Less than or equal to
> Greater than

>= Greater than or equal to
== Equal to

I = Not equal to

& Bitwise AND

" Bitwise XOR

| Bitwise OR

&& Logical AND

|] Logical OR

= Assignment

The types of operands are converted in accordance with the ANSI standard.
The results of logical operations are O (false) or 1 (true).

Allowed type conwversions:
e Operands can be conwerted to simple types (char, int, ... float).
e Pointers can be converted to simple types (char *, int *, ... float *) and to structures or unions.
e The word "struct" is not necessarily (MyStruct *).

© 2021 Phyton, Inc. Microsystems and Development Tools

204 CPI2_MODEL Device Programmers - CPI2-B1

8.3.2 Operands

By default, numbers are treated as decimals. Integers should fit into 32 bits; floating point numbers should fit
into the single precision format (32 bits).

The following formats are supported:
1) Decimal integer.
Example: 126889
2) Decimal floating point.
Examples: 365. 678; 2. 12e-9
3) Hexadecimal.
<%CM%> understands numbers in C format and assembly format.
Examples: OxF6D7; OF6D7H; OxFFFF1111
4) Binary.
Binary numbers must end with 'B'.
Examples: 011101B; 111111111111111000011B
5) Symbol (ASCII).
Examples: 'a' ;' ab' ;' $B¥%8' .' .

8.3.3 Expression Examples

#test#i + #testHj << 2
(unsigned char)#test#i + 2
sizeof(#tarray) > 200

main
i+j<<2/:CW0x1200
(unsigned char)i + 2
sizeof(array) > 200
(a==b&&a<=4)||a>"'3
sptr -> Member1 -> a[i]
P
*((char *)ptr)

8.4 Scripting Reference

Description of Script Language[29)

Script Language Built-in Functions[23

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 205

Script Language Built-in Variables[2se]

Alphabetical List of Script Language Built-in Functions and Variables| 28

8.4.1 Scripting Language Description

ChipProg-02 scripting language is similar to C programming language. If you are familiar with C, you can
proceed to the section describing the differences between the script language and the C Ianguagelz_oﬁ.

Here are the links to the sections of this scripting language manual.

General Syntax of Script LanguagelZ_Ofﬁ

Basic Data Types| 20

Data byte order[210)

Operations and Expressions| 219}

Operators| 220

Functions| 228

Dggcriptignglzﬁ

Directives of the Script File Language Preprocessor@
Predefined Symbols in the Script File Compilationlgfl

8.4.1.1 Difference Between Scripting and C Languages

The script files are written in a C-type language and you should not expect it to meet standards. Many features
are not supported because they are not necessary and complication of the language can cause compiler errors
(the script file language compiler is not a simple thing).

Pointers are not directly supported. But arrays are supported, therefore a pointer can always be built from
an array and element number. Note that, for example, string operation functions, such as strcpy[343), receive a
string and a byte number (index) as parameters, which form the pointer. In function declarations, index is equal
to zero by default.

Pointers to functions are not supported. If necessary, a table call can always be replaced with the switch
operator.

Multidimensional arrays are not supported. If it is necessary, you can write a couple of functions, such as:

int GetElement(int array[], int indexl, int index2);
void SetElenent(int array[], int indexl, int index2, int value);

Structures (and unions) are not supported. In fact, you can always do without structures. Structures may
be required for APl Windows and user DLLs operations, but as a rule only experienced programmers should do
it, such as those who know how to reach structure elements. As a tip, there are functions, such as
memcpylaﬁ, which receive a wid "pointer").

Enumerated types (enum) are not supported #define.

Preprocessor macros, such as #define half(x) (x / 2), are not supported. The same operations can be
done with functions.

Conditional operators such as x =y == 2? 3: 4;, are not supported; the operator "comma" outside
variable declaration is not supported. For example,

int i =0, j =1; is supported, but
for (i =0, j =1; ...) is not supported.

User functions with a variable amount of parameters are not supported. However, there are many system
functions, such as m@, with a variable number of parameters.

Declaration of user function parameters such as void array[] is not supported. The system functions
such as memcpy/[31), have such parameters.

Logical expressions are always fully computed. It is very important to remember it, as a situation like

char array[10];
if (i <10 & array[i] != 0)

© 2021 Phyton,

Inc. Microsystems and Development Tools

206

CPI2_MODEL Device Programmers - CPI2-B1

array[i] = 1;

will cause an error at the execution stage, if i is greater than 9, because the expression of array[i] will be
computed. In a standard compiler such an expression is not computed, because the condition of i > 10 would
cancel any further processing of the expression.

- Constant expressions are always computed during execution. For example, int i = 10 * 22 will be
computed not during compilation, but during execution.

- The const key word is absent.

- Static variables cannot be declared inside functions.

But

- Variables can be declared anywhere, not just in front of the first executed operator. For example:
voi d main()
{
d obal Var = 0;
int i = 1; I/ will be OK as in C++
}

- Nested comments are allowed.

- Expressions like array = "1234" are allowed.

Default parameter values in declared functions, as in C++, are allowed. For example, void func(char
array[],int index = 0);. Expressions can also serve as default values, for example void func(char array[], int
index = funcl() + 1);.

- Expressions in global variable initializers are allowed. For example:

float table[] = { sin(0), sin(0.1) };

voi d main()

{
}

8.4.1.2 Scripting Language Syntax

Format[2081

Comments] 20

Identifiers[200

Resenved words[209

Integer Constants [20%)

Long integer constants| 209
Floating-point Constants| 208
Character Constants| 208

String Constants[208

8.4.1.2.1 Format

Spaces, tabs, line advance and page advance symbols are used as separators. You can use any number of
these separator symbols.

8.4.1.2.2 Comments

Comments begin with the pair of the /* symbols and end with the pair of the */ symbols.
Comments are allowed wherever the spaces are allowed.

The one-line comments (/) are supported. The part of the line following the one-line comment symbol is
ignored.

Note. Only the one-line comments are allowed in the line that contains the #define directive.

Examples:

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 207

// The one-line conmment

/* The nmulti-line comment */

8.4.1.2.3 Identifiers

Identifiers are used as the names of variables, functions and data types.

The allowable symbols are: digits from 0 to 9, the Latin lower and upper case letters a - z, A - Z and the
underscore symbol ().

A special case is accessing the names built in <%CM%>, for example, a special function register. Such
names are preceded by the dollar mark, for example, $SP, and can be used in the program while not being
declared. Identifiers shall comply with the following rules:

The first symbol can not be a digit.
The upper and lower case letters are discriminated.
An identifier can consist of up to 48 symbols.

Examples:
NAMEL1 nanel Total _5

8.4.1.2.4 Reserved words

break extern return
case float short
char for sizeof

continue goto switch

default if unsigned
do int void
else long while

8.4.1.25 Integer constants

Decimal constants

Numbers from 0 to 9.
Examples:

12
111
956
1007

Hexadecimal constants

Numbers from 0 to 9; letters a-f or A-F for the values of 10 to 15. The hexadecimal contents shall begin with
Ox or OX.

© 2021 Phyton, Inc. Microsystems and Development Tools

208 CPI2_MODEL Device Programmers - CPI2-B1

Examples:
0x12 = 18 (decimal);
ox2f = 47 (decimal);
OXA = 10 (decimal);

Binary constants

Numbers 0 and 1. The binary constants shall end in b or B.

Examples:
010011101b = Ox9D (hexadeci mal) = 157 (decimal);
0101B = 5

Note. If the value exceeds 65535, then it will be presented as the long integer.

8.4.1.2.6 Long integer constants

Latin letter | or L following the constant explicitly defines long integer constants. The explicit definition of a
long constant is useful, for example, for transforming the type of operand into the long type value.

Examples:
Long deci mal constant: 121 12 (decimal)
956L 956 (decimal)
Long hexadeci mal constant: ox12l 18 (decimal)
OxA3L 163 (decimal)

8.4.1.2.7 Floating-point constants

A floating-point constant consists of the following parts:

- Integer part, which is the sequence of numbers
- Decimal point
- Fractional part, which is the sequence of numbers
- Exponential symbol e or E
- Exponential in the form of an integer constant (can have sign)
Any of the two parts (but not both at the same time) of the following pairs can be omitted:
- Integer or fractional part
- Decimal point or symbol e (E) and the exponential in the form of an integer constant
Examples:
345. 345 (deci mal);

3.14159 3.14159 (decimal);
2. 1E5 = 210000 (decimal);
. 123E3 = 123 (decinal);
4037e-5 = . 04037 (decimal).

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 209

8.4.1.2.8 Character constants

A character constant may consist of one ASCII code character enclosed within the apostrophes. Also, you
may specify the character by its hexadecimal value of exactly two hexadecimal digits preceded by characters
X',

Examples:
'‘A'a' 7 '$ '\x02' '\x88'

Special (control) character constants

New |ine (line feed) HL (LF) “\'n'
Hori zontal tabul ation HT "\t
Vertical tabulation VT "\v'
Backspaci ng BS "\'b'
Carriage return CR "\r!
Form f eed FF "\
Backsl ash \ A
Apost r ophe ' A
Quot ati on nmarks " A
Zero character (null) NUL "\ O

Note. The character constants are considered to be the int-type data.

8.4.1.2.9 String constants

A string constant is the quoted sequence of the ASCII code characters: "...".
A string constant is the quoted character array; its type is charf].
To mark the end of string, the compiler places the null symbol "\0' in the end of each string.

If you need to include the quotation mark (") in a string, then enter the backslash (\) before the quotation
mark. Any special character constants preceded by the backslash (\) can be included in the string.

A symbol can also be presented by its hexadecimal value (exactly two hexadecimal digits) preceded by the
symbols of \x'.

The string constants following in sequence are interpreted as one string constant. This is useful for the
advance of the constant part to the next line, for example:

printf("Line 1\n"
"Line 2");

Examples:

"This is the character string"
" A
"1234567890\ x33"

8.4.1.3 Basic Data Types

The script file compiler supports the following data types:

signed char 8 1 -128...+127

© 2021 Phyton, Inc. Microsystems and Development Tools

210

CPI2_MODEL Device Programmers - CPI2-B1

unsigned char 8 1 0...255
signed short 16 2 -32768...+32767
unsigned short 16 2 0...65535

signed int 16 2 -32768...+32767

unsigned int 16 2 0...65535

signed long 32 4 -2147483648...2147483647

unsigned long 32 4 0...4294967295

float 32 4 +/-1.17549435E-38...+/-3.40282347E+38

The "pure" int type coincides with the signed int type.
The long type is equivalent to the signed long.

The short type is equivalent to the signed short.

The char type is equivalent to the signed char.

8.4.1.4 Databyte order

Data byte order

All many-byte data is stored in the memory in the "little engine” format, that is, the low byte is
allocated at the low address and the high byte is allocated at the high address in accordance with
the 80x86 processor architecture. For experienced programmers, it is useful to know this, if they

want to use Windows APl and DLL functions access

8.4.1.5 Operations and Expressions

Expressions

An expression consists of one or more operands and operation symbols.

Examples:

at++

b=10

x=({y*2z2)/w
Note. Any expression ending with semi is the operator.
Operand Metadesignation| :1)

Arithmetic Operations| 210

Assignment Operations[23

Relation Operations| 24

Logical Operations[23)
Bit Operations|[2]
Array Operations[8
Other Operations| 27

Operation Execution Priorities and Order[21

Operand Execution Order[z:9)

Arithmetic Conversions in Expressions

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 211

8.4.1.5.1 Operand Metadesignation

Some operations require specific operand types. The type of operand is indicated by one of the
following letters:

e - any expression
Vv - any expression referring to the variable, to which a value

can be assigned. Such expressions are called the address ones.

The prefix indicates the type of expression. For example, ie indicates any integer expression. All
the possible prefixes are as follows:

[
a - the arithmetic expression (the integer number, symbol or
floating-point number)

f - the function
Note.

8.4.1.5.2 Arithmetic Operations

+ Usage: ael + ae?

Sum of ael and ae2.
Example:

i=j+2;

Sets i equal to j plus 2.

- Usage: ael - ae2
Subtraction of ael and ae2.
Example:

i=j-3;
- Usage: -ae

Example:

* Usage: ael * ae2
Product of ael and ae2.
Example:

z=3%*X

© 2021 Phyton, Inc. Microsystems and Development Tools

212 CPI2_MODEL Device Programmers - CPI2-B1

Quotient of ael and ae2.
Example:
i=j/5;
% Usage: ael % ae2
Remainder (modulus division) of the division of ael by ae2.
Example:

minutes = time % 60;

Note. Execution of the ++ and -- operations produces side effects; the value of variable used as
an operand changes.

++ Usage: iv++
Increasing iv by 1. The value of this expression is the value of ie
before increasing.
Example:
j= i+
++ Usage: ++iv
Increasing iv by 1. The value of this expression is the value of ie
after increasing.
Example:
i = ++j;
-- Usage: iv--
Decreasing iv by 1. The value of this expression is the value of ie
before decreasing.
Example:
j=i-
-- Usage: --iv
Decreasing iv by 1. The value of this expression is the value of ie
after decreasing.

Example:

=

8.4.1.5.3 Assignment Operations

Note. The value of expression containing the assignment operation is the value of the left operand
after the assignment.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 213
= Usage:v=¢e
The value of e is assigned to variable v.
Example:
X=Y,;
Note. The following operations combine arithmetic or bit-by-bit operations with the assignment
operation.

+= Usage: av += ae
Increasing av by ae.
Example:

y+= 2;

-= Usage: av -= ae
Decreasing av by ae.
Example:

X-=3;

*= Usage: av *= ae
Multiplication of av by ae.
Example:

timesx *= x;

/= Usage: av /= ae
Division of av by ae.
Example:

X /= 2;

%= Usage: iv %= ie
The value of ivin modulus ie.
Example:

X %= 10;

>>= Usage: iv >>= ie
The right ie bit shift of the iv binary form.
Example:

X>>=4;

Usage: iv <<= ie

The left ie bit shift of the iv binary form.

Example:

© 2021 Phyton, Inc. Microsystems and Development Tools

214 CPI2_MODEL Device Programmers - CPI2-B1

X <<=1;
&= Usage: iv &= ie
The bit-by-bit AND operation of the iv and ie binary forms.
Example:
remitems &= mask;
= Usage: iv =ie
The bit-by-bit exclusive OR operation of the iv and ie binary forms.
Example:
control "= seton;
|= Usage: iv |=ie
The bit-by-bit OR operation of the iv and ie binary forms.
Example:

additems |= mask;

8.4.1.5.4 Relation Operations

Note. Logical False is presented by integral zero, and logical True is presented by any integer
other than zero.

The expressions that contain the relation operations or logical operations have the values of 0
(False) or 1 (True).

== Usage: iel == ie2
True, if iel is equal to ie2; False otherwise.
Example:
if (i == 0) break;
I= Usage: iel !=ie2
True, if iel is not equal to ie2.
Example:
while (i 1= 0)
i = func;
< Usage: ael < ae?
True, if ael is less than ae2.
Example:
if (x < 0)
printf ("negative");
<= Usage: ael <= ae2

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference

True, if ael is less than or equal to ae2.
Usage: ael > ae?
True, if ael is larger than ae2.
Example:
if (x> 0)
printf ("positive");
>= Usage: ael >= ae2

True, if ael is larger than or equal to ae2.

8.4.1.5.5 Logical Operations

I Usage: lae
True, if ae or pe is false.
Example:
if ("good)
printf ("not good");
|| Usage: el | e2

checked. The value of e2 will be checked only, if el is False. The expression
True, if el or e2 is True.
Example:
if(x < A || x > B) printf
("out of range™);
&&
Logical AND operation of el and e2. At first, the value of el
is checked. The value of e2 will be checked only, if el is True.
The expression will be True, if el and e2 are True.
Example:
if@!=08&&b>7)

n++;

will be

215

© 2021 Phyton, Inc. Microsystems and Development Tools

216 CPI2_MODEL Device Programmers - CPI2-B1

8.4.1.5.6 Array Operations

I

Usage: nameJie]
The expression value is the number equal to the value of the element
number ie of the name array. The array elements are numbered beginning from 0.
Example:
arnamel[i] = 3;
To assign 3 to the array element i.
Note the first element as described by the expression of
arname[0].

8.4.1.5.7 Bit Operations

Usage: ~ie
One's complement of the value ie. The expression value contains ones in
all those bits, in which ie contains 0, and contains 0 in all
those bits, in which ie contains ones.
Example:

opposite = ~mask;

>> Usage: iel >> ie2

The right ie2 shift of the iel binary form.

The shift may be arithmetic (that is, the bits cleared from the left
assume the value of the sign bit) for the signed numbers and
logical for the unsigned numbers (the bits cleared from the left are
filled with zeroes).

Example:

X=X>>3;

<< Usage: iel << ie2

The left ie2 bit left of the ie2 binary form.
The bits cleared from the right are filled with zeroes.
Example:
fourx = x << 2;
Usage: iel & ie2
The bit-wise AND operation of the iel and ie2 binary forms. The expression
value assumes 1 in all those bits, in which both iel and ie2 contain

1, and assumes 0 in all other bits.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference

flag = ((x & mask) != 0);
| Usage:iel|ie2
The bit-wise OR operation of the iel and ie2 binary forms. The expression
value assumes 1 in all those bits, in which either iel or ie2 contain
1, and assumes 0 in all other bits.
Example:
attrsum = attrl | attr2;
N Usage: iel Mie2
The bit-wise exclusive OR operation of the iel and ie2 binary forms.
The expression value contains 1 in all those bits, in which iel and
ie2 contain different binary values, and the expression value
contains 0 in all other bits.
Example:

diffbits = x My;

8.4.1.5.8 Other Operations

sizeof Usage: sizeof(e)
The number of bytes required for allocation of e-type data. If e
describes the array, then e means the whole array, and not only the
address of the first element, as in other operations.
(type) Usage: (type)e
The value of e is converted into the data type.
Example:
x = (float)n/ 3;
The integer value of the variable n is transformed into

the floating-point number before dividing by 3.
() Usage: fe(el, e2,..., eN)

The fe function is called with the arguments el, e2,..., eN.

order from

Example:

217

© 2021 Phyton, Inc. Microsystems and Development Tools

218 CPI2_MODEL Device Programmers - CPI2-B1

X = sqrt(y);

8.4.1.5.9 Operation Execution Priorities and Order

Priorities are the same for each group of operations listed in the table below. The higher the
priority of operation, the higher is its place in the table.

If there are no brackets and the operations are related to the same group, then the order of
execution determines the operation and operand grouping (from left to right or from right to left).

Examples

The expression of a * b / ¢ is equivalent to the expression of (a* b) / c,
as the operations are executed from left to right.

The expression of a = b = ¢ is equivalent to the expression of a = (b = ¢),
as the operation is executed from right to left.

[l Array element selection
I Logical negation From right to left (RL)

~ Bit-by-bit negation

- Sign change

++ Increasing by one
-- Decreasing by one
(type) Type conversion

sizeof Determining of size in bytes
* Multiplication LR

/ Division

% Modulus division

+ Addition LR

- Subtraction

<< Left shift LR
Right shift

< Lessthan LR

<= Less than or equal to
> Larger than

>= Larger than or equal to
== Equal to LR

I= Not equal to

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 219

& Bit-by-bit AND operation LR

A Bit-by-bit exclusive OR operation LR
| Bit-by-bit OR operation LR

&& Logical AND operation LR
|| Logical OR operation LR

*= [= Op= += =

<<= >>= &= = |:

8.4.1.5.10 Operand Execution Order

The operands are normally executed from left to right.

. If you assign a value to a variable in any expression (including the function call), do not use this
variable again in the same expression.

Example:
Y= (x=5) + (++x);

8.4.1.5.11 Arithmetic Conversions in Expressions

First, every char-type operand is converted into the int-type value, and the unsigned char-type
operand is converted into the unsigned int-type value.

Then, if one of the operands is of the float type, then the other will be converted into the float-type
value and the result will be of the float type.

Otherwise, if one of the operands is of the unsigned long type, then the other will be converted into
the unsigned long-type value and the result will be of the same type.

Otherwise, if one of the operands is of the long type, then the other will be converted into the long-
type value and the result will be of the same type.

Otherwise, if one of the operands is of the long type, and the other is of the unsigned int type, then
both operands will be converted into the unsigned long-type value and the result will be of the
same type.

Otherwise, if one of the operands is of the unsigned type, then the other will be converted into the
unsigned-type value and the result will be of the same type.

Otherwise, both operands should be of int type and the result will be of the same type.

© 2021 Phyton, Inc. Microsystems and Development Tools

220

CPI2_MODEL Device Programmers - CPI2-B1

8.4.1.6 Operators

Format and nesting[2201

Operator label[z20)
Composite operator| 228

Operator-expression|22h

Operator Breakl 221
Operator Continue[22)

Operator Return[222

Operator Goto| 22
Conditional Operator If-Else[223)

Cycle Operator While[22h
Cycle Operator Do-W hile[223

Cycle Operator For[223

8.4.1.6.1 Formatand nesting

Format and nesting

Format. One operand can occupy one or more lines. Two or more operands can be located in

one line.

Nesting. The execution control operators (if, if-else, switch, while, do-while and for) can be nested

in each other.

8.4.1.6.2 Operator label

Operator label

The label can be placed before any operator, which makes it possible to go to this operator with

the help of the "goto" operator.

A label consists of an identifier followed by the colon (:). The definition domain of the label is the

specified function.
Example:
next: x = 3;

8.4.1.6.3 Composite operator

Composite operator

The composite operator (block) consists of one or more operators of any type enclosed in the

brackets ({}).

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 221

There shall be no semicolon (;) behind the closing bracket.

Example:
{
x=1;
y=2
=3;
}

8.4.1.6.4 Operator-expression

Any expression, which ends with the semicolon (;), is the operator. Refer to the following examples of
operators-expressions.

Assi gnment oper at or
Identifier = expression;

Example:
X = 3;
Function call operator
Function_name (argunentl,..., argunentN);
Example:

fclose(file);

Enpty operat or
Consists only of semicolon (;).
It is used to identify the enpty body of the control operator.

8.4.1.6.5 Operator Break

Syntax:
break;

Stops execution of the nearest nested external operator switch, while, do, or for. Control is
transferred to the operator following the operator being completed. One purpose of this operator is
to complete the cycle, when specific value is assigned to the variable.

Example:
for (i=0;i<n;i++)
if (a[i] == 0)

break;

© 2021 Phyton, Inc. Microsystems and Development Tools

222 CPI2_MODEL Device Programmers - CPI2-B1

8.4.1.6.6 Operator Continue

Syntax:
continue;

Transfers control to the beginning of the nearest external operator of the cycle while, do, or for,
which starts the next iteration. This effects produced by this operator are opposite to those of the
break operator.

Example:

for (i=0;i<n;i++)

{
if (a[i] == 0) continue;
afi] = bfif;

}

8.4.1.6.7 Operator Return

Syntax:

return;

Stops execution of the current function and returns control to the function that called it.
expression return;

Stops execution of the current function and returns control to the program that called it, together
with the expression value.

Example:
return x +y;

8.4.1.6.8 Operator Goto

Syntax:

goto | abel;

Control is unconditionally transferred to the operator with the label "label". It is used to exit from the nested
control operators. The scope of the label is limited within the current function.

Example:

got o next;

8.4.1.6.9 Conditional Operator I-Else

Syntax:
if (expression)

operator

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 223

If the expression is True, then the operator will be executed. If the expression is False, then
nothing will happen.

Example:

if (@==Xx) temp=3;

if (expression)
operatorl

else

operator2

If the expression is True, then operatorl will be executed and control will be transferred to the
operator following operator2 (which means that operator2 will not be executed).

If the expression is False, then operator2 will be executed.

The "else" part of the operator can be omitted. That is why ambiguity may arise in the nested
operators with omitted "else" part. In this case, else is related to the nearest preceding operator in
the same block that does not have the "else" part.

Examples:
1) The "else" part relates to the second if operator:

if(x > 1)
if (y ==2)
z=5;
else
Z=06;
2) The "else" relates to the first if operator:
if (x> 1)
{
if (y==2)z=5;
}
elsez = 6;

3) The nested if operators:
if(x=="a)y=1;
else
if (x=="b")
{
y=2
z=3;
}

else

© 2021 Phyton, Inc. Microsystems and Development Tools

224 CPI2_MODEL Device Programmers - CPI2-B1

if(x=="c)y=4;
else

printf("ERROR")

8.4.1.6.10 Cycle Operator While

Syntax:

while (expression)

operator

If the expression is True, then the operator will be executed until the expression becomes False.
If the expression is False, then control is passed to the next operator.

Note. The value of the expression is determined before executing the operator. Therefore, if the
expression is False from the very beginning, then the operator will not be executed at all.

Example:
while (k < n)

{
y*=x
k++;

}

8.4.1.6.11 Cycle Operator Do-While

Syntax:

do
oper at or
whi |l e (expression);

If the expression is True, then the operator will be executed and the expression value will be
calculated. This will be repeated until the expression becomes False.

If the expression is False, then control is passed to the next operator.

Note. The expression value is determined after the operator is executed. Therefore, the operator is
executed at least once.

The do-while operator checks the condition in the end of the cycle.
The while operator checks the condition in the beginning of the cycle.
Example:
x=1;
do

printf('%d\n", pow(x, 2));

while (++x <= 7);

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 225

8.4.1.6.12 Cycle Operator For

Syntax:
for (expressionl; expression2; expression3)

operator

Expressionl describes the cycle initialization. Expression2 is checking the condition of the cycle
completion. If it is True, then:

the "for" operator of the cycle body will be executed,;
expression3 will be executed.
Everything will be repeated until expression2 becomes False.
If it is False, then the cycle will be finished and control will be passed to the next operator.
Expression3 is calculated after each iteration.
The "for" operator is equivalent to the following operator sequence:
expressionl;
while (expression2)
{
operator

expression3;

Example:
for(x = 1; x <= 7; x++)
printf("%d\n", pow(x, 2));

In any of the three expressions, or in all three expressions of the operator, "for" may be absent, but
the semicolons (;) separating them cannot be omitted.

If expression2 is omitted, then it will be considered True. The "for" operator (;;) is the endless
cycle equivalent to the While(1) operator.

8.4.1.7 Functions

Function Definition[223)

Function Calll 223
Function Main[225

8.4.1.7.1 Function Definition

Functions are defined by description of the type of result, formal parameters and composite operator (block) that
describe the actions carried out by the function.

Example:
i nt the type of result

© 2021 Phyton, Inc. Microsystems and Development Tools

226

CPI2_MODEL Device Programmers - CPI2-B1

func(function nane
long a, char str[] list of paraneters, which describes the nanmes and
types
)
{ conposi te operator
/1
return O; returned val ue

}

The return operator can not return any value or return the value of the expression included in this operator.
The function, which does not return a value, shall be described as having type wvoid.

One or several last parameters on the list can assume the default values. Examples:

int func(int x, int y = 0);

int fi(char s[], char s1[] = "null", int x = func(0));
voi d errmesg(char s[])
{

printf{"***Error: %", s);

/1l the Return operator (explicit) is not required
}

8.4.1.7.2 Function Call

Syntax of a function call is as follows:
function_nane(el, e2, ..., eN)

Arguments that are not arrays (actual parameters) are transferred by value, that is, each expression el, ..., eN
is calculated and the parameter is transferred to the function. Arrays are transferred "by pointer”, as shown in
the example:

void func(char s[])

{
s[0] = 2;

}

voi d nmain()

{
char array[3];
func(array);

}

The func function modifies the value of element0 of the "array" array declared in the main function, and not of its
duplicate.

Pointers to functions (like all other pointers) are not supported.

8.4.1.7.3 The main Function

The script file operation commonly starts with the main function. The main function shall be declared as
follows:

voi d main()

{
}

Note. The main function should not necessarily be included in a script file. If there is no main function, then
the script file will be loaded into the memory and stay there with its global functions and data available to other
script files.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 227

8.4.1.8 Descriptions
Descriptions are used for variable definitions and to declare types of variable and functions defined
elsewhere. Descriptions are also used for defining new data types on the basis of existing data types.
A description can be an operator, if an initialized variable or array are described.
Basic Types| 22/
Arrays|22

Local Variable Definition[2281
Global Variable Definition[2281

8.4.1.8.1 Basic Types

Examples:

char c;

intx = 0;
The basic types are:
char - character (one byte);
short - short integer (word, 16 bit);
int - integer (word, 16 bit);
unsigned - non-negative integer (of the same size as integer);
long - long integer (word or double word);
float - floating-point number (single precision);
void - no value (used to neutralize the value

returned by function)
The Short type is equivalent to the Int type and was introduced for generality.
Also, see Basic Datal209)

8.4.1.8.2 Arrays

Only one-dimensional arrays are supported.
Example:
int a[50];

Variable a is the array consisting of 50 integer numbers.

© 2021 Phyton, Inc. Microsystems and Development Tools

228 CPI2_MODEL Device Programmers - CPI2-B1

8.4.1.8.3 Local Variable Definition

The automatic variable is temporary, because it loses its value upon the exit from the block. The
domain of the variable is the block, where it is defined. Variables defined inside the block take
precedence over the variables defined in the enclosing blocks. Example:

void func(char c)

{

inti=0;

if (c =="0"

{
chari=8;
i++;

}

i++;

}

The local variable can be described everywhere within the function, as in C++.
Values of non-initialized local variables are undefined.

The function formal parameters are processed the same way as local variables.
Static variables inside the function are not implemented.

8.4.1.8.4 Global Variable Definition

Global variables
Example:
int Global_flag;

Global variables are defined on the same level as functions, that is, they are not local in any block.
They are initialized with 0, unless other initial value is explicitly defined. The scope is all script files
currently being executed. Global variables should be described in all the script files that can
access them.

Static variables
Example:
static int File_flag;

Constant. The scope is the script file, in which the variable is defined. The static variables shall be
described before they are used in the file for the first time.

Variable Initialization[223)

External Object Description[223

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 229

8.4.1.8.4.1 Variable Initialization

Any variable, except for formal parameters, can be initialized upon definition.
Any permanent variable is initialized with 0, unless other initial value is explicitly defined.
Any expression can be used as the initial value.
Basic types
Examples:
inti=1+j;
float x = sin(_P1/ 2);
Arrays
Examples:
int af] = {1,4,9,16,25,36};
chars[20]={'a’,'b", 8};
The values of array elements are listed in curly brackets.
If an array size is defined, then the values, which are not explicitly defined, will be equal to 0.
If an array size is omitted, then it will be determined by the amount of initial values.
Strings
Example:
char s[] = "hello";

This description is equivalent to the description of
char s[]={h';e"I''I''0',\0'};

8.4.1.8.4.2 External Object Description

Any type of external objects (for example, variables or functions) not defined explicitly in another
script file, should be described explicitly.

Use the keyword Extern hen describing an external object.
Examples:

extern int Global_var;

extern char *Name;

extern int func();
The length of external one-dimensional array can be omitted.
Example:

extern float Num_array(];

Because all functions are defined on the external level, the adjective extern is not needed to
describe a function inside the block and you can omit it.

© 2021 Phyton, Inc. Microsystems and Development Tools

230 CPI2_MODEL Device Programmers - CPI2-B1

8.4.1.9 Directives of the Script Language Preprocessor

If you use the # symbol as the first symbol in the program line, this line is the preprocessor
(microprocessor) command line.

The preprocessor command line ends with the line advance symbol.
Identifier Change (#define)[230

Inclusion of Files (#include)23)

Conditional[2

8.4.1.9.1 I|dentifier Change (#define)

Syntax:
#define identifier line
Example:
#define Count 100
Changes each occurrence of the Count identifier in the program text to 100.
#undef identifier
Example:
#undef Count
Cancels any previous definition for the Count identifier.

8.4.1.9.2 Inclusion of Files (#include)

Note. You can put the #include command line everywhere in the program, but normally, all
inclusions are located in the beginning of the source file text.

Syntax:
#include <file_name>
Example:

#include <system.h>

The preprocessor changes this line to the contents of the system.h file. The angle brackets
indicate that the system.h file will be taken from the standard catalog. The directory, where CPI2-
Bl is installed, and the list of directories specified in the "include-file directory" field in the Script
Files dialog[173, are automatically used as the standard directory. If the file is not found in any of
the standard directories, then the current directory will be checked.

#include "file_name"
Example:
#include "defs.h"

This structure operates the same way as the #include <system.h>, except that the compiler
searches the current directory first.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 231

8.4.1.9.3 Conditional Compilation

Preprocessor command lines are used for conditional compilation of various parts of the source
text depending on external conditions.

Syntax:
#ifdef identifier
Example:

#ifdef Debug

True, if the Debug identifier was defined earlier by the #define directive. Identifiers can also be
defined in the Defines text box in the Script Files dialog.[17)

Syntax:
#ifndef identifier
Example:

#ifndef Debug

Syntax:

#el se
#endi f

If all previous checks of #if, #ifdef, or #ifndef show the True value, then the lines from #else to
#endif will be ignored during compilation.

If those checks show the False value, then the lines from the check to #else (and if #else is
missing, then from the check to #endif) will be ignored.

The #endif command ends the conditional compilation.
Example:
#ifdef DEBUG printf("Location: x = %d", X); #endif

8.4.1.10 Predefined Symbols in the Script File Compilation

The compiler automatically defines these symbols, as if they were defined by the #define directive.
Symbols that define the microcontroller family

One of the following symbols is defined:

__ARM - for the ARM debuggers

- for the MCS-51 debuggers;

__MCS_96 - for the MCS-96 debuggers;

__PIC - for the Microchip PIC debuggers.

8.4.2 Built-in Functions by Group

The script file system provides you with a large set of built-in functions intended for work with lines, files, for
mathematical calculations, and access to the processor resources. The system.h file contains descriptions of

© 2021 Phyton, Inc. Microsystems and Development Tools

232 CPI2_MODEL Device Programmers - CPI2-B1

these built-in functions. You should include the system.h file in the script file source text with the #include
directive:

#i ncl ude <system h>

You can use these built-in functions in the same way you use any function that you have defined.

Buffer access functions[23

Device programming control functions[237
Mathematical Functions[243)

String Operation Functions| 24
Character Operation Functions| 240

Functions for File and Directory Operation[241
Stream File Functions| 243

Formatted Input-Output Functions| 250}

Script File Manipulation Functions[25
Text Editor Functions[250)

Control Functions[253)
Windows Operation Functions and Other System Functions[253)

Graphical Output Functions[2s3)
/O Stream[255 Window Operation Functions[253

Event Wait Functions[259)
Other Various Functions| 253

Note. To get help on a function or variable, while editing the script source with the <% CM%> built-in editor,
point that function/variable name with the cursor and hit Alt+F1.

8.4.2.1 Buffer access functions

LoadProgram| 23}

ReloadProgram| 23
SaveDatal 23

SetDevice[23
MinAddr| 233
MaxAddr| 23]
GetByte| 23)
GetWord|[234
GetDword[23)
SetByte[22
SetWord[2s0
SetDword[229
GetMemory/[23
SetMemory| 23h
CheckSum|[232

8.4.2.1.1 CheckSum

unsigned long CheckSum(unsigned long start_addr, unsigned long end_addr, int addr_space);

Description

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 233

Calculates checksum for data in the addr_space memory{addr_sp} starting at start_addr and
ending at end_addr. Checksum is calculated by simple addition of byte values.

Return Value
32-bit checksum.
Example

printf("%08IX", CheckSum(0, OXx1FFF, SubLevel(1, 0)));

8.4.2.1.2 GetByte

unsigned int GetByte(unsigned long addr, int addr_space);
Description

To read a byte from a specified address space{addr_sp} (parameter addr_space) at a specified
address.

Returned value
Read byte or word.
Example

printf("%02X", GetByte(SubLevel(0, 0), Ox1F));

8.4.2.1.3 GetDword

unsigned long GetDword(unsigned long addr, int addr_space);
Description

To read a double word (32 bits) from a specified memory area{addr_sp} (parameter addr_space) at
a specified address.

Returned value
Read double word.
Example

printf("%08IX", GetDword(0, Ox1F));

8.4.2.1.4 GetMemory

void GetMemory(void dest[], int n, unsigned long addr, int addr_space);

© 2021 Phyton, Inc. Microsystems and Development Tools

234

CPI2_MODEL Device Programmers - CPI2-B1

Description

To read n-byte memory block from a specified memory area{addr_sp} (parameter addr_space) at a
specified address to the array dest.

Example

char array[20]; GetMemory(array, sizeof(array), 0x20, SubLevel(0, 0));

8.4.2.1.5 GetWord

unsigned int GetWord(unsigned long addr, int addr_space);
Description

To read a word (16 bits) from a specified memory area{addr_sp} (parameter addr_space) at a
specified address.

Returned address
Read word.
Example

printf("%04X", GetWord(0, 0x1F));

8.4.2.1.6 LoadProgram

void LoadProgram(unsigned char file_name[], int format, int addr_space=AS_CODE, unsigned long
start_addr=0);

Description
To download a program in the buffer{buffer} memory.
Parameters:

file_name - Name of the loaded file.

format - Format of the loaded file. Character constants with the
prefix F_ declared in the mprog.h header file
are provided for this parameter. To understand this
better, open the Load Programm Dialog.
and go through format names.

addr_space - address space{addr_sp} where the data is downloaded
(O by default).

start_addr - Load address. This parameter is used only for loading
a file that is a binary memory image.

Example

LoadProgram("C:\PROG\TEST.HEX", F_HEX, SubLevel(1, 0));

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 235

8.4.2.1.7 MaxAddr

unsigned long MaxAddr(int addr_space);

Description

Returns the address of the address space{addr_sp} upper boundary.

8.4.2.1.8 MinAddr

unsigned long MinAddr(int addr_space);

Description

Returns the address of the address space{addr_sp} lower boundary.

8.4.2.1.9 ReloadProgram

void ReloadProgram();

Description

To reload the file that was the last to be loaded to the buffer. This is equivalent to "Re-Load" in the
File[st menu.

8.4.2.1.10 SaveData

void SaveData(unsigned char file_name[], int format, int addr_space, unsigned long start_addr,
unsigned long end_addr);

Description
To save memory area from buffer{buffer} in the file.
Parameters:

file_name - Name of unloaded file.
format - Format of unloaded file. Character constants with
the prefix F_declared in the mprog.h header file
are provided for this parameter. To understand this better,
open the Save Program Dialog and go through
format names.
addr_space - address space{addr_sp} where data is unloaded from.
start_addr - Initial address of unloaded area.
end_addr - Final address of unloaded area (inclusive).

© 2021 Phyton, Inc. Microsystems and Development Tools

236 CPI2_MODEL Device Programmers - CPI2-B1

Example

SaveData("C:\PROGW\TEST.HEX", F_HEX, SubLevel(0, 0), 0, 0x3FFF);

8.4.2.1.11 SetByte

void SetByte(unsigned long addr, int addr_space, unsigned int value);
Description

To write value (byte) to a specified memory area{addr_sp} (parameter addr_space) at a specified
address.

Description

SetByte(0x2000, SubLevel(0, 1), OxFF);

8.4.2.1.12 SetDevice

int SetDevice(char manufacturer[], char namel]);
Description

Set device type. The manufacturer parameter is the device manufacturer name, name is the device
name.

Returned value
TRUE if the device is successfully selected, FALSE if it is not found.
Example

SetDevice("Altera", "EP910");

8.4.2.1.13 SetDword

void SetDword(unsigned long addr, int addr_space, unsigned long value);
Description

To write a double word (32 bits) to a specified memory area{addr_sp} (parameter addr_space) at a
specified address.

Example

SetDword(0x2000, 0, 0x12345678);

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 237

8.4.2.1.14 SetMemory

void SetMemory(void src[], int n, unsigned long addr, int addr_space);
Description

To write n-byte memory block to a specified memory area{addr_sp} (parameter addr_space) at a
specified address from the array src.

Example

SetMemory("12345678", 8, 0x20, 0);

8.4.2.1.15 SetWord

void SetWord(unsigned long addr, int addr_space, unsigned int value);
Description

To write a word (16 bits) to a specified memory area{addr_sp} (parameter addr_space) at a
specified address.

Example

SetWord(0x2000, 0, OXFFFF);

8.4.2.2 Device programming control functions and variables

Here is the list of the functions that control programming scripts (alphabetic order):

AllProgOptions Default[23
ExecFunction| 23
GetProgOptionBits|[2
GetProgOptionFloat[2}
GetProgOptionList/ 2«
GetProgOptionLong[24
GetProgOptionString] 2

mprintf[241
ProgOptionDefault[240

SetProgOption| 243

Here is the list of the variables that controls programming operations in scripts (alphabetic order):

BlankCheck[243)
BufferStartAddr[2:3
ChipEndAddr 243
ChipStartAddr] 243

DialogOnError| 24

© 2021 Phyton, Inc. Microsystems and Development Tools

238

CPI2_MODEL Device Programmers - CPI2-B1

InsertTest/ 24
LastErrorMessage[243
ReverseBytesOrder| 242
VerifyAfterProgram| 245

VerifyAfterRead| 2431

8.4.2.2.1 Function AllProgOptionsDefault

void AllProgOptionsDefault();

Description:

Set all the programming options to their default values.

8.4.2.2.2 Function ExecFunction

int ExecFunction(char func_name([], int buffer=0, int repetitions=1),
Description:

Perform the specified action (function) on device - programming, blank check, etc. The list of
available functions is displayed in the upper left corner of the Program window/10s).

Parameters:

func_name - function name, for example "Blank Check". If you need to execute a function located
in the pop-up menu, you should precede the function name with the menu name and separate them
with ¥ sign, e.g. "Data Memory”Program".

buffer - the buffer number.

repetitions - number of repetitions of the function.

Returned value:

For the value returned by ExecFunction, the header file mprog.h contains two constants:
EF_OK - function was completed successfully

EF_ERROR - there was an error while executing function. In this case, the error description is
copied into the built-in variable LastErrorMessage(244),

Example:

if (ExecFunction("Blank Check") '= EF_OK)
printf("Error in blank check: %s", LastErrorMessage);

See also DialogOnError| 243

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 239

8.4.2.2.3 Function GangExecute

int GangExecute(int site, int buffer=0);

Description:

In the gang mode, launch the Auto Programming command on the socket, the number of which is
specified by the site parameter (the first socket in the gang programmer has the number 0). The
buffer's number is specified by the parameter buffer. The default buffer number is 0.

A successful launch of the GangExecute() function returns 1; if the function fails it returns 0.
Regardless of the Auto Programming result, immediately after launching the GangExecute() function,
full control returns to the active script. In order to check the Auto Programming command completion,
use the script functions GangStatus() or GangWaitComplete().

8.4.2.2.4 Function GangGetError

int GangGetError(int site, char s[]);

Description:

In the gang mode get an error message about the failure of the socket, the number of which is specified
by the parameter site (the first socket in the gang programmer has the number 0). The error message
(a string) dumps to the array with the pointer s. If no single error has occurred during the programming
session the first byte in the error string will be 0 (zero).

8.4.2.2.5 Function GangStatus

int GangStatus(int site);

Description:

In the gang mode get the status of the operation on the socket, the number of which is specified by the
site parameter (the first socket in the gang programmer has the number 0). The function call returns
the status string, two bits of which define the operation statuses:

If the bit GS_EXECUTING =1 this indicates that Auto Programming is still in process;
If the bit GS_FAILED =1 this indicates an Auto Programming failure.

8.4.2.2.6 Function GangWaitComplete

void GangWaitComplete(int site);

Description:

In the gang mode, wait for completion of the Auto Programming operation on the socket, the number
of which is specified by the site parameter (the first socket in the gang programmer has the number 0).
Regardless of the operation result, a call of this function returns control to the script only upon
completion of the Auto Programming operation.

© 2021 Phyton, Inc. Microsystems and Development Tools

240

CPI2_MODEL Device Programmers - CPI2-B1

8.4.2.2.7 Function GetBadDeviceCount

unsigned long GetBadDeviceCount(int site=0);

Description:

In the gang mode get the current number of devices that could not be successfully programmed or did
not pass verification in the socket, the number of which is specified in the site parameter (the first
socket in the gang programmer has the number 0). Each socket in the gang programmer has a virtual
counter "Bad" that increments the variable after each programming cycle failure. The "Bad" counter
display is accessible in the Statistics tab in the Program Manager window.

8.4.2.2.8 Function GetGoodDeviceCount

unsigned long GetGoodDeviceCount(int site=0);

Description:

In the gang mode, get the current number of the devices successfully programmed in the socket, the
number of which is specified by the site parameter (the first socket in the gang programmer has the
number 0). Each socket in the gang programmer has a virtual counter "Good" that increments the
variable after each successful device programming cycle. The "Good" counter display is accessible in
the Statistics tab in the Program Manager window.

8.4.2.2.9 Function GetProgOptionBits

unsigned long GetProgOptionBits(char option_name[]);

Description:

Returns current value of the option_name programming option. The option must be of type 'Bits' -
a list of options; each of them can be checked or unchecked. Example: "Sectors" option of the
Fujitsu MBM29LVO08BA device.

8.4.2.2.10 Function GetProgOptionFloat

float GetProgOptionFloat(char option_namel]);
Description:

Returns current value of the option_name programming option. The option must be of type ‘Long' -
a floating-point number. Example: "Vcc" option of the Microchip PIC16F628A device.

8.4.2.2.11 Function GetProgOptionList

unsigned int GetProgOptionList(char option_name[]);
Description:

Returns current value of the option_name programming option. The option must be of type ‘List" -
a menu-like list of strings. Example: "WDT" option of the Microchip PIC16F628A device.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 241

8.4.2.2.12 Function GetProgOptionLong
long GetProgOptionLong(char option_name[]);
Description:

Returns current value of the option_name programming option. The option must be of type 'Long’
- a 32-bit integer. Example: "Tpgm" option of the Atmel ATF2500C device.

8.4.2.2.13 Function GetProgOptionString
void GetProgOptionString(char option_name[], char str[]);
Description:
Copies the current value of the option_name programming option to the str string. The option must

be of type 'String' - a text string. Example: "Copyright" option of the National Semiconductor
COP87SERY7 device.

8.4.2.2.14 Function mprintf
void mprintf(char format[], ...);
Description:

The mprintf function is used just like Qrintf@_but the message is displayed not in the Console
window but in the "Operation Progress" window of the Program Manager [103 window.

8.4.2.2.15 Function OpenProject
void OpenProject(char file_namel]);

Description:

Load the project with the name specified as the file_name. Call of this function is equivalent of loading
the project via the menu Project > Open. Use of projects is very convenient, especially for mass
production.

8.4.2.2.16 Function ProgOptionDefault
void ProgOptionDefault(char option_name[]);
Description:

Set the default value of the option_name programming option.

8.4.2.2.17 Function ReadShadowArea

void ReadShadowArea(int sub_level, unsigned long addr, unsigned int len, void data[], int
site=0);

Description:

Read data from a specified shadow memory to the array "data". First, you have to create a shadow
area through the menu Configure > The Serialization, Checksum and Log File dialog > Custom
shadow memory tab. The start address of the data to be written into the addr may differ from the start

© 2021 Phyton, Inc. Microsystems and Development Tools

242

CPI2_MODEL Device Programmers - CPI2-B1

address of the custom shadow area but it is necessary the end address should not exceed the end
address of the shadow area.

The int site=0 means the socket# 0; i.e., the only socket for a single-site programmer or the first
socket in a gang programmer. In the gang mode it is hecessary to specify the socket number (the first
one has the number 0).

8.4.2.2.18 Function SetProgOption

void SetProgOption(char option_name[], char option_string[]);
Description:

Set value for the programming option. The programming options are listed in the lower right corner
of the Device and Algorithm Parameters' Editor/[s window.

Parameters:
option_name - option name, e.g. "Vpp".

option_string - option value as character string. Options can be of several types (certain option
type can be determined by hitting the "Edit" button in the Device and Algorithm Parameters'
Editor[e31 window).

« floating point numbers, for example, programming voltage. For such options, the option_string
parameter should represent a floating point number, for example, "12.3".

« integer numbers. The option_string parameter should represent an integer value, for example,
I|215I|.

* "menu" type options. In these cases, the option_string parameter should be a menu item string,
for example, "Disabled". Menu can be observed by hitting the "Edit" button in the Device and
Algorithm Parameters' Editor[¢ window).

« character strings, for example, "Copyright".

« check boxes option. Check boxes option is a list of options; each of them can be checked or
unchecked. To specify a value for a check box option, append an '=' sign to the option name
followed with O or 1. For example, to set up the CPD memory protection bit of PIC18F8720 chip,
write

SetProgOption("Memory protection”, "CPD=1");
Examples

SetProgOption("Vpp", "12.5");
SetProgOption("PWRT", "Disabled");

See also examples that come with the ChipProg package.

8.4.2.2.19 Function WriteShadowArea

void WriteShadowArea(int sub_level, unsigned long addr, unsigned int len, void data[], int
site=0);

Description:

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 243

Write data from the array data to a specified shadow memory. First, you have to create a shadow area
through the menu Configure > The Serialization, Checksum and Log File dialog > Custom
shadow memory tab. The start address of the data, to be written into the addr, may differ from the
start address of the custom shadow area but it is necessary that the end address should not exceed
the end address of the shadow area.

The int site=0 means the socket# 0; i.e., the only socket for a single-site programmer or the first
socket in a gang programmer. In the gang mode it is necessary to specify the socket number (the first
one has the number 0).

8.4.2.2.20 Variable BlankCheck
extern int BlankCheck;

The value of the "Blank check before program" option in the _Program Manager /18] window (tab
Options). Assigning value to BlankCheck automatically changes the option in the window and vice
versa.

8.4.2.2.21 Variable BufferStartAddr
extern unsigned long BufferStartAddr;

The value of the start address in the buffer used for operation. Assigning value to BufferStartAddr
automatically changes the buffer start address field in the window and vice versa.

8.4.2.2.22 Variable Checksum

extern unsigned long Checksum;

A checksum of the data to be written into the device being currently programmed. This checksum can
be specified by the script that defines an algorithm for the checksum computation. This parameter is
usually set in the Checksum tab of the Serialization, Checksum and Log File dialog of the
Configure menu.

8.4.2.2.23 Variable ChipEndAddr
extern unsigned long ChipEndAddr;

The value of the start address in the device used for operation. Assigning value to ChipEndAddr
automatically changes the end address field in the window and vice versa.

8.4.2.2.24 Variable ChipStartAddr
extern unsigned long ChipStartAddr;

The value of the start address in the device used for operation. Assigning value to ChipStartAddr
automatically changes the start address field in the window and vice versa.

8.4.2.2.25 Variable DeviceBatchSize

extern unsigned long DeviceBatchSize;

Number of devices in the lot to be programmed. This variable is used for counting down the devices
from the DeviceBatchSize value to zero. A check box for enabling the device count-down and other
controls is accessible in the Statistic tab of the Program Manager window.

© 2021 Phyton, Inc. Microsystems and Development Tools

244 CPI2_MODEL Device Programmers - CPI2-B1

Example: if you need to program 10000 devices of the same type with the same data and then the
programming should be stopped, the DeviceBatchSize=10000.

8.4.2.2.26 Variable DialogOnError
extern int DialogOnError;

If the value of this variable is set to nonzero (default), then if there is an error occurred during a
programming function execution (see ExecFunction[2:)), the dialog with error description is
displayed. Otherwise no dialog is displayed and ExecFunction() immediately returns with code
EF_ERROR.

8.4.2.2.27 Variable GangMode

extern int GangMode;

The variable's value will be 1 if the ChipProgUSB software has been launched in the gang mode; for
example, if it has been launched in the command line mode with the key /GANG, otherwise it will be 0.
The GangMode variable is accessible for reading only.

8.4.2.2.28 Variable InsertTest

extern int InsertTest;

The value of the "Insert test" option in The Program Manager Window/ 0% (tab Options). Assigning
value to InsertTest automatically changes the option in the window and vice versa.

8.4.2.2.29 Variable LastErrorMessage(]

extern char LastErrorMessage][];

String that contains the last error message about operation on device. See also ExecFunction| 23

8.4.2.2.30 Variable NumSites

extern int NumSites;

The number of the gang programmer's operable sockets (for example, for a ChipProg-G41 device
programmer, NumSites is four. The NumSites variable is accessible for reading only.

8.4.2.2.31 Variable ReverseBytesOrder
extern int ReverseBytesOrder;

The value of the "Reverse bytes order" option in The Program Manager Window![108 (tab Options).
Assigning value to ReverseBytesOrder automatically changes the option in the window and vice
versa.

8.4.2.2.32 Variable SerialNumber
extern unsigned long SerialNumber;

The serial number of the device currently being programmed. This number can be specified by the
script that defines a start serial number and an algorithm for the serial number incrementation. These

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 245

parameters are usually set in the Serial Number tab of the Serialization, Checksum and Log File
dialog of the Configure menu.

8.4.2.2.33 Variable Signature
extern char Signature[];

A string of characters to be written in the device being currently programmed as a unique signature.
This signature can be specified by the script. Usually it is set in the Signature String tab of the
Serialization, Checksum and Log File dialog of the Configure menu.

8.4.2.2.34 Variable VerifyAfterProgram
extern int VerifyAfterProgram;

The value of the "Verify after program" option in The Program Manager Window/[108 (tab Options).
Assigning value to VerifyAfterProgram automatically changes the option in the window and vice
versa.

8.4.2.2.35 Variable VerifyAfterRead

extern int VerifyAfterRead;

The value of the "Verify after read" option in The Program Manager Window/10s] (tab Options).
Assigning value to VerifyAfterRead automatically changes the option in the window and vice versa.

8.4.2.3 Mathematical functions

floor[2sN
expl 283

fabs|[22
fmod[)

frexpl 223

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

246

CPI2_MODEL Device Programmers - CPI2-B1

8.4.2.4 String operation functions

abs 2]
pow|z18]
pow10[a8

Functions for string operation receive arrays as parameters. Functions of the memxxxx type can
use arrays of any type; other functions use the char arrays.

The script file language does not support pointers, that is why all string operation functions include
the index, desr_index, and scr_index parameters to specify the initial shift in the array. The default
value of these parameters is 0. These parameters are not considered in the following line function

descriptions.

Note once again that arrays are transferred "by pointer”, that is, the array itself is transferred and

not its copy.
memccpy[s
memcpy/zd
memmovel 33
movmem| 1)
memchr(=0)
memset[)
setmem| 33)
memcmplah
memicmpl s
stpcpy[sA
strcat(s
strchrfs2
strempls)
stricmp[s4]
strempife)
il (B
strepyls)
il (B2
striwr(3
il (2]
strncat 3

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 247

strncmpl 34
strncmpil 343
strnicmpl 348
strncpy(=4
strnset/ 3
strpbrk[=
strspnl s
[rex4][340
strrchrfs
strrev

[****] Eﬁ

8.4.2.5 Character operation functions

isalnum =03
isalpha
isasciil =2
iscntrif=d)
isgraphf
islower[=}
isprintf oA
ispunct/ah
isspace| 300

isupper
toasciil =
tolower| s

toupper 0

8.4.2.6 Functions for file and directory operation

chdirlz7h

getcurdir 2%

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

248

CPI2_MODEL Device Programmers - CPI2-B1

findfirst
findnext[28
ff_attribl 260
_ff_timefzes)
_ff_datefesh
_ff_sizef 2}
ff_ name
fnsplit[2s8
famergel 23
getcwd

getdisk()[298
setdisk(3]

mkdir[a3
rmdir[329)
searchpath[33
getdfree[2
unlink[ssh
chsizel2h
close[273
creat[27A

creatnew/ 275

creattempl 273
dupl 273
dup2[28
eof[2
filelengthl 223
getftime[299)
setftime[=
isatty[=02
lock(=)
unlock] 352
locking A

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 249

Iseekl =09
open|a:d
read[=20
write[358
rename| =23

setmode| 33N

|****

8.4.2.7 Streamfile functions

clearerr
fclosel2s2)
fdopen(23
feof(2s3)
ferrorf 2s3

fflushl 2s
fgetc [28R

fgets[2
filenol ze9
fopenl2s)
frintf[2e)
fputc| 290
fputs[29
fread(ze1)
freopen
fscanf[2e)
fseekl 23
ftelll 3
fwrite[2oh
getc[20
getw][209
putc[3)
i (B

rewind

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

250 CPI2_MODEL Device Programmers - CPI2-B1

8.4.2.8 Formatted input-output functions

Formatted input-output functions perform data conversion in accordance with the format line. You
can find description of the format line in any book on the C language.

Note that the arguments for input functions should be arrays, and not simple variables. This is
because the pointers are not supported in the script file language, and it is impossible to transfer
an address with the simple variable.

Attention! Your arguments passed to the formatted input-output functions shall match the format
line. Otherwise, the CPI2-B1 program may fail.

fprintfl 2691
fscanf[200
scanffs:h
pscanf(3
sscanf[sl
printfl z:9

_printf[26
sprintf[s}
MessageBox
MessageBoxEx[a1

8.4.2.9 Script File Manipulation Functions

ExecScript]2si)
GetScriptFileName] e
TerminateScript[20
TerminateAllScripts[ad)
exit[2

8.4.2.10 Text editor functions

The text editor functions manipulate with text in the Source [188 You can start the script files with
the custom hot keys (for more about this, see).

All text editor functions assume that the text editor window is active, when function is called, so
they do not receive the window handle as a parameter unlike other functions that manipulate
windows in CPI2-B1.

The CPI2-B1 package includes several examples of script files performing useful commands. The
sources are located in the KEYCMD sub-directory.

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 251

Note that line and column numbers begin from 1.
GotoXY[s
Up
DownlzA)
Left
Right[=29
Toffss0)
Eoff 279
Eoll 2
BackSpace| 29
Crlz7h
DelLinel 2
DelChar[27
CurChar[278
GetLinel 290
ForwardTilll 283
ForwardTillNot/ 2s%
GetWord[23)
WordLeft[358
WordRight[s
FirstWord[2sh
SetMark[3
GetMark| 297
Text[3
BlockBegin[263
BlockEnd[273
BlockOffl 270

BlockCopyl 263

BlockFastCopy[273
BlockDelete[263

BlockMove[27
BlockPaste[27)
Search[33

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

252 CPI2_MODEL Device Programmers - CPI2-B1

SearchReplace =3
SetFileName| 5

GetFileName[296

SaveFile[ssh

|****
OpenEditorWindow/ =19
Text editor built-in variables
InsertMode| 362

CaseSensitive[el
WholeWords |64
[+ a3
BlockCol1[zed)
BlockCol2[s
BlockLine1[3s)
BlockLine2[3
BlockStatus| 6]
CurLine[=
CurColl=eh
LastFoundString[363

8.4.2.11 Debug shell control functions

These functions control CPI2-B1.

RedrawScreen| 328)
LoadDesktopl 39
LoadOptions| 300
SaveDesktop 0
SaweOptions|3sh
OpenWindow(318)
OpenUserWindow/ 319

OpenStreamWindow] 33
CloseWindow/ 273

FindWindow][280
MoveWindow[38
ActivateWindow|268)
SetWindowSize[39)
SetWindowSizeT][338
GetWindowWidth[298

GetWindowHeight| 23

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 253

SetWindowFont/zs]
WindowHotkey [350
AddWatch[267

Ins pectmh
ExecMenul[289

ExitProgram| 283
LoadProject[308
CloseProject[273)
LoadProgram[3of

ReloadProgram|z28)
SaweDatal 3]

8.4.2.12 Windows operation functions and other system functions

Attention! Only the experienced programmers should use the Windows operation functions.
These functions provide advanced capabilities, but when used incorrectly, they may hang the
operating system.

APz
LoadLibraryf =7
FreeLibrary| 2
WaitSendMessagel 51
WaitGetMessage| 54

inport[sof}
inportbf zoh
outport/ =
peek[aN
peekb[a
poke[sh
pokebla8)
exec| 20
getenv[zo9)
putenv(=2

8.4.2.13 Graphical output functions

Graphical output functions draw various graphical objects and text in special User window/[183, To
draw in a user window, first open it with the OpenUserWindow/ = function that returns the
window identifier (handle). Then use the identifier to reference the window (multiple user windows
can be open at the same time). For more information, see User window/ 1),

In all graphical output functions, the first parameter () is the window identifier.

© 2021 Phyton, Inc. Microsystems and Development Tools

254 CPI2_MODEL Device Programmers - CPI2-B1

OpenUserWindow/s1)
ClearWindow[273

SetCaption[)
SetToolbar s
SetUpdateMode! 33
UpdateWindow[=2
SelectPen[ss3)
SelectBrush| =3
SelectFont/ 33
SetTextColor| 33!
SetBkColor/ 33
SetBkMode| 330

DisplayText[27

DisplayTextF[2
MoveTol =4

LineTol
FillRect[2s?)
Rectangle[)
InvertRect[zoh
Curcuit[273
Ellipse[273)
Polylinef =4
SetPixell 337
AddButton[zs)
RemoveButtons|323)
WaitWindowEvent] 8

[****] @g‘,"
LastEventint{1...4}[308

8.4.2.14 /O Stream window operation functions

Stream window control functions allow you to display text in the special /O Stream window/[1s0),

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 255

In all Stream window control functions, the first parameter (handle) is the window identifier.

OpenStreamWindow|[3
SetTextColor[337
wprintf[ss8)

wgetcharf =8l
LastChar] a8
wgethex[30
wgetstring[ss7)
LastString] 30)

8.4.2.15 Event Wait Functions
These extremely useful functions sene to simulate external environment. Also, you can use them in simulators
to dewelop various tests.

Wait/ 3521
WaitMemoryAccess| 3

WaitExprTrue[ss
WaitExprChange

WaitStopl 33)
WaitWindowEvent[36)

8.4.2.16 Other Various Functions

delay[27
gettime@
getdate@
difttimel 273
atoff 268
atoif 269
itoa[309
ltoa[318)
ultoa[3sh
rand[32
random|[32h
randomize| 32N
srand[34}
strtol[34
strtoul[348)

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

256

CPI2_MODEL Device Programmers - CPI2-B1

8.4.3 Built-in Variables by Group

8.4.4 List of Built-in Functions and Variables

You can access script language built-in variables in the same way as regular global variables. Howewver, some built-
in variables are accessible only for reading, and in case of attempt to write to such variable.

The built-in variables are declared in the system.h header file.

Programming variables:
InsertTest[243
ReverseBytesOrder| 24A
BlankCheck[243)

Verify AfterProgram|[243

VerifyAfterRead[249
ChipStartAddr[243

ChipEndAddr| 243
BufferStartAddr| 243
LastErrorMessage[24h
DialogOnErrorlm

Text editor built-in variables:

InsertMode| 362)
CaseSensitive[36}
WholeWords [363
RegularExpressions[33
BlockCol1| 368
BlockCol2[360
BlockLine1[368)
BlockLine2[3s3]
BlockStatus/[368
CurLine[ssh
CurCol[3sh

LastFoundString[362)

Miscellaneous variables:
WorkFieldWidth[3
WorkFieldHeight[36%
AppIName [358)
DesktopName][][36h
SystemDir{][368

errno| 36.

_fmodela
MainWindowHandle[363)
NumWindows [363
WindowHandles([][369
SelectedString[]| 3%
LastMessagelnt[363)
LastMessagel ong] 363

Below is the alphabetical list of all built-in functions and variables of scripting language.

AllProgOptionsDefault[2
API[26}
ActivateWindow/ 28

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 257

AddButton[23]
AddWatchl 27
AppINamef][3
BackSpace|[253
BlankCheck| 243
BlockBegin|2s3)
BlockCol1/[3
BlockCol2[369
BlockCopy[23}
BlockDelete| 2631
BlockEnd[27
BlockFastCopy/ 27!
BlockLine1[ssd)
BlockLine2[ss0)
BlockMove[27)
BlockOff[27
BlockPaste[270)
BlockStatus|zed
BufferStartAddr| 243
CaseSensitive| 36
CheckSum|2:2)
ChipEndAddr/[243
ChipStartAddr[223
ClearWindow/ 273
CloseProject] 273
CloseWindow[23
Crla4
CurChar|27)
CurColls)
CurLine[sl
Curcuit[278
DelChar[278
DelLine[277

DesktopName[][s
DialogOnError| 243
DisplayText| 271

DisplayTextF[2
Down[27

Ellipse[27
Eof[27

Eoll e}
ExecFunction| 28]
ExecMenu[2s)
ExecScript[2sf)
ExitProgram|2s3
Expr[283)
FileChanged[2s
FillRect[2
FindWindow![2s7

© 2021 Phyton, Inc. Microsystems and Development Tools

258

CPI2_MODEL Device Programmers - CPI2-B1

FirstWord[2s7
FloatExprl2s7
ForwardTilll 23
ForwardTillNot/ 22)
FrameRect[28)
FreeLibraulEﬁ
GetByte| 233
GetDword[233
GetFileName| 258
GetLine[290
GetMarkl 2e0
GetMemory/[o0
GetProgOptionBits| 2«
GetProgOptionFloat/ 243
GetProgOptionList/2:)
GetProgOptionLong| 241
GetProgOptionStringl 240
GetScriptFileName[2%8)
GetWindowHeight/ 29
GetWindowW idth[209
GetWord|[)
GotoXY[)
InsertMode] 362
InsertTest[243
Inspect| zof
InvertRect/ sod
LastCharl w03
LastErrorMessage[24
LastEvent[3
LastEventint{1...4}[308
LastFoundString[62!

LastMessagelnt[33)
LastMessageLong] 33

LastString[30

Left[s0R

LineTol 308
LoadDesktop[)
LoadLibrary[s
LoadOptions| 37
LoadProgram /=0l
LoadProject o8
MainWindowHandle[33)
MaxAddr[253

MessageBox| 3
MessageBoxEx| 32
MinAddr[23}

MoveTol 3R

MoveW indow/[3h
NumWindows 33}
OpenEditorWindow/ 313

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference

OpenStreamWindow(313
OpenUserWindow/318)

OpenWindow/ 8]
Polyline| z:8)
ProgOptionDefault/ 1]
Rectangle| =23
RedrawScreen(zz3]
RegularExpressions| 23
ReloadProgram| 28
RemoveButtons[3
ReverseBytesOrder|[24
Right/=9
SaveData[=0
SaveDesktop| =)
SaveFile[=1
SaveOptions| 1
Search(3
SearchReplace[33
SelectBrush[=3)
SelectFont[333
SelectPen|[=s3)
SelectedString[]l 363
SetBkColor|[=34
SetBkModel[A
SetByte@
SetCaption| 33
SetDevice[23)
SetDWord[z3)
SetFileName[33)
SetMark] =)
SetMemory[ss)
SetPixell z3h
SetProgOption[2:2)
SetTextColor| s
SetToolbar(3
SetUpdateMode[33
SetWindowFont/ 23
SetWindowSize[3
SetWindowSizeT[38
SetWord[)

SystemDir[][36h
TerminateAllScripts[359

TerminateScript/ s
Text[s

Tofl 3501

Uplssh
UpdateWindow[s
VerifyAfterProgram| 24

VerifyAfterRead)| 23

259

© 2021 Phyton, Inc. Microsystems and Development Tools

260

CPI2_MODEL Device Programmers - CPI2-B1

WaitEprTrue|ss3)
WaitGetMessage| 531
WaitSendMessage 3
WaitWindowEvent[8]
WholeWords/4h
WindowHandles[][360

WindowHotkey[a7
WordLeft[=

WordRight/ 28
WorkFieldHeight[363
WorkFieldWidth[s
GetWord[2e3)
ff_attribl 26h
_ﬁ_date@
ff name[zsA
ff_size[2eh)
ff_timel2e3)
fmode|[=9
fullpath 268
_printf 268
abs[258)
acos| ¥
asin[z3)
atan(2
atofl 268
atoil 269
ceill27h
chdir[27
chsize[z7h
clearerr[273
close[2
cos[zid)
creat[z)
creatnew%
creattempl 273
delay[2%
difftime[277
dup(273
dup2[A
eoff29)
errnof s
exec|)
exit[2sh
expl 283
fabs[2e
fclose[2)
fdopen| 23
feof 28}
ferror| 2R
flushl 289

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 261

foetc| zsd
fgets[2
filelengthl 2s3
filenof 29
findfirst[2e8)
findnext/ 2381
floor(257
fmodfze?)
fnmergel 263
fosplit[288
fopen(z#)
fprintf[2s3)
fputc| 20
fputs 2o
fread[200
freopen(2]
frexpl 22
fscanfl 203
fseek 293
ftelll 231
fwrite[200
getc[2R
getcurdir[29
getcwd| 299)
getdate| 298
getdfree[208
getdisk()[28
getenv(298]
getftime[2s9)
gettime[298
getw[2
inport/aof)
inportb| ol
isalnum |02
isalphal 02
isasciil 204
isatty[
iscntrll=0d)
isdigit/ 33
isgraphl =3
islower/ =0
isprint[=od)
ispunct[=od
isspace] sof
isupper] o8
isxdigit[3oR
itoa 3
lockl 35
locking] 308

© 2021 Phyton, Inc. Microsystems and Development Tools

262

CPI2_MODEL Device Programmers - CPI2-B1

log] 308
log10[=08
Iseekl s
ltoal 3B
memccpy/ 38
memchr[=18
memcmpl ah
memcpy/ a1l
memicmpl s
memmove[32)
memset[32
mkdir[a:3)
movmem |z
mprintfl 2+
openlaA
outport[31A
outportblsh
peek[s
peekb[a17
pokef=h
pokeb 318
pow/a8)
Qowlolzéﬁ
printff s:9
pscanf A
putc/s2
putenvl sz
putw/ s8]
rand[s21
random|32A
randomize[32A
read =21
rename/ 323
rewind[%2
rmdirf 2
scanffsh
searchpath(sa)
setdisk[3)
setftimel 30
setmem| 33)
setmode| 3N
sin[340)
sprintf[)
sqrtf s
srand[=0
sscanff 3
stpcpy| 33
streat32)
strchrf 3

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 263

strcmpls2)
strempil 343)
strcpy/ sl
strcspnla)
stricmpl3)
strlenfs4)
striwr[34
strncat[34
strncmpl 3
strncmpil 34
strncpyl 38
strnicmpl 33
strnset[s8)
strpbrk])
strrchr(s8)
strrevf 340
strset[s4N
strspn[s
strstr[sh
strtoll =8
strtoul[38)
strupr| s
tan[a9)
tanh(s)
telll)
toascii[301
tolower[ssh
toupper] ssh)
ultoa[=
unlink[=sh
unlockl32)
wgetcharl 8
wgethex| 51
wagetstring[7
wprintf[s
write[258

8.4.5 Scripting Functions
Enter topic text here.

8.45.1 fnmerge

Declaration:
void fnmerge(char path[], char drive[], char dir[], char name[], char ext[]);

Builds a path from component parts.
fnmerge makes the path name from its components. The new path name is
X\DIR\SUBDIR\NAME.EXT

© 2021 Phyton, Inc. Microsystems and Development Tools

264

CPI2_MODEL Device Programmers - CPI2-B1

where:

drive = X

dir = \DIR\SUBDIR\
name = NAME

ext = EXT

fnmerge assumes there is enough space in path for the constructed path name. The maximum
constructed length, MAXPATH, is defined in system.h.

fnmerge and fnsplit/ 263 are invertible: if you split the given path with fnsplit, then merge the
resultant components with fnrmerge and you end up with this path.

8.4.5.2 Function ff attrib

Declaration:
char _ff_attrib(char ffblk[]);
Description

Returns the attribute byte of the file found upon the function findfirst[23) or findnext[288 access. The ffblk
parameter is the buffer filled with information on the file after findfirst or findnext access.

Example
See function findfirst[289)

8.4.5.3 Function _ff date

Declaration:
int _ff_date(char ffblk[]);
Description

Returns the word with the file (creation or modification) date for the file found upon the function findfirst| 2861 or
findnext[288 access. The ffblk parameter is the buffer filled with information on the file after the findfirst or
findnext access.

Example
See function findfirst[289

8.4.5.4 Function _ff name

Declaration:
void _ff_nane(char ffblk[], char fnane[]);
Description

Copies the name of the file found upon the function findfirst[283 or findnext[288 access to the fmane array. The
fiolk parameter is the buffer filled with information on the file after the findfirst or findnext access. The file name
does not contain the disk nhame or path.

Example
See function findfirst[288)

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 265

8.4.5.5 Function ff size

Declaration:
long _ff_size(char ffblk[]);
Description

Returns the size of the file found upon the function findfirst[2s3) or findnext[289 access. The ffblk parameter is
the buffer filled with information on the file after the findfirst or findnext access.

Example
See function findfirst[23]

8.4.5.6 Function _ff _time

Declaration:
int ff_time(char ffblk[]);
Description

Returns the word with the file creation (or modification) time for the file found upon the function findfirst| 2861 or
findnext[288 access. The ffblk parameter is the buffer filled with information on the file after the findfirst or
findnext access.

Example
See function findfirst[2e8).

8.4.5.7 Function _fullpath

Declaration:

int _fullpath(char buf[], char pathl]);

Description

Converts a relative path name to the absolute one.

_fullpath converts the relative path name in a path to the absolute path name that is stored in the
array of characters pointed to by buf. The function returns FALSE the path contains an invalid
drive letter.

Returned value

If successful, the _fullpath function will return TRUE. On error, it returns FALSE.

8.4.5.8 Function GetWord

Declaration:
void _GetWord(char dest[]);
Description

Copies the word under the cursor to the dest array. If there is no word under the cursor, then the first element
of dest will be 0.

© 2021 Phyton, Inc. Microsystems and Development Tools

266 CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.9 Function _printfv

Declaration:

void _printf(char format[], ...);

Description

Acts like printf[319), but does not append the newline character to the line.

Note. Your arguments passed to this function shall match the format line. In case of mismatch, the <% CM%
> program may crash, because it cannot check the correspondence between the format string and
parameters passed.

8.4.5.10 Function abs

Declaration:

| ong abs(long x);

Description

The abs function calculates the absolute value of the integer argument val.
Returned value

The abs function returns the absolute value of the integer argument val.

8.4.5.11 Function acos

Declaration:
float acos(float x);
Description

The acos function calculates the arc cosine of the floating-point number x. Argument x should range from -1
to 1, otherwise the result will be equal to 0 (for x > 1) or to PI (for x < -1). The function returns value in the
range from O to PI.

Returned value

The acos function returns the arc cosine of argument x.

8.4.5.12 Function ActivateWindow

Declaration:
voi d ActivateW ndow(unsi gned | ong handl e);
Description

Activates the specified window. The window becomes 'active’ and is placed over all other windows of <%CM%
>,

8.4.5.13 Function AddButton

Declaration:

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 267

i nt AddButton(unsigned | ong handle, char button_text[], int x, int y, int
wi dth, int height);

Description

Adds a button to the window. The button is a usual button of the standard Windows dialog boxes. When you
click the button, the event is generated that can be captured with the WaitWindowEvent[ss6) function, and the
corresponding operation is carried out.

If the specified button already exists in the window (already added by AddButton with the same parameters),
the new button will not be added and the existing button will be used.

Parameters:
button_text - the text witten on the button
X, VY - the coordinates of the upper left corner within the w ndow
wi dt h - the button wi dth
hei ght - the button height

Returned value

The button identifier. It is used by the WaitWindowEvent[358 function to determine, which button was clicked
(there multiple buttons in the window).

Example
AddBut t on(handl e, "Start", 50, 50, 70, 24);

8.4.5.14 Function AddrExpr

Declaration:

unsi gned | ong Addr Expr(char str[]);

Description

Calculates the expression and returns the result (the str parameter) as an address in microcontroller memory.
Example

int addr_port0 = Addr Expr (" PORT0");
Wai t MenoryAccess(addr_port0, AS _DATA, 1, MA WRI TE);

Note that 'AddrExpr("PORTOQ")' is the same as 'Expr("&PORTQ")".
Also, see Expr[262), EloatExpr28h, Operations and Expressions| 2i8

8.4.5.15 Function AddWatch

Declaration:
voi d AddWatch(char nane[], int format=DF_HEX);

Description

Adds the specified name (the name parameter) to the Watches 182 window(183\ in the specified format. If the
Watches window is not already opened, it will be opened automatically.

Examples

AddWat ch(" Dur ati on", DF_DEC);
AddWat ch(" Addr ess") ; /1l the default format is hexadeci el

© 2021 Phyton, Inc. Microsystems and Development Tools

268 CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.16 Function API

Declaration:
unsi gned | ong APl (char func_nane[], ...);
Description

Calls a 16-bit Windows API function with the name specified in func_name and transfers the parameters
specified in API to this function.

Make sure you use the correct parameter number and size, because <% CM%> knows nothing about them.
When necessary, use the explicit type conversions and put character 'L' in the end of long-type constants.

To reduce problems, when an array is transferred as the parameter, a long (32-byte) pointer is transferred.
Returned value

What was returned by the called API function is in registers DXAX If it is a pointer, then data can be
accessed using the peek[317), pokels1f, peekbl a1, or pokebl=18) functions.

Example
int ScreenHei ght = API (" Get SystemMetrics", SM CYFULLSCREEN);

8.4.5.17 Function asin

Declaration:
float asin(float x);
Description

The asin function calculates the arc sine of the floating-point number x. The argument x should range from -1
to 1, otherwise the result will be equal to PI/2 (for x > 1) or to -PI/2 (for x < -1). The function returns value in
the range from -P1/2 to PI/2.

Returned value

The asin function returns the arc sine of argument x.

8.4.5.18 Function atan

Declaration:
float atan(float x);
Description

The atan function calculates the arc tangent of the floating-point number x. The function returns value in the
range from -P1/2 to PI/2.

Returned value

The atan function returns the arc tangent of argument x.

8.4.5.19 Function atof

Declaration:

float atof (char s[]);

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference

Description

Conwerts an ASCII-string (parameter s) into the floating-point number.

8.4.5.20 Function atoi

Declaration:
int atoi(char s[]);

Description

Converts an ASCII-string (parameter s) into the integer number.

8.4.5.21 Function BackSpace

Declaration:
voi d BackSpace();
Description

Works like the BackSpace key.
8.4.5.22 Function BlockBegin
Declaration:

voi d Bl ockBegi n(int bl ock_type);

Description

269

Begins marking of block (see Block Operations[18%). The block_type parameter indicates the type of block.

For conwvenience, the system.h header file defines constants for the block functions:

EB_NONE - no block (not used in this function)
EB_LI NE - line block
EB_VERT - vertical block

EB_STREAM - stream bl ock

8.4.5.23 Function BlockCopy

Declaration:
voi d Bl ockCopy();
Description

Copies the block to the clipboard.

8.4.5.24 Function BlockDelete

Declaration:
voi d Bl ockDel ete();
Description

Deletes the block. The block is copied to the clipboard

© 2021 Phyton, Inc. Microsystems and Development Tools

270

CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.25 Function BlockEnd

Declaration:
voi d Bl ockEnd();

Description

Finishes marking of block. It is supposed that before calling BlockEnd(), the BIockBegin@'ﬁ function is called

and then the cursor is moved to the end of the block.

8.4.5.26 Function BlockFastCopy

Declaration:
voi d Bl ockFast Copy();
Description

Copies the block from the cursor position.

8.4.5.27 Function BlockMove

Declaration:
voi d Bl ockMove();
Description

Movwes the block to the cursor position.

8.4.5.28 Function BlockOff

Declaration:
voi d Bl ockOff ();
Description

Turns the block off..

8.4.5.29 Function BlockPaste

Declaration:
voi d Bl ockPast e();

Description

Pastes the block from the clipboard to the cursor position

8.4.5.30 Function CallLibraryFunction

Declaration:

unsi gned long Call Li braryFunction(unsigned |ong inst, char func_nane[], ...);

Description

Calls the func_name function from DLL and its HINSTANCE is transferred to inst. Otherwise, this function is

similar to the function API[263) call.

Example

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 271

unsi gned | ong instance = LoadLi brary("EXTEND. DLL");
long result = CallLibraryFunction(instance, "Initialize", 0, 1L);

8.4.5.31 Function ceil

Declaration:

float ceil (float x);

Description

The ceil function calculates the least integer value that is greater than or equal to x.
Returned value

The ceil function returns the double-type number equal to the least integer that is no greater than x.

8.4.5.32 Function chdir

Declaration:
int chdir(char path[]);
Description

Sets up the new default directory specified in parameter path. The latter might also contain a disk name, but
the disk does not change: only the default directory changes on this disk.

Returned value

If the directory change is successful, O will be returned, and -1 otherwise.

8.4.5.33 Function CheckSum

Declaration:

unsi gned | ong CheckSun({unsigned | ong start_addr, unsigned |ong end_addr, int
addr _space);

Description

Calculates the checksum for data in the addr_space memory that starts from start_addr and ends at
end_addr. The checksum is calculated by simple addition of byte values.

Returned value
The 32-bit checksum.

Example
printf("%08l X', CheckSum(0, Ox1FFF, AS_DATA));

8.4.5.34 Function chsize

Declaration:

int chsize(long handle, long size);

Description

© 2021 Phyton, Inc. Microsystems and Development Tools

272 CPI2_MODEL Device Programmers - CPI2-B1

Changes the file size.

chsize changes the size of the file associated with handle. It can truncate or extend the file,
depending on the value of size compared to the file's original size.

The mode, in which you open the file, must allow writing.

If chsize extends the file, it will append the null characters (\0). If it truncates the file, all data
beyond the new end-of-file indicator will be lost.

Returned value

On success, chsize returns 0. On failure, it returns -1 and sets the errnol31 global variable to one
of the following values:

EACCESS Perm ssi on deni ed
EBADF Bad fil e nunber
ENGCSPC No space left o

8.4.5.35 Function ClearAllBreaks

Declaration:
void ClearAll Breaks();
Description

Clears all breakpoints of all types.

8.4.5.36 Function ClearBreak

Declaration:
voi d Cl earBreak(unsi gned | ong addr);
Description

Clears the code breakpoint at the specified address.

8.4.5.37 Function ClearBreaksRange

Declaration:

voi d Cl ear BreaksRange(unsigned | ong start_addr, unsigned |ong end_addr);
Description

Clears the code breakpoints in the range from start_addr to end_addr inclusive.

8.4.5.38 Function clearerr

Declaration:
void clearerr(unsigned long stream);

Description

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 273

Resets error indication.

clearerr resets the specified stream's error and end-of-file indicators to 0. Once the error indicator
is set up, the stream operations continue to return the error status until a call is made to clearerr
or rewind. The end-of-file indicator is reset with each input operation.

8.4.5.39 Function ClearWindow

Declaration:

voi d Cl ear Wndow(unsi gned | ong handl e);

Description

Clears the specified window, which can be a User 180window] 28 or an 1/O Stream [188window] 183

8.4.5.40 Function close

Declaration:

int close(long handle);
Description

Closes afile.

The close function closes the file associated with handle (the file handle obtained from a call to
creat, creatnew[2, creattempl 27, dupl278), dup2[27),).

It does not write the Ctrl-Z character to the end of the file. If you want to terminate the file with Ctrl-
Z, you must explicitly output it.

Returned value

Upon successful completion, close returns 0. On error (if it fails because handle is not the handle
of a valid, open file), close returns -1 and the errnolssll global variable is set to

EBADF Bad file number
8.4.5.41 Function CloseProject

Function CloseProject

Declaration:

voi d Cl oseProject();

Description

Closes the project. If no project is loaded, nothing will happen.

Calling this function is useful, if you want to prepare the shell for loading a program without a project.

8.4.5.42 Function CloseWindow

Declaration:
voi d Cl oseW ndow(unsi gned | ong handl e);
Description

Closes the specified window. The handle parameter is the window identifier produced by the calls of the
OpenWindow(318, and Findwindow[289 functions.

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

274 CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.43 Function cos

Declaration:

float cos(float x);

Description

The cos function calculates the cosine of the floating-point number x.
Returned value

The cos function returns the cosine of argument 0x.

8.4.5.44 Function Cr

Declaration:

void Cr();
Description

Works like the Enter key.

8.4.5.45 Function creat

Declaration:

int creat(char path[], int amode);

Description

Creates a new file or overwrites an existing one.

Note. Remember that the backslash in a path requires "\\'.

creat creates a new file or prepares to rewrite an existing file given by path. amode applies only to
newly created files. A file created with creat is always created in the translation mode specified by
the _fmode = global variable (O_TEXT or O_BINARY). If the file exists and the write attribute is
set, then creat will truncate the file to the length of 0 bytes, leaving the file attributes unchanged. If
the existing file has the read-only attribute set, then the creat call will fail and the file will remain
unchanged. The creat call examines only the S_IWRITE bit of the access-mode word amode. If
this bit is 1, then the file can be written to. If the bit is 0, then the file is marked as read-only. All
other operating system attributes are set to 0. amode can be one of the following (defined in

system.h):

Value of amode Access permission
S IWRITE Perm ssion to wite
S | READ Perm ssion to read

SIREAD | S IWITE Permssion to read and wite (wite perm ssion
i nplies read perm ssion))

Returned value

Upon successful completion, creat returns the new file handle (a nonnegative integer); otherwise,
it returns -1. In the event of error, the errno[3s1 global variable is set to one of the following:

EACCES Per m ssi on deni ed
ENCENT Path or file nane not found
EMFI LE Too many open files

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 275

8.4.5.46 Function creatnew

Declaration:

int creatnew(char path[], int amode);
Description

Creates a new file.

creatnew is identical to creat with the only exception: if the file exists, then creatnew will return
error and leave the file untouched. The amode

FA HIDDEN Hidden file
FA RDONLY Read-only attribute
FA SYSTEM System file

Returned value

Upon successful completion, creatnew returns the handle of new file (a non-negative integer);
otherwise, it returns -1. In the event of error, the errnol 31 global variable is set to one of the
following values:

EACCES Permission denied
EEXIST File already exists

EMFILE Too many open files
ENOENT Path or file name not found

8.4.5.47 Function creattemp

Declaration:
int creattemp(char path(], int attrib);
Description

Creates a unique file in the directory associated with the path name. A file created with creattemp
is always created in the translation mode specified by the _fmode[s=% global variable (O_TEXT or
O_BINARY).

path is the path name ending with backslash (\). The unique file name is selected in the directory
given by path. The newly created file name is stored in the path string supplied. path should be
long enough to hold the resulting file name. The file is not automatically deleted, when the program
terminates.

creattemp accepts attrib, the DOS attribute word. Upon successful file creation, the file pointer is
set to the beginning of the file. The file is opened for both reading and writing.

The attrib argument to creattemp can be either zero or an OR-combination of any of the following
constants (defined in system.h):

FA_HI DDEN Hi dden file

FA_RDONLY Read-only attribute

FA_SYSTEM System file

Returned value

Upon successful completion, the new file handle (a hon-negative integer) is returned; otherwise, -
1 is returned. In the event of error, the errnol global variable is set to one of the following values:

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

276 CPI2_MODEL Device Programmers - CPI2-B1

EACCES Perm ssi on deni ed
EMFI LE Too many open files
ENCENT Path or file nane not found

8.4.5.48 Function CurChar

Declaration:
char CurChar();
Description

Returns the character under the cursor. If the cursor is beyond the line end, then CurChar() will return 0.

8.4.5.49 Function Curcuit

Declaration:
voi d Curcuit(unsigned long handle, int x1, int yl, int x2, int y2);
Description

Draws an unpainted ellipse using the pen selected with the SelectPen[33 function; (x1, y1) are the
coordinates of the upper left corner of the rectangle, in which the ellipse will be drawn, (x2, y2) are the
coordinates of its lower right corner.

8.4.5.50 Function delay

Declaration:
voi d del ay(unsigned int mlliseconds);
Description

Suspends the program for the specified time interval.

Example
while (1)
{
Step(); /1 to execute a step
RedrawScreen(); // To update the screen. Step() does not do it.
del ay(1000); /1 wait for one second. During this time step
} /'l results can be observed

8.45.51 Function DelChar

Declaration:
voi d Del Char (int count=1);

Description

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 277

Deletes count characters beginning from the cursor position

8.4.5.52 Function DelLine

Declaration:
voi d Del Li ne(int count=1);
Description

Deletes the current line.

8.4.5.53 Function difftime

Declaration:
unsigned long difftinme(int tinmel[], int tine2[]);
Description

Obtains the time difference between the two counts transferred in the timel and time2 arrays. The counts
should be obtained with the gettime[2%} function; time1 is the earlier count.

Because the gettime function uses the system timer, computation error for the intenal can be as long as 104
milliseconds.

Returned value
The time difference between two counts in milliseconds.
Example

int tinmel[4];
int tinme2[4];
gettinme(tinmel);
while (1)

{

gettine(tinme2);
printf("Difference: %u", difftime(tinel, time2));

8.4.5.54 Function DisplayText

Declaration:
voi d Di spl ayText (unsi gned | ong handl e, char text[], int x, int y);
Description

Displays text in the window using a monospaced font and text coordinates, that is, x is the column number,
and y is the line number.

To display text with any font and in any place, use the DisplayTextFlEﬁ function.

8.4.5.55 Function DisplayTextF

Declaration:

© 2021 Phyton, Inc. Microsystems and Development Tools

278

CPI2_MODEL Device Programmers - CPI2-B1

voi d Di splayText F(unsi gned | ong handl e, char text[], int x, int y);
Description

Displays text in the window using a proportional font (see the SelectFont[333 function) and graphical
coordinates (in pixels).

8.4.5.56 Function Down

Declaration:
voi d Down(int count=1);
Description

Movwe the cursor count lines down. The same result can be achieved by incrementing the CurLine[ssf) built-in
variable.

8.4.5.57 Function dup

Declaration:

int dup(long handle);

Description

Duplicates a file handle.

dup creates a new file handle that has the following common features with the original file handle:

Same open file or device
Same file pointer (that is, changing the file pointer of one changes the other)

Same access mode (read, write, read/write))
handlecreat| 23lopen(=4), dupl27), or dup2[274
Returned value

Upon successful completion, dup returns the new file handle, a nonnegative integer; otherwise,
dup returns -1. In the event of error, the errnolsel global variable is set to one of the following
values:

EBADF Bad file nunber

EMFI LE Too many open files

8.4.5.58 Function dup2

Declaration:

int dup2(long oldhandle, long newhandle);

Description

Duplicates a file handle (oldhandle) onto an existing file handle (newhandle).

dup?2 creates a new file handle that has the following common features with the original file handle:
Same open file or device

Same file pointer (that is, changing the file pointer of one changes the other)

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 279

Same access mode (read, write, read/write)

dup2 creates a new handle with the value of newhandle. If the file associated with newhandle is
open, when dup?2 is called, then the file will be closed.

newhandle and oldhandle are the file handles obtained from the creatl 23, open[=®, duplz4), or
dup2[274 call.

Returned value

dup2 returns 0 on successful completion, and -1 otherwise. In the event of error, the errno[zsf)
global variable is set to one of the following values:

EBADF Bad file number
EMFILE Too many open files

8.4.5.59 Function Ellipse

Declaration:
void Ellipse(unsigned Iong handle, int x1, int yl, int x2, int y2);
Description

Draws an ellipse using the pen selected with the SelectPen[333) function and paints it with the brush selected
by the SelectBrush[33 function; (x1, y1) are the coordinates of the upper left corner of the rectangle, in which
the ellipse will be drawn; (x2, y2) are the coordinates of its lower right corner.

8.4.5.60 Function eof

Declaration:

int eof (I ong handl e);

Description

Checks for end-of-file.

eof determines whether the file associated with handle has reached the end-of-file.
Returned Value

If the current position is the end-of-file, then eof will return 1; otherwise, it will return 0. The return value of -1
indicates an error; the errnol6h global variable is set to

EBADF Bad file nunber

8.4.5.61 Function Eof

Declaration:
voi d Eof ();
Description

Movwe the cursor to the file end.

© 2021 Phyton, Inc. Microsystems and Development Tools

280 CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.62 Function Eol

Declaration:
voi d Eol ();

Description

Mowe the cursor to the end of the current line.

8.4.5.63 Function exec

Declaration:
int exec(char prograni{], char parans[], char work dir[], int show=SW SHOW ;
Description

Starts a Windows application or DOS.

Parameters:
program - the name of the file under execution
parans - the command |ine paraneters
work _dir - the working directory for the application to be started
show - the constant to define the application wi ndow di splay node.

Constants with the SW_prefix are given in system h.

Note that the script file will not wait for the started application to stop operation, if special measures are not
taken.

Returned value

What was returned by the function API ShellExecute, that is, HINSTANCE of the application or error
message.

Example

exec("pifedit.exe", "conmand. pif");

8.4.5.64 Function ExecMenu

Declaration:
int ExecMenu(char title[], char items[], int start_sel=0);
Description

Displays the dialog menu on the screen.

Parameters:

title - the dialog box title;

items - the line describing the menu itens. Every itemends with the
zero

byte; the last itemends with two zero bytes.
start_sel - the nunmber of the nenu itemthat will be selected by default,
when the w ndow opens.

Returned value

The number of the menu item selected by the user or -1, if the Cancel button or Esc key is pressed. The
selected menu line is copied to the SelectedString [364) built-in variable. If the user cancels the selection,
then the null string will be copied to the Selected String.

Example

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 281

int choice =
ExecMenu(" Choose programto | oad", /1l the title
" Load Exanple #1 \0"
" Load Exanple #2 \0"

" Load Exanple #3 \0" /1l the itens
"\0"); // the second zero at the end
switch (choice)
{
case 0: LoadProgran("EXAMPLELl. OMF", LF_UBROF); break;
case 1: LoadProgran("EXAMPLE2. OW", LF_UBROF); break;
case 2: LoadProgran("EXAMPLE3. OW", LF_UBROF); break;
default: printf("No exanple will be |oaded");

}

8.4.5.65 Function ExecScript

Declaration:

voi d ExecScript(char file_name[], char include_dir[]="", char defines[]="", int
debug=0) ;

Description

The ExecScript function starts the script file, whose name is indicated in the file_name parameter.

Parameters:
file_nane[] The nanme of the script file to be started. It can contain
a partial or full path. If extension is not specified,
the CMD extension will be automatically substituted. If the
file

is not found, the <%CM% systemdirectory will be
automatically scanned.

include_dir[] The listing of directories, where the conpiler will search
for the #include-files. You can specify
multiple directory nanes separated by senicol on.

char defines[] The string with the definitions of preprocessor variables.
Al'so, see the Script Files [178dial og[17)
debug If not equal to O, then the Script Source window[1 will be

opened for the | oaded script file. After |oading the
script
file, switches to the debug node.

Note that only the first parameter is required, other parameters have the default values.
If the specified script file is already under executing, then another script file cannot be loaded.

Also, see Inclusion of Files (#include)%.

8.4.5.66 Function exit

Declaration:
void exit();
Description

Stops execution of the script file that called this function. The file is unloaded from the memory, if possible.

© 2021 Phyton, Inc. Microsystems and Development Tools

282

CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.67 Function ExitProgram

Declaration:
voi d ExitProgram);
Description

Exits the work session of <%CM%> in the same way as by closing its window.

8.4.5.68 Function exp

Declaration:

float exp(float x);

Description

The exp function raises number e to the power x. The argument shall range from -88.72280 to 88.72280.
Returned value

The exp function returns the value of e raised to the power x.

8.4.5.69 Function Expr

Declaration:
unsigned long Expr(char str[]);
Description

Calculates the expression and returns the result as a 32-bit integer. The expression string is
passed in the str parameter.

Example
printf("Result=%08IX", Expr("array[i] -> StartValue");
Also, see AddrExpr| 260, FloatExpr[2ef, Expressions[2:9).

8.4.5.70 Function fabs

Declaration:

float fabs(float x);

Description

The fabs function determines the absolute value of the floating-point number val.
Returned function

The fabs function returns the absolute value of val.

8.4.5.71 Function fclose

Declaration:
int fclose(unsigned long stream);

Description

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 283

Closes a stream.

fclose closes the specified stream. All buffers associated with the stream are flushed before
closing. The system-allocated buffers are freed upon closing.

Returned value

fclose returns 0 on success. It will return EOF, if any errors are detected.

8.4.5.72 Function fdopen

Declaration:

unsigned long fdopen(long handle, char type[]);
Description

Associates a stream with a file handle.

obtained from creat[2zdupl 278, dup2[27), or openl 4. The type of stream must match the mode of
the opened handle. The type string used in a call to fdopen is one of the following values:

Value Description

r Open for reading only.

Create for writing.

a Append; open for writing at the end-of-file or create for writing, if the file does not exist.
r+ Open an existing file for update (reading and writing).

w+ Create a new file for update.

at

To specify that the given file is being opened or created in the text mode, append t to the value of
the type string (for example, rt or w+t).

Similarly, to specify the binary mode, append brb or w+b). If t or b is not given in the type string,
the mode is controlled by the _fmode global variable. If _fmode is set to O_BINARY, then files will
be opened in the binary mode. If _fmode is set to O_TEXT, then files will be opened in the text
mode.

Note. The O_* constants are defined in file system.h.

. output cannot be directly followed by input without intervening fseekor rewind,;
. input cannot be directly followed by output without intervening fseek, rewind, or an input that
encounters the end-of-file.

Returned value

On successful completion, fdopen returns the unsigned long identifying the stream. In the event of
error, it returns 0.

8.4.5.73 Function feof

Declaration:

int feof(unsigned long stream);

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

284 CPI2_MODEL Device Programmers - CPI2-B1

Description
Detects the end-of-file on a stream.

feof tests the given stream for the end-of-file indicator. Once the indicator is set, the read
operations on the file return the indicator until rewind is called or the file is closed. The end-of-file
indicator is reset with each input operation.

Returned value

feof will return nonzero, if the end-of-file indicator is detected on the last input operation on the
specified stream, and 0, if the end-of-file has not been reached.

8.4.5.74 Function ferror

Declaration:

int ferror(unsigned long stream);
Description

Detects errors on stream.

ferror tests the given stream for a read or write error. If the stream's error indicator is set, it will
remain set until clearerr or rewind is called or until the stream is closed.

Returned value

ferror will return nonzero, if an error is detected on the specified stream.

8.4.5.75 Function fflush

Declaration:

int fllush(unsigned long stream);
Description

Flushes a stream.

If the given stream has buffered output fflush writes the output for stream to the associated file.
The stream remains opened after fflush is executed. fflush produces no effect on the unbuffered
stream.

Returned Value

fflush returns 0 on success. It will return EOF, if any errors are detected.

8.4.5.76 Function fgetc

Declaration:

int fgetc(unsigned | ong stream;
Description

Gets character from stream.

fgetc returns the next character on the specified input stream.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 285

Returned Value

On success fgetc returns the character read after converting it to an int without the sign extension. On the
end-of-file or error, it returns EOF.

8.4.5.77 Function fgets

Declaration:

int fgets(char dest[], int n, unsigned |ong stream;
Description

Gets a string from a stream.

fgets reads characters from stream into the dest string. The function stops reading, when it reads either n-1
characters or the newline character, which event comes first. fgets retains the newline character at the end of
dest. The null byte is appended to s to mark the end of the string.

Returned Value

TRUE is returned on success; and FALSE on the end-offile or error.

8.4.5.78 Function FileChanged

Declaration:
int FileChanged();
Description

If the file is changed since the last save, it will return 1; O otherwise.

8.4.5.79 Function filelength

Declaration:

long filelength(long handle);

Description

Gets file size in bytes.

filelength returns the length (in bytes) of the file associated with handle.
Returned Value

On success, filelength returns the long value of the file length in bytes. On error, it returns -1 and
the errnol 361 global variable is set to

EBADF Bad file number

8.4.5.80 Function fileno

Declaration:

int fileno(unsigned |ong stream;

Description

© 2021 Phyton, Inc. Microsystems and Development Tools

286

CPI2_MODEL Device Programmers - CPI2-B1

Gets file handle.

fileno returns the file handle for the given stream. If stream has more than one handle, then fileno will return
the handle assigned to the stream, when it was first opened.

Returned Value

fileno returns the integer file handle associated with the stream.

8.4.5.81 Function FillRect

Declaration:
void FillRect(unsigned long handle, int x1, int yl, int x2, int y2);
Description

Draws a painted rectangle using the brush selected with the SelectBrush[33 function; (x1, y1) are the
coordinates of the upper left corner; (x2, y2) are the coordinates of the lower right corner.

8.4.5.82 Function findfirst

Declaration:
int findfirst(char path[], char ffblk[], int attrib);
Description

Starts search for files with the attributes specified in parameter attrib by the mask specified in path. The
search can be continued with the findnext/ 288 function.

The ffblk parameter specifies an internal data storage buffer for the function. Its size should be 48 bytes.

After findfirst access, the ffblk buffer contains information about the found file. The _ff_attribl2sh, _ff time[263),
_ff_datel 268, _ff_size[26% and _ff_name[26! functions receive fiblk as the parameter and return information on
the file.

Returned value
If the specified file is found, it will return 0, and -1 otherwise.
Example

char ffblk[48];
int done = findfirst("c:\\data.*", ffblk, 0);
| ong total _size = 0;
whil e (@ done)
{
total _size += _ff_size(ffblk);
done = findnext (ffblk);
}

printf("Total size of the files @8 u", total _size);

8.4.5.83 Function findnext

Declaration:
int findnext(char ffblk[]);

Description

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 287

Continues the search for files started by the findfirst[288 function.
Parameter ffblk is the buffer filled upon the findfirst access.

After the findnext access, the ffolk buffer contains information on the found file. The _ff_attribl26d), _ff_time[2e3),
ff_datel 268, _ff size[269 and _ff_name[26} functions receive fiblk as the parameter and return information on
the file.

Returned value

If the specified file is found, it will return 0, and -1 otherwise.
Example

See function findfirst[2e8).

8.4.5.84 Function FindWindow

Declaration:

unsi gned | ong Fi ndW ndow(int type);

Description

Finds the window of specified type (disassembler, dump, etc.) among the opened windows.

Constants describing window types are declared in the system.h header file (see description of the
OpenWindow([318) function).

If the window of specified type is opened but minimized, it will not be found.
Returned

The identifier of the opened window, if the latter is found; otherwise it returns O.

8.4.5.85 Function FirstWord

Declaration:
void FirstWord();

Description

Mowes the cursor to the first non-empty character in the line.

8.4.5.86 Function FloatExpr

Declaration:

float FloatExpr(char str[]);

Description

The same as Expr[283, but the result is a floating-point number.

Also, see AddrExprl 260, Exprl2s3)
8.4.5.87 Function floor

Declaration:

float floor(float x);

Description

© 2021 Phyton, Inc. Microsystems and Development Tools

288 CPI2_MODEL Device Programmers - CPI2-B1

The floor function calculates the greatest integer number that is no greater than x.
Returned value

The floor function returns the greatest floating-point number that is no greater than argument x, with the
fractional part equal to O.

8.4.5.88 Function fmod

Declaration:

float fnod(float x, float y);

Description

The fmod function calculates the remainder of dividing x by .
Returned function

The fmod function returns the value equal to x - i * y, for integer i, and the absolute value of x - i * y is less
than the absolute value of y. The returned value has the same sign as x. Ify is equal to 0, then 0 will be
returned.

8.4.5.89 Function fnsplit

Declaration:

int fnsplit(char path[], char drive[], char dir[], char nane[], char ext[]);

Description

Selects components of the path to the file. Receives the file name with the path, for example, C:
\PROGRAM\TEST.C, as the parameter path, and copies the components of the path to appropriate lines. The
useful constants for describing the array sizes (MAXPATH, MAXDRIVE, MAXDIR, MAXFILE, MAXEXT) are
defined in the system.h file.

If any of the path components is missing, then 0 will be the first character in the corresponding line.
Returned value

Returns the flag word describing the result. Constants corresponding to the flag word bits (WILDCARDS,
EXTENSION, ...) are defined in system.h.

8.4.5.90 Function fopen

Declaration:

unsi gned | ong fopen(char file_name[], char node[]);

Description
Opens a stream.

fopen opens the file specified by file_name and associates a stream with it. fopen returns an unsigned long
value to be used as the stream identificator in subsequent operations. The mode string used in calls to fopen
is one of the following values:

Val ue Description

r Open for reading only.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 289

w Create for witing.

a Append; open for witing at the end-of-file or create for witing, if the
file does not exist.

r+ Open an existing file for update (reading and writing).

WH Create a new file for update.

a+ Open for append; open (or create, if the file does not exist) for update
at the end of file.

To specify that the given file is being opened or created in the text mode, append t to the value of the type
string (for example, rt or w+t).

Similarly, to specify the binary mode, append b to the type string (for example, rb or w+b). If t or b is not given
in the type string, then the mode is controlled by the _fmodelgﬁﬁ global variable. If _fmode is set to
O_BINARY, then files will be opened in the binary mode. If _fmode is set to O_TEXT, then files will be opened
in the text mode.

Note. The O_* constants are defined in file system.h.

When a file is opened for update, both input and output can be done on the resulting stream; however,
- output cannot be directly followed by input without intervening fseekor rewind;

- input cannot be directly followed by output without intervening fseek, rewind, or an input that encounters
the end-of-file.

Returned Value

On successful completion fdopen returns the unsigned long identifying the stream. In the event of error, it
returns O.

8.4.5.91 Function ForwardTill

Declaration:
void ForwardTill (char delimts[]);
Description
Mowes the cursor right until any character from delimits or the end-of-line is reached.
Example:
ForwardTi Il (" ({[<");

8.4.5.92 Function ForwardTillNot

Declaration:
voi d ForwardTill Not(char delimts[]);
Description

Mowes the cursor right until any character not contained in delimits or the end-of-line is reached.

8.4.5.93 Function fprintf

Declaration:
int fprintf(unsigned |ong stream char format[], ...);
Description

Writes formatted output to a stream.

© 2021 Phyton, Inc. Microsystems and Development Tools

290 CPI2_MODEL Device Programmers - CPI2-B1

fprintf accepts a series of arguments, applies to each of them a format specifier contained in the format string
pointed to by format and outputs the formatted data to a stream. There must be the same number of format
specifiers as the arguments.

Note. Your arguments passed to this function shall match the format line. In case of mismatch, the <%CM%
> program may crash, because it cannot check the correspondence between the format string and
parameters passed. For more, see description of format specifiers for printf|3_19'1.

Returned Value

fprintf returns the number of bytes that were output. In the event of error, it returns EOF.

8.4.5.94 Function fputc

Declaration:

int fputc(char c, unsigned |ong stream;
Description

Puts a character on a stream.

fputc outputs character c to the specified stream.
Returned Value

On success, fputc returns character c. On error, it returns EOF.

8.4.5.95 Function fputs

Declaration:

int fputs(char s[], unsigned |ong stream;
Description

Outputs a string on a stream.

fputs copies the s null-terminated string to the given output stream; it does not append the newline character
and the terminating null character is not copied.

Returned Value

On success fputs returns a non-negative value. On error it returns the value of EOF.

8.4.5.96 Function FrameRect

Declaration:
voi d FraneRect (unsi gned I ong handle, int x1, int yl, int x2, int y2);
Description

Draws an unpainted rectangle using the brush selected with the SelectBrush[3 function. The drawing line
width is always of 1 pixel; (x1, y1) are the coordinates of the upper left corner, (x2, y2) are the coordinates of
the lower right corner.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 291

8.4.5.97 Function fread

Declaration:

int fread(void s[], int size, int n, unsigned |ong stream;
Description

Reads data from a stream.

fread reads n items of data of size bytes long each from the given input stream into the block pointed to by s.
The total amount of bytes read is (n * size).

Returned Value

On success fread returns the number of items (not bytes) actually read. On end-of-file or error it returns a
short count (possibly 0).

8.4.5.98 Function FreeLibrary

Declaration:
voi d FreelLibrary(unsigned |ong inst);
Description

De-allocates the specified DLL. HINSTANCE obtained by the LoadLibraulm call is transferred as the
parameter.

8.4.5.99 Function freopen

Declaration:

unsigned long freopen(char file_name[], char mode][], unsigned long stream);
Description

Associates a new file with an opened stream.

freopen substitutes the specified file in place of the open stream. It closes the stream regardless
of whether the open succeeds. freopen is useful for changing the file attached to stdin, stdout, or
stderr. The mode string used in calls to fopen is one of the following values:

Value Description

r Open for reading only.

w Create for writing.

a

r+ Open an existing file for update (reading and writing).
w+ Create a new file for update.

a+ Open for append; open (or create, if the file does not exist) for update at the end of file.

To specify that the given file is being opened or created in the text mode, append t to the value of
the type string (for example, rt or w+t).

© 2021 Phyton, Inc. Microsystems and Development Tools

292 CPI2_MODEL Device Programmers - CPI2-B1

Similarly, to specify the binary mode, append brb or w+b). If t or b is not given in the type string,
the mode is controlled by the _fmode[3] global variable. If _fmode is setto O_BINARY, then files
will be opened in the binary mode. If _fmode is set to O_TEXT, then files will be opened in the text
mode.

Note. The O_* constants are defined in file system.h.

When a file is opened for update, both input and output can be done on the resulting stream;

however,

. output cannot be directly followed by input without intervening fseekor rewind;

. input cannot be directly followed by output without intervening fseek, rewind, or an input that
encounters end-of-file.

On successful completion freopen returns the argument stream. On error it returns NULL.

8.4.5.100 Function frexp

Declaration:
float frexp(float x, int exponent[]);
Description

The frexp function breaks up the floating-point number f into the normalized mantissa and exponent (the
integer power of number two), which is stored in the memory cell indicated by exp.

Returned value

The frexp returns the value of x such that x is the floating-point number in double format ranging from 0.5 to 1
or equal to 0, and the first argument of this function is equal to x multiplied by 2 raised to the power exp.

8.4.5.101 Function fscanf

Declaration:

int fscanf(unsigned long stream, char formatf], ...);
Description

Scans and formats input from a .

format. Finally, fscanf stores the formatted input at the address passed to it as the argument
following the format. The number of format specifiers and addresses must be the same as the
number of input fields.

1. Your arguments passed to this function shall match the format line. In case of mismatch, the
CPI2-B1 program may crash, because it cannot check the correspondence between the format
string and parameters passed. For details on format specifiers, see the scanf Format
Specifiers.

2. All arguments for this function shall be arrays, because only the array parameters are passed
by address to functions. Also, see example for scanf{3sh.

fscanf can stop scanning a particular field before it reaches the normal end-of-field character
(whitespace) or it can terminate entirely for a number of reasons. See scanf[ss1) for a discussion
on possible causes.

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 293

Returned Value

fscanf returns the number of input fields successfully scanned, converted and stored. The return
value does not include the scanned fields that were not stored. If fscanf attempts to read at the
end-of-file, then EOF will be returned. If no fields are stored, then 0 will be returned.

8.4.5.102 Function fseek

Declaration:

int fseek(unsigned long stream, long offset, int fromwhere);
Description

Repositions a file pointer on a stream.

fseek sets the file pointer associated with stream to a new position that is offset bytes from the file
location given by fromwhereoffset should be 0 or the value returned by ftelll 2s¥fromwhere must be
one of the values 0. 1, or 2, which represent three symbolic constants (defined in system.h) as
follows:

Constant fromwhere File location

SEEK SET O Beginning of the file
SEEK CUR 1 Current file pointer position

SEEK_END 2 End-of-file

fseek discards any character pushed back. fseek is used with stream I/O; for file handle /O, use
Iseek[8. The next operation on the update file after fseek can be either input or output.

Returned Value

fseek will return 0, if the pointer is successfully moved, and nonzero on failure. fseek may return 0
indicating that the pointer has been moved successfully, when in fact it has not been. This is
because DOS, which actually resets the pointer, does not verify the setting. fseek returns an error
code only on an unopened file or device. In the event of an error return, the errnolzef] global
variable is set to one of the following values:

EBADF Bad file pointer
EINVAL Invalid argument
ESPIPE lllegal seek on device

8.4.5.103 Function ftell

Declaration:
long ftell (unsigned |long stream;
Description

Returns the current file pointer.

© 2021 Phyton, Inc. Microsystems and Development Tools

294 CPI2_MODEL Device Programmers - CPI2-B1

ftell returns the current file pointer for stream. The offset is measured in bytes from the beginning of the file
(for the binary file). The value returned by ftell can be used in the subsequent call to fseek| 293

Returned Value

on success ftell returns the current file pointer position. It returns -1L on error and sets the errnol et} global
variable to a positive value. In the event of error return, the errol a6l global variable is set to one of the
following values:

EBADF Bad file pointer
ESPI PE Il egal seek on device

8.4.5.104 Function fwrite

Declaration:

int fwite(void buf[], int size, int n, unsigned |ong stream;
Description

Writes to a stream.

fwrite appends n items of data of size bytes long each to the given output file. The data written begins at buf.
The total number of bytes written is (n * size). In the declarations, buf is an array object.

Returned Value

On successful completion fwrite returns the number of items (not bytes) actually written. On error it returns a
short count.

8.4.5.105 Function GetByte

Declaration:
unsi gned int GetByte(unsigned |ong addr, int addr_space);
Description

Reads a byte from the specified address in the specified address space (the addr_space parameter).
Constants with the AS__ prefix for microcontroller memory areas (address spaces) are defined in the system.h
header file.

Returned value
The read byte.
Example
printf("9®2X", GetByte(AS DATA, Ox1F);

8.4.5.106 Function getc

Declaration:
int getc(unsigned long stream;
Description

Gets character from stream.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 295

getc returns the next character on the given input stream and increments the stream's file pointer to point to
the next character.

Returned Value

On success, getc returns the character read, after converting it to an int without the sign extension. On the
end-of-file or error, it returns EOF.

8.4.5.107 Function getcurdir

Declaration:
int getcurdir(int drive, char directory[]);
Description

Writes the name of the current directory for the device specified in parameter drive (O - current disk; 1 - A; 2 -
B; ...) to parameter directory.

The received name does not contain the disk name and does not start with symbol \.
Returned value

0 will be returned, if the name is received successfully, and -1 otherwise

8.4.5.108 Function getcwd

Declaration:
voi d getcwd(char path[]);
Description
Gets the current working directory.

getcwd gets the full path name (including the drive) of the current working directory and stores it in buf.

8.4.5.109 Function getdate

Declaration:

voi d getdate(int date[]);

Description

Obtains the current computer date. The time information is stored in the date array:

date[0] - day (1...31)
date[1] - month (1...12)
date[2] - year

Example

int date[3];
get dat e(dat e) ;
printf("Date: %/ %/ %", date[0], date[l], date[2]);

© 2021 Phyton, Inc. Microsystems and Development Tools

296 CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.110 Function getdfree

Declaration:

unsigned long getdfree(int drive);
Description

Gets disk free space.

getdfree accepts a drive specifier in drive (0 for default, 1 for A, and so on) and returns the disk
free space in bytes.

8.4.5.111 Function getdisk()

Declaration:
int getdisk();
Description

Gets the current drive number. getdisk gets the current drive number and returns an integer: O for
A 1for B, 2 for C, and so on.

8.4.5.112 Function getenv

Declaration:
int getenv(char nane[], char dest[]);
Description

Obtains the value of the name environment variable. The name should be in the upper case and should not
end with the equal sign (=). The variable value is copied to dest.

Returned value
1, if the specified variable is found; and 0 otherwise.

Example

char val ue[MAXPATH] ;
get env(" COVMSPEC', val ue);

8.4.5.113 Function GetFileName

Declaration:
voi d GetFil eName(char dest[]);

Description
Copies the name of the current Edit [188window[183 to the dest array.

8.4.5.114 Function getftime

Declaration:

unsigned long getftime(long handle);

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference

Description

Gets the file date and time.

getftime retrieves the file time and date for the disk file associated with the open handle. The

return value has the following format:
Bits Value

0..4 two seconds
5..10 minutes
11...15 hours
16...20 days
21...24 months
25..31 year - 1980

Returned Value

getftime returns the file date and time on success. In the event of an error, OXFFFFFFFF is

returned and the errno global variable is set to one of the following values:

EACCES Permission denied
EBADF Bad file number
EINVFNC Invalid function number

8.4.5.115 Function GetLine

Declaration:
voi d GetLine(char dest[]);

Description

Copies the whole current line to the dest array.

8.4.5.116 Function GetMark

Declaration:
voi d Get Mark(int nunber);

Description

Retrieves the bookmark with the number number (1...10).

8.4.5.117 Function GetMemory

Declaration:
voi d Get Menory(void dest[], int

n,

unsi gned | ong addr,

i nt addr_space);

297

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

298 CPI2_MODEL Device Programmers - CPI2-B1

Description

Reads n-byte memory block from the specified address in the specified memory area (the addr_space
parameter) to the dest array. Constants with the AS_ prefix for microcontroller memory areas (address
spaces) are defined in the system.h header file.

Example

char array[20]; GetMenory(array, sizeof(array), 0x20, AS_DATA);

8.4.5.118 Function GetScriptFileName

Declaration:

voi d GetScriptFileName(char script_name[], char file_nane[]);

Description

GetScriptFileName copies to file_name the fully qualified path of the script file passed in script_name.

Each script has name containing 8 characters: the name of the script source file without path and extension.
The GetScriptFileName function retrieves the path to the source file.

Example:

char pat h[MAXPATH] ;
Get ScriptFileNane("test", path);

8.4.5.119 Function gettime

Declaration:

void gettime(int tinme[]);

Description

Obtains the current computer time. The time information is stored in the time array:

time[0] - hundredths of a second (0...99)
time[1] - seconds (0...59)

time[2] - minutes (0...59)

time([3] - hours (0...23)

Because the gettime function uses the system timer, you may expect a time error of about 52 milliseconds.
Example
int time[4];
while (1)
{
gettinme(tine);
printf("Time: %:%:%. %", time[3], time[2], time[1], time[O]);
}

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 299

8.4.5.120 Function getw

Declaration:

int getw(unsigned |ong stream;
Description

Gets integer from stream.

getw returns the next integer in the specified input stream. It assumes no special alignment in the file. getw
should not be used, when the stream is opened in the text mode.

Returned Value
getw returns the next integer on the input stream. On the end-of-file or error, getw returns EOF.

Note. Because EOF is the allowed value for getw to return, feofl 2831 or ferror[28 should be used to detect the
end-of-file or error.

8.4.5.121 Function GetWindowHeight

Declaration:

i nt Get W ndowHei ght (unsi gned | ong handl e);
Description

Obtains the height of the specified window user area.

The handle parameter is the window identifier produced by the call of the OpenWindolef'ﬂ, and
FindWindowl(28M functions.

This function is useful, when it is necessary to draw in the User 180window[189 regardless of its size.
Returned value

The height of the specified window user area in pixels.

8.4.5.122 Function GetWindowWidth

Declaration:

int Get WndowwW dt h(unsi gned | ong handl e);
Description

Obtains the width of the specified window user area.

The handle parameter is the window identifier produced by the call of the OpenWindow[318, and
FindWindow[28 functions.

This function is useful, when it is necessary to draw in the User [183window[183 regardless of its size.

Returned value

The height of the specified window user area in pixels.

8.4.5.123 Function GetWord

Declaration:
unsi gned int GetWbrd(unsigned |ong addr, int addr_space);

© 2021 Phyton, Inc. Microsystems and Development Tools

300

CPI2_MODEL Device Programmers - CPI2-B1

Description

Reads a word (16 bits) from the specified address in the specified memory area (the addr_space parameter).
Constants with the AS__ prefix for microcontroller memory areas (address spaces) are defined in the system.h
header file.

Returned value
The read word.
Example
printf("9@4X", GetWord(AS_DATA, Ox1F);

8.4.5.124 Function GetWord

Function GetWord

Declaration:

unsi gned int GetWrd(unsigned | ong addr, int addr_space);
Description

Reads a word (16 bits) from the specified address in the specified memory area (the addr_space parameter).
Constants with the AS__ prefix for microcontroller memory areas (address spaces) are defined in the system.h
header file.

Returned value
The read word.
Example
printf("%4X", GetWord(AS_DATA, Ox1F);

8.4.5.125 Function GotoXY

Declaration:

voi d GotoXY(int col, int line);

Description

Set the cursor position. The cursor is moved to line number 'line’' and column number ‘col'.

Alternatively, to position the cursor, just assign values to the CurCol[3h and CurLine[36 built-in variables.

8.4.5.126 Function HStep

Declaration:
voi d HStep();
Description

Executes one high-level step. Calling this function makes sense only if a program containing the character
information is loaded. If no such program is loaded, then calling HStep will be equivalent to calling the
Stepl'34A function.

Note. The screen is not updated automatically after the HStep call. To organize automatic updates, use the
RedrawScreen[32 function at the appropriate moment.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 301

8.4.5.127 Function inport

Declaration:

unsigned int inport(unsigned int port_num;
Description

Reads a value (word) from the specified parallel port.
Returned value

The read word.

Example

unsi gned int val = inport(0x300);

8.4.5.128 Function inportb

Declaration:

unsi gned char inportb(unsigned int port_num;
Description

Reads a value (byte) from the specified parallel port.
Returned value

The read byte.

Example

unsi gned char val = inportb(0x3F8);

8.4.5.129 Function Inspect

Declaration:
unsi gned int I|nspect(char nane[]);
Description

Opens the Inspector window for the specified name (the name parameter).

8.4.5.130 Function InvertRect

Declaration:
void InvertRect(unsigned long handle, int x1, int yl, int x2, int y2);
Description

Inverts colors within a rectangular area; (x1, y1) are the coordinates of the upper left corner, (x2, y2) are the
coordinates of the lower right corner.

© 2021 Phyton, Inc. Microsystems and Development Tools

302

CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.131 Function isalnum

Declaration:

i nt isalnumunsigned char c);

Description

The isalnum function checks, whether parameter c is a Latin alphabet letter or a digit (A-'Z, 'a-'z', or '0-'9").
Returned value

The isalnum function will return a non-zero value, if ¢ is an alphabetic character or a digit, and will return 0
otherwise.

8.4.5.132 Function isalpha

Declaration:

i nt isal pha(unsigned char c);

Description

The isalpha function checks, if parameter c is a Latin alphabet character (A-'Z, or 'a-'z").
Returned value

The isalpha function will return a non-zero value, if c is an alphabetic character, otherwise it will return 0.

8.4.5.133 Function isascii

Declaration:

int isascii(unsigned char c);

Description

The isascii function checks, if parameter c is an ASCII character.
Returned value

The isascii function will return a non-zero value, if the value of c is greater than or equal to 0 but less than 128.

8.4.5.134 Function isatty

Declaration:

int isatty(long handle);
Description

Checks for device type.

isatty determines, whether handle is associated with any one of the following character devices:
a term nal
a consol e
a printer
a serial port

Returned value

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 303

If the device is one of the four character devices listed above, then isatty returns a nonzero
integer. Otherwise, isatty returns 0.

8.4.5.135 Function iscntrl

Declaration:

int iscntrl (unsigned char c);
Description

The iscntrl function checks, if parameter c is a control character (from 0x00 to Ox1F, or OX7F).

Returned character

The iscntrl function will return a non-zero value, if ¢ is a control character or digit, otherwise it will return 0.

8.4.5.136 Function isdigit

Declaration:
int isdigit(unsigned char c);
Description
The isdigit function checks, if parameter c is a decimal number ('0-'9").

Returned value

The isdigit function will return a non-zero value, if parameter c is a decimal number, otherwise it will return 0.

8.4.5.137 Function isgraph

Declaration:

int isgraph(unsigned char c);

Description

The isgraph function checks, if parameter c is a printed character excluding spaces (0x21 - OX7E).

Returned value

The isgraph function will return a non-zero value, if c is a printed character, otherwise it will return 0.

8.4.5.138 Function islower

Declaration:

int islower(unsigned char c);

Description

The islower function checks, if parameter c is a lower case letter (‘a'-'z’).
Returned value

The islower function will return non-zero value, if c is a lower case character, otherwise it will return 0.

© 2021 Phyton, Inc. Microsystems and Development Tools

304

CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.139 Function isprint

Declaration:

int isprint(unsigned char c);

Description

The isprint function checks, if parameter c is a printed character (0x20 - Ox7E).
Returned value

The isprint function will return a non-zero value, if ¢ is an alphabetic character or a digit, otherwise it will return
0.

8.4.5.140 Function ispunct

Declaration:
i nt ispunct(unsigned char c);
Description

The ispunct function checks, if parameter cis a punctuation symbol of the following set:

! " # $ % & ' (
) * + , - . / :
; < = > ? [\
] " - { I } -

Returned value

The ispunct function will return a non-zero value, if ¢ is a punctuation symbol, otherwise it will return 0.

8.4.5.141 Function isspace

Declaration:

int isspace(unsigned char c);

Description

The isspace function checks, if parameter c is a space character (0x09 - 0xOD or 0x20).
Returned function

The isspace function will return a non-zero value, if ¢ is a space character, otherwise it will return 0.

8.4.5.142 Function isupper

Declaration:

i nt isupper(unsigned char c);

Description

The isupper function checks, if parameter c is an upper case letter (A-Z).
Returned value

The isupper function will return a non-zero value, if ¢ is an upper case letter, otherwise it will return 0.

8.4.5.143 Function isxdigit

Declaration:

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 305

int isxdigit(unsigned char c);

Description

The isxdigit function checks, if parameter c is a hexadecimal number (A-'F', 'a*-f, '0-'9").
Returned value

The isxdigit function will return a non-zero value, if parameter ¢ is a hexadecimal number, otherwise it will
return O.

8.4.5.144 Function itoa

Declaration:
void itoa(int value, char string[], int radix);
Description

Converts an integer number (value) into the character string (string). The radix parameter is the radix of
notation (2...36), in which the conwersion is carried out.

8.4.5.145 Function LastChar

Declaration:
i nt Last Char (unsigned | ong handl e);
Description

Returns the code of the button pressed at the last call of Wgetcharlga or the hexadecimal number entered at
the last call of wgethex[3.

8.4.5.146 Function LastEvent

Declaration:
int LastEvent (unsigned | ong handl e);
Description

Returns the type of the latest event that occurred to the window and is accessed by the
WaitWindowEvent[35 function.

Returned value
The type of event (constants are defined in system.h):

WE_REDRAW is the window data update request, an image display request. This event is generated in all
those cases, when it is necessary to update the window, for example, at the Windows task switch. This event
informs you that the window wishes to redraw itself, and your script file, generally speaking, does not have to
respond to this event. If the script file does not update the window data, the old picture will be drawn.

WE_MOUSEBUTTON (only the User[88 window[283) - You clicked a mouse button, when the mouse cursor
was in the window. Information on the click can be obtained by calling the LastEventIntx[308 function:

- LastEventInt1() and LastEventint2() return the coordinates in pixels (X, y) for the point, where the cursor
was located, when the button was clicked.
- LastEventInt3() and LastEventint4() return the text coordinates (x, y) for the point, where the cursor was

located, when the button was clicked; x is the column number; y is the line number.

WE_USERBUTTON (only the User window) You clicked one of the buttons added to the window by the
AddButton[268 function. The LastEventint1() function returns identifier of the clicked button. It equivalent to the
button identifier returned by the AddButton function.

© 2021 Phyton, Inc. Microsystems and Development Tools

306 CPI2_MODEL Device Programmers - CPI2-B1

WE_TOOLBARBUTTON (only the User window) You clicked one of the O...F buttons on the window toolbar.
These buttons are particularly intended for simple interactions with the window. Using the customer buttons
(see AddButton 26&) is more complicated, although it is more flexible.

WE_CHAR - (only the I/O Stream window) You pressed an alphanumeric key on the keyboard.
LastEventInt1() returns its code.

WE_CLOSE - You closed the window. After that, further window operation is useless and should be stopped.

8.4.5.147 Function LastEventInt{1...4}

Declaration:
int LastEventInt{1l...4}(unsigned |ong handle);
Description

Four functions - LastEventint1(), LastEventint2(), LastEventint3(), and LastEventInt4() - return parameters that
are generated upon event occurrence in a user window. See LastEvent[303), WaitWindowEvent| s8]

8.4.5.148 Function LastString

Declaration:
int LastString(unsigned |ong handle, char s[]);
Description

Copies the string entered at the last call of wgetstring[%7 to the string (the s parameter).

8.4.5.149 Function LineTo

Declaration:
voi d LineTo(unsigned long handle, int x, int y);
Description

Draws a line from the point set up by the MoveTol 313 or LineTo function to the point with coordinates (x, y).
The line is drawn with the pen selected with the SelectPen[) function (or a standard pen, when SelectPen
was not called). After the LineTo call, the benchmark is moved to the destination point.

Example

/1 To draw triangle ABC

MoveTo(handl e, 10, 10); // point A
Li neTo(handl e, 50, 50); // A-->B
Li neTo(handl e, 20, 40); // B -->C
Li neTo(handl e, 10, 10); // C--> A

8.4.5.150 Function LoadDesktop

Declaration:
voi d LoadDesktop(char file_nane[]);

Description

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 307

Downloads the specified screen configuration file (see Configuration Files[52").

8.4.5.151 Function Left

Declaration:
void Left(int count=1);
Description

Mowe the cursor count positions left. The same result can be achieved by decrementing the CurColl 26R buiilt-
in variable.

8.4.5.152 Function LoadLibrary

Declaration:
unsi gned | ong LoadLi brary(char lib_nanme[]);
Description

Loads the specified DLL by calling the LoadLibrary function of Windows API. After the loading, the functions
from this DLL can be called with the CallLibraryFunction[273,

Returned value

What is returned by the LoadLibrary function of Windows API, that is, HINSTANCE of the loaded DLL or error
code.

Example
unsi gned | ong instance = LoadLi brary("EXTEND. DLL");

8.4.5.153 Function LoadOptions

Declaration:
voi d LoadOptions(char file_name[]);
Description

Downloads the specified option file (see Configuration Files| 527).

8.4.5.154 Function LoadProgram

Declaration:

voi d LoadProgram(unsi gned char file_nane[], int format, int addr_space=AS_CODE,
unsi gned | ong start_addr=0);

Description
Downloads a program into the microcontroller memory.
Parameters:

file_name - the name of the |oaded file.

f or mat - the format of the |oaded file. Character constants with the
prefix LF_ declared in the systemh header file
are provided for this parameter. To understand this
better, open the Load Program di al og
and see the list of formats.

© 2021 Phyton, Inc. Microsystems and Development Tools

308 CPI2_MODEL Device Programmers - CPI2-B1

addr _space - the microprocessor address space, where the programis
downl oaded
(the code nenory by default).
start_addr - the |load address. This paraneter is used only for | oading
a file that is the binary nenory imge.

Not only programs can be loaded: you can also load data memory images that were saved, for example, with
the SaveDatal 33 function.

Example
LoadProgran("C:\\ PROG \ TEST. D32", LF_UBROF);

8.4.5.155 Function LoadProject

Declaration:

voi d LoadProject(char file_name[]);

Description

Loads the project with the specified name. If no extension is specified, then ".IDE" will be assumed.

<%CM%> will perform the same actions as if the project were loaded via menu.

8.4.5.156 Function locking

Declaration:

int |ocking(long handle, int cnd, long |length);
Description

Sets or resets file-sharing locks.

locking provides interface to the operating system file-sharing mechanism. handle specifies the opened file to
be locked or unlocked. The region to be locked or unlocked starts at the current file position, and is length
bytes long. Locks can be placed on arbitrary, nonoverlapping regions of any file. A program attempting to read
or write into the locked region will retry the operation three times. If all three retries fail, the call fails with an
error. cmd specifies the action to be taken:

0 Unl ock the region, which nust have been previously | ocked.

1 Lock the region. If the lock is unsuccessful, try once a second for 10
seconds before giving up.

2 Lock the region. If the lock if unsuccessful, give up i mmedi ately.

Returned Value

On successful operations, locking returns 0. Otherwise, it returns -1 and the ermol 360 global variable is set to
one of the following values:

EACCES File al ready | ocked or unl ocked

EBADF Bad file nunber

EDEADL OCK File cannot be | ocked after 10 retries (cmd is LK _LOCK or
LK_RLCK)

El NVAL Invalid cnd, or SHARE. EXE not | oaded

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 309

8.4.5.157 Function log

Declaration:

float |og(float x);

Description

The log function calculates the natural logarithm of the floating-point number val.
Returned function

The log function returns the natural logarithm of val. If val is negative or equal to 0, then the function will return
_MINUS_INF.

8.4.5.158 Function log10

Declaration:

float log(float x);

Description

The log function calculates the natural logarithm of the floating-point number val.
Returned Value

The log function returns the natural logarithm of val. If val is negative or equal to 0, then the
function will return _MINUS_INF.

8.4.5.159 Function Iseek

Declaration:

long Iseek(long handle, long offset, int fromwhere);
Description

Moves file pointer.

Iseek sets the file pointer associated with handle to a new position, which is offset bytes beyond
the file location specified by fromwhere. fromwhere must be one of the following symbolic
constants (defined in system.h):

SEEK _CUR Current file pointer position
SEEK _END End-of-file
SEEK_SET File beginning

Returned Value

Iseek returns the offset of the pointer new position measured in bytes from the file beginning. Iseek
returns -1L on error, and the errno[31) global variable is set to one of the following values:

EBADF Bad file handle
EINVAL Invalid argument
ESPIPE lllegal seek on device

© 2021 Phyton, Inc. Microsystems and Development Tools

310 CPI2_MODEL Device Programmers - CPI2-B1

For the devices incapable of seeking (such as terminals or printers), the return value is undefined.

8.4.5.160 Function Itoa

Declaration:

void Itoa(long value, char string[], int radix);
Description

Converts a long integer number (value) into the character string (string).

The radix parameter is the radix used for conversion (2...36).

8.4.5.161 Function MaxAddr

Declaration:
unsi gned | ong MaxAddr (i nt addr_space);
Description

Returns the upper boundary address of the processor address space. Constants with the AS_ prefix for the
addr_space parameter are defined in the system.h header file.

Example
See MinAddr[a3

8.4.5.162 Function memccpy

Declaration:

int menccpy(void dest[], void src[], int ¢, int n, int dest_index=0, int
src_i ndex=0);

Description

The memccpy function copies the contents of the scr memory block to the dest memory block. Copying
stops, when either byte with the value of ¢ is encountered and copied or when c bytes are copied.

Returned value

The memccpy function returns the number of copied bytes.

8.4.5.163 Function memchr

Declaration:
int menchr(void s[], int ¢, int n, int index=0);
Description

The memchr function searches for the first entry of character ¢ (which was earlier converted into the unsigned
char) among the first n characters (interpreted as the unsigned char) of the object specified by s.

Returned value

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 311

The memchr function returns the number of the found byte counting from the beginning of the array, or -1, if
the byte is not found

8.4.5.164 Function memcmp

Declaration:
int mencnp(void si[], void s2[], int n, int sl_index=0, int s2_index=0);
Description

The memcmp function compares the first n bytes of objects s1 and s2 and returns the comparison result. The
bytes are interpreted as the unsigned char.

Resul t Meani ng

<0 sl is less than s2
=0 butl is equal to s2
>0 sl is greater than s2

Returned value

The memcmp function returns the positive, negative, or zero value depending on the result of comparing the
first n bytes of objects s1 and s2.

8.4.5.165 Function memcpy

Declaration:
voi d nencpy(void dest[], void src[], int n, int dest_index=0, int src_index=0);
Description

The memcpy function copies n bytes from the buffer specified by scr to the buffer specified by dest. If these
buffers have common memory cells (that is, they overlap), then the memcpy function does not ensure that
byte copying is executed correctly. If overlapping is possible, then use the memmowe function instead.

Returned value

None.

8.4.5.166 Function memicmp

Declaration:
int memcnp(void s1[], void s2[], int n, int sl index=0, int s2_index=0);
Description

The memicmp function compares the first n bytes of objects s1 and s2 regardless of the character case, and
returns the comparison result. The bytes are interpreted as the unsigned char.

Resul t Meani ng

<0 sl is less than s2
=0 butl is equal to s2
>0 sl is greater than s2

Returned value

The memicmp function returns the positive, negative or zero value, depending on the result of comparing the
first n bytes of objects s1 and s2.

© 2021 Phyton, Inc. Microsystems and Development Tools

312 CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.167 Function memmove

Declaration:

voi d memmove(void dest[], void src[], int n, int dest_index=0, int
src_i ndex=0);

Description

The memmowe function copies n bytes from the buffer specified by scr to the buffer specified by dest. When
these buffers have common memory cells (that is, they overlap), the memmovwe function ensures that bytes
are copied correctly.

Returned value

None.

8.4.5.168 Function memset

Declaration:
void nenset(void s[], int c, int n, int index=0);
Description

The memset function sets the first n bytes of the object, specified by s, equal to the value transferred to ¢
(and conwerted into the unsigned char).

Returned value

None.

8.4.5.169 Function MessageBox

Declaration:

int MessageBox(char format[], ...);

Description

The MessageBox function displays data in accordance with the format line in the form of a dialog message.

Note. Your arguments passed to this function shall match the format line. In case of mismatch, the <% CM%
> program may crash, because it cannot check the correspondence between the format string and
parameters passed.

Returned value

1, if the Close button is pressed;
0, if the Esc key is pressed.
Also, see:

Formatted Input-Output Functions[?53)
Alphabetical List of Script Language Built-in Functions and Variables[258)

8.4.5.170 Function MessageBoxEx

Declaration:

i nt MessageBoxEx(int flags, char title[], char format[], ...);

Description

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 313

This function displays data in accordance with the format line in the form of a dialog message. The dialog has
title, buttons and icon, which are specified by flags and title.

The flags parameter may contain one or several flags that determine the dialog buttons and icon. For these
flags, file system.h defines constants with the MB__ prefix.

The title parameter is the text in the dialog title bar.
The format parameter is the format string, it may be followed by data (see printf a1d).

Note. Your arguments passed to this function shall match the format line. In case of mismatch, the <% CM%
> program may crash, because it cannot check the correspondence between the format string and
parameters passed.

Returned value

The function returns one of constants with the ID prefix determined in system.h, which corresponds the dialog
button pressed.

Example:
if (MessageBoxEx(MB_YESNO | MB_I CONQUESTION, "Confirmexit", "Do you want
to exit?") == | DYES)

Exi t Program();
Also, see:
Formatted Input-Output Functions[250)
Alphabetical List of Script Language Built-in Functions and Variables[258)

8.4.5.171 Function MinAddr

Declaration:
unsi gned | ong M nAddr (i nt addr_space);
Description

Returns the lower boundary address of the processor address space. Constants with the AS_ prefix for the
addr_space parameter are defined in the system.h header file.

Example
/1 To set the whole data nmenory to zero
int i;
for (i = MnAddr(AS_DATA), i <= MaxAddr (AS_DATA); i ++)
SetByte(i, AS DATA, 0);

8.4.5.172 Function mkdir

Declaration:

int nkdir(char path[]);

Description

Creates a directory. mkdir creates a new directory from the given path name path.
Returned Value

mkdir will return 0, if the new directory is created.

The returned value of -1 indicates an error and the errnol2¢f global variable contains one of the
following values:

EACCES Permission denied

© 2021 Phyton, Inc. Microsystems and Development Tools

314 CPI2_MODEL Device Programmers - CPI2-B1

ENOENT No such file or directory

8.4.5.173 Function MoveTo

Declaration:

voi d MoveTo(unsigned long handle, int x, int y);

Description

Sets up the coordinates of the start point of the line to be drawn with the LineTol208 function.
Examples

/1 To draw a line fromthe point with coordinates (10, 10) to the point (50,
50).

MoveTo(handl e, 10, 10);

Li neTo(handl e, 50, 50);

8.4.5.174 Function MoveWindow

Declaration:
voi d MoveW ndow(unsi gned | ong handle, int x, int y);
Description

Mowes the specified window. The handle parameter is the window identifier produced by the call of the
OpenWindow(318), and FindWindow[287 functions. x and y are the new coordinates (in pixels) of the window
upper left corner in the user area of the <% CM%> window. Coordinates 0, O correspond to the window upper
left corner.

The window size does not change.

8.4.5.175 Function movmem

Declaration:

voi d novnem(voi d dest[], void src[], unsigned int length, int dest_index=0, int
src_i ndex=0);

Description

The movmem function copies length bytes from the buffer specified by scr to the buffer specified by dest.
When these buffers have common memory cells (that is, they overlap), the movmem function ensures that
byte are copied correctly.

Returned value

None.

8.4.5.176 Function open

Declaration:
int open(char path[], int access);
Description

Opens a file for reading or writing.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 315

open opens the file specified by path and prepares it for reading and/or writing as determined by the
value of access. To create a file in a particular mode, you can either assign to the _fmode[3
global variable or call open with the O_CREAT options ORed with the translation mode desired.
For example, the call:

open("XMP", O_CREAT | O_BINARY);

creates a binary-mode file named XMP, truncating its length to O bytes, if it already exists. For
open, access is constructed by performing the bitwise OR with the flags from the following list.
Only one flag from the first list can be used (and one must be used); the remaining flags can be
used in any logical combination. These symbolic constants are defined in system.h.

Read/Write Flags:

O _RDONLY Open for reading only.
O _VIRONLY Open for witing only.
O RDVWR Open for reading and writing

Returned Value

On success, open returns a honnegative integer (the file handle). The file pointer, which marks the
current position in the file, is set to the beginning of the file. On error, open returns -1 and the
errnol st global variable is set to one of the following values:

EACCES Per m ssi on deni ed

El NVACC I nvalid access code

EMFI LE Too many open files
ENCENT No such file or directory

8.4.5.177 Function OpenEditorWindow

Declaration:

unsi gned | ong OpenEdi t or Wndow(char file_nane[]);
Description

Opens the Source[188 window[188 and loads the specified file into it.

If the window with the specified file is already opened, it will become active and the new window will not be
opened.

8.4.5.178 Function OpenStreamWindow

Declaration:

unsi gned | ong OpenStreamiN ndow(char title[]);

Description

Opens the /0 Stream [8% windowl 183 window and sets up its title (the title parameter).

You can do the same with the OpenWindoleﬁ function, by transferring the WIN_STREAM constant to it as
a parameter, however in this case, you cannot set up the title.

If there is an "unowned" stream window on the screen, the new window will not be opened and the already
opened window will be used.

© 2021 Phyton, Inc. Microsystems and Development Tools

316

CPI2_MODEL Device Programmers - CPI2-B1

The new window opens in a random place on the screen and has certain preset size. To resize the window,
use the SetWindowSize[333 function, or do it manually.

Returned value
The identifier of opened window. It can be transferred to other window operation functions as a parameter.
Example

unsi gned | ong handl e = OpenStreamW ndow " Serial port 1/0");

8.4.5.179 Function OpenUserWindow

Declaration:

unsi gned | ong OpenUser W ndow(char title[]);
Description

Opens the User | 188) window[189 and specifies its title (parameter title).

This can also be done with the OpenWindolea function, by transferring the WIN_USER constant to it as a
parameter, however in this case, you cannot specify the title.

If there is an unowned user window opened on the screen, a new window will not be opened and the current
window will be used.

A new window is opened in a random screen location and has the preset size. To resize the window, use the
SetWindowSize[3sd) function or do it manually.

Returned value
The identifier of the opened window. It can be transferred as a parameter to other window operation functions.
Example

unsi gned | ong handl e = OpenUser W ndow(" A/ D conversion");

8.4.5.180 Function OpenWindow

Declaration:
unsi gned | ong OpenW ndow(i nt type);
Description

Opens the specified window type (disassembler, dump, etc.). The constants to describe the window types are
declared in the system.h header file:

W N_CONSOLE - Consol e

W N_DUMP - Menory Dunp
W N_AUTO_WATCHES - Aut oWat ches
W N_I NSPECT - I nspector

W N_SF_SOURCE - Script source
W N_STREAM - 1/0O stream

W N_USER - User wi ndow

The View | 521 menul 521 gives access to the available windows.

The window will be opened, if an instruction of the View menu is executed. If you need to move a window
and/or change its size, use the SetWindowSize[338, SetWindowSizeT[339), or MoveWindowl 313 functions.

Returned value

The identifier of the opened window. It can be transferred as a parameter to other window operation functions.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 317

For Windows programmers: identifier is a window HWND.

8.4.5.181 Function outport

Declaration:

voi d outport(unsigned int port_num unsigned int value);
Description

Writes a value (word) to the specified parallel port.

8.4.5.182 Function outportb

Declaration:

voi d out portb(unsigned int port_num unsigned char val ue);

Description

Write a value (byte) to the specified parallel port.

8.4.5.183 Function peek

Declaration:

i nt peek(unsigned int segnent, unsigned int offset);

Description

Reads a word from computer memory by a specified segment: offset. The segment is a selector.
Returned value

The read word.

8.4.5.184 Function peekb

Declaration:

unsi gned char peekb(unsigned int segnent, unsigned int offset);

Description

Reads a byte from the computer memory by a specified segment:offset. The segment is a selector.
Returned value

The read byte.

8.4.5.185 Function poke

Declaration:
voi d poke(unsigned int segnent, unsigned int offset, int value);
Description

Writes a word to the computer memory by a specified segment: offset. The segment is a selector.

© 2021 Phyton, Inc. Microsystems and Development Tools

318

CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.186 Function pokeb

Declaration:
voi d pokeb(unsigned int segment, unsigned int offset, unsigned char val ue);
Description

Writes a byte to the computer memory by specified segment: offset. segment is a selector.

8.4.5.187 Function Polyline

Declaration:
voi d Pol yline(unsigned |ong handl e, unsigned int points[], int n);
Description

Connects the points, whose coordinate pairs are transferred in the points array, with a line. The n parameter
is the amount of points. Each subsequent horizontal coordinate should be greater than the previous one.

Example
Pol yl i ne(handle, { 0, O,
10, 20,
12, 30,
78, 10 }, 4);

8.4.5.188 Function pow

Declaration:

fl oat pow(float x, float y);
Description

The pow function raises x to the power y.
Returned function

The pow function returns the result of raising x to the power y. If y is equal to 0, then the function will return
1.0. Ifx == 0 and y < 0, then the error will occur (falling outside the range) and the function will return 0. If x <
0 and y is not an integer, then the error of falling outside the range will also occur and the pow function will
return 0.

8.4.5.189 Function pow10

Declaration:

float powlO(int Xx);

Description

The pow10 function raises number 10 to the power x.
Returned value

The pow10 function returns the result of raising 10 to the power x. If x is 0, then the function will return 1.0.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 319

8.4.5.190 Function printf

Declaration:
void printf(char formatf], ...);
Description

The printf function displays the values of transferred parameters in the Console [104in accordance
with the format line.

Upon every printf access, data is displayed in the new window line, that is, "\n" is automatically added to the
displayed string.

If the Console window is already opened, it will be automatically opened.

The wprintflgfﬂ function provides more capabilities for the formatted output, but it requires certain preparatory
operations.

Note. Your arguments passed to this function shall match the format line. In case of mismatch, the CPI2-B1
program may crash, because it cannot check the correspondence between the format string and parameters
passed.

For more info, see:
Format String[2
Format Specifiers[z22)
Flag Characters|[0
Width Specifiers[a3
Precision Specifiers[23

Input-size Modifiers[323
Type Characters|[33

Format Specifier Conventions| 323

Returned Value
Her.

Example
printf("Counter = %d\n"

"Value = %08IX",

Counter, Value);

8.4.5.190.1 printf Conversion Type Characters

The information in this table is based on the assumption that no flag characters, width specifiers,
precision specifiers, or input-size modifiers were included in the format specifier|s22).

Note. Certain accompany some of these format specifiers.

Type Char Expected Input Format of output

© 2021 Phyton, Inc. Microsystems and Development Tools

320

CPI2_MODEL Device Programmers - CPI2-B1

Numerics
d

E

G
Characters
c

s

%

Integer
Integer
Integer
Integer
Integer
Integer
Floating-point
Floating-point

Floating-point

Floating-point
Floating-point

Character
String pointer

None

signedinteger
signed decimal integer
unsigned octal integer
unsigned decimal integer
unsigned hexadecimal int (with a, b, c, d, e, f).
unsigned hexadecimal int (with A, B, C, D, E, F).
signed value of the form [-]dddd.dddd.
signed value of the form [-]d.dddd or [+/-]ddd

signed value in either ef form, based on given value and
precision. Trailing zeros and the decimal point are printed
if necessary.

Same as e; with E for exponent.
Same as g; with E for exponent if e format used.

Single character.

Prints the % character.

Infinite floating-point numbers are printed as +INF and -INF.
An IEEE Not-A-Number is printed as +NAN or -NAN.

8.4.5.190.2 printf Flag Characters

The Flag characters can appear in any order and combination.

Flag

+
blank

#

Description

Left-justifies the result, pads on the right with blanks. If not given, it right-justifies the
result, pads on the left with zeros or blanks.

Signed conversion results always begin with a plus (+) or minus (-) sign.

If value is nonnegative, the output begins with a blank instead of a plus; negative
values still begin with a minus.

Specifies that arg is to be converted using an alternate form|322,

Note. Plus (+) takes precedence over blank () if both are given

8.4.5.190.3 printf Format Specifier Conventions

Certain conventions accompany some of the printf format specifiers (322 for the following

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 321

conversions:

- %e or %E[=i

- %q or %G| 21

- %x or %X =20
Note. Infinite floating-point numbers are printed as +INF and -INF. An IEEE Not-a-Number is
printed as +NAN or -NAN.

8.4.5.190.3.1 %e or %E Conversions

The argument is converted to match the style

[-] d.ddd...e[+/-]ddd

where:

. one digit precedes the decimal point

« the number of digits after the decimal point is equal to the precision;
. the exponent always contains at least two digits.

8.4.5.190.3.2 %f Conversions

The argument is converted to decimal notation in the style

[-] ddd.ddd...
where the number of digits after the decimal point is equal to the precision (if a non-zero precision
was given).

8.4.5.190.3.3 %g or %G Conversions

The argument is printed in style e, E or f, with the precision specifying the number of significant
digits.

Trailing zeros are removed from the result, and a decimal point appears only if necessary.

The argument is printed in style e or f (with some restraints) if g is the conversion character. Style
e is used only if the exponent that results from the conversion is either greater than the precision
or less than —4.

The argument is printed in style if G is the conversion character.

8.4.5.190.3.4 %xor %X Conversions

For x conversions, the letters a, b, ¢, d, e, and f appear in the output.

© 2021 Phyton, Inc. Microsystems and Development Tools

322 CPI2_MODEL Device Programmers - CPI2-B1

For X conversions, the letters A, B, C, D, E, and F appear in the output.

8.4.5.190.3.5 Alternate Forms for printf Conversion

If you use the # flag conversion character, it has the following effect on the argument (arg) being

converted:

Conversion character How # affects the argument

csdiu No effect.

0 0 is prepended to a nonzero arg.

X X 0x (or 0X) is prepended to arg.

eEf The result always contains a decimal point even if no digits
follow the point. Normally, a decimal point appears in
these results only if a digit follows it.

gG Same as e and E, except that trailing zeros are not removed.

8.4.5.190.4 printf Format Specifiers

The printf format specifiers have the following form:
% [flags] [width] [.prec] [F|N|h|I|L] type_char

Each format specifier begins with the percent character (%). After the % come the following
optional specifiers, in this order:

Optional Format String Components

These are the general aspects of output formatting controlled by the optional characters,
specifiers, and modifiers in the format string:

Component Optional/Required
[flags] (Optional) Flag character(s)[=20 Output justification, numeric
signs, decimal points, trailing zeros, octal and hex
prefixes.
[width] (Optional) Width specifier(z2s] Minimum number of characters to
print, padding with blanks or zeros.
(Optional) Precision specifier| 323l Maximum number of characters
to print; for integers, minimum number of digits to print.
[FINJhIIL] (Optional) Input size modifier Override default size of next input
argument:H = short int
L =long
L = long double

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 323

type_char (Required) Conversion-type character[zs).

8.4.5.190.5 printf Format String

The format string shall be present in each of the printf function calls. It controls how each function

will convert, format, and print its arguments. The format string is a character string that contains

two types of objects:

. Plain characters are copied verbatim to the output stream.

. Conversion specifications fetch arguments from the argument list and apply formatting to
them.

Plain characters are just copied verbatim to the output stream. Conversion specifications fetch
arguments from the argument list and apply formatting to them.

Note. There must be enough arguments for the format; if not, the results will be unpredictable and
possibly disastrous. Excess arguments (more than required by the format) are ignored.

8.4.5.190.6 printf Input-size Modifiers

These modifiers determine how printf functions interpret the next input argument, arg(f].

Modifier Type of arg arg is interpreted as ...
F D, S, A far pointer
N and n) A near pointer (Note. N cannot be used with any
conversion in the huge model.)
h diouxX Ashort int
I diouxX Along int
eEfgG A double
L eEfgG Along double
arg.

Both F and N reinterpret the input variable arg. Normally, the arg for a p, %s, or n conversion is a
pointer of the default size for the memory model.

h, I, and L override the default size of the numeric data input arguments. Neither h nor | affects
character (c,s) or pointer () types.

8.4.5.190.7 printf Precision Specifiers

The printf precision specifiers set the maximum number of characters (or minimum number of
integer digits) to print. A printf precision specification always begins with a period (".") to separate
it from any preceding width specifier.

© 2021 Phyton, Inc. Microsystems and Development Tools

324 CPI2_MODEL Device Programmers - CPI2-B1

Then, like the width specifier, precision is specified in one of two ways:
. directly, through a decimal digit string;
. indirectly, through an asterisk (*).

If you use an * for the precision specifier, the next argument in the call (treated as an int) specifies
the precision.

If you use asterisks for the width or the precision, or for both, the width argument must
immediately follow the specifiers, followed by the precision argument, then the argument for the
data to be converted.

[.prec] How Output Precision Is Affected

(none) Precision set to default:

1 for d,i,,u,x,X types;

6 for e,E,f types;

All significant digits for g,G types;
Print to first null character for s types;
No effect on types.

.0 For d,i,o,u,x types, precision set to default.
for e,E,f types, no decimal point is printed.
.n n characters or n decimal places are printed.

If the output value has more than n characters, the output might be truncated or
rounded. (Whether this happens depends on the type character.)

The argument list supplies the precision specifier, which must precede the
actual argument being formatted.

No numeric characters will be output for a field (i.e., the field will be blank) if the following
conditions are all met:

. you specify an explicit precision of O;

. the format specifier for the field is one of the integer formats (d, i, o, u, or X);

. the value to be printed is 0

How [.prec] Affects Conversion
Char Type Effect of [.prec] (.n) on Conversion

Specifies that at least n digits are printed.
n digits,

output value is left-padded x with zeros.
If input argument has more than n digits,
the output value is not truncated.

X o —TaAa

e Specifies that n characters are

E printed after the decimal point, and

f the last digit printed is rounded.

g Specifies that at most n significant

G digits are printed.

C Has no effect on the output.

S Specifies that no more than n characters are printed.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 325

8.4.5.190.8 printf Width Specifiers

The width specifier sets the minimum field width for an output value. Width is specified in one of
two ways:

. directly, through a decimal digit string;

. indirectly, through an asterisk (*).

If you use an asterisk for the width specifier, the next argument in the call (which must be an int)
specifies the minimum output field width.

Nonexistent or small field widths do cause truncation of a field. If the result of a conversion is
wider than the field width, the field is expanded to contain the conversion result.
Width specifier How output width is affected

n At least n characters are printed. If the output value has less than n
characters, the output is padded with blanks (right-padded if - flag given,
left-padded otherwise).

On At least n characters are printed. If the output value has less than n
characters, it is filled on the left with zeros.
* The argument list supplies the width specifier, which must precede the

actual argument being formatted.

8.4.5.191 Function pscanf

Declaration:
int pscanf(char title[], char format(], ...);
Description

performs the same as scanf; however, it receives an additional parameter, the header of the
prompt dialog box.

pscanf scans a series of input fields one character at a time reading from a stream. After that,
each field is formatted in accordance with a format specifier passed to pscanf in the format string
pointed to by format. Finally, pscanf stores the formatted input at the address passed to it as the
argument following the format. The number of format specifiers and addresses must be the same
as the number of input fields.

Notes
1. scanf[#h Format Specifiers.
2. All arguments for this function shall be arrays, because only the array parameters are passed

by address to functions. Also, see example for scanf(ssh,

pscanf can stop scanning a particular field before it reaches the normal end-of-field character
(whitespace) or it can terminate entirely for a number of reasons. See scanf(ss!) for a discussion
on possible causes.

Returned Value

pscanf returns the number of input fields successfully scanned, converted and stored. The return
value does not include the scanned fields that were not stored. If no fields are stored, then 0 will
be returned.

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

326 CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.192 Function putc

Declaration:

int putc(int ¢, unsigned long stream);

Description

Outputs a character to a stream.

putc outputs character c to the stream specified by stream.

Returned Value

On success, putc returns the character printed, c. On error, putc returns EOF.

fprintfl 2e3)
fputc|290)
fputs | 2o0)
fwrite[o0
getc| 263
printfl=)
putw/ 328

8.4.5.193 Function putenv

Declaration:

int putenv(char namel]);

Description

Sets up the value of the environment variable. Here, is a string like:
"COMSPEC=C:\COMMAND.COM"

Returned value

1, if the value of specified variable is set up; otherwise it returns 0.

8.4.5.194 Function putw

Declaration:

int putw(int ¢, unsigned long stream);

Description

Puts an integer on a stream.

putw outputs integer c to the given . putw neither expects nor causes special alignment in the file.
Returned Value

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 327

On success, putw returns integer ¢. On error, putw returns EOF. Because EOF is the allowed
integer, use ferror[2sA to detect errors with putw.

8.4.5.195 Function rand

Declaration:
int rand();
Returns a pseudorandom number in the range from 0 to 32767.

8.4.5.196 Function random

Declaration:

int random(int num);
Description

-1.

8.4.5.197 Function randomize

Declaration:

void randomize();

Description

Initializes a random number generator by a random number.

8.4.5.198 Function read

Declaration:

int read(long handle, void buff], int len);
Description

Reads from file.

read attempts to read len bytes from the file associated with handle into the buffer pointed to by
buf. For a file opened in text mode, then read removes the carriage returns and reports the end-of-
file, when it reaches Ctrl-Z. The handle file handle is obtained from the creat|27h, open[=4, dup[23,
or dup2[27 call. On disk files, read begins reading at the current file pointer. When the reading is
complete, it increments the file pointer by the number of bytes read. On devices, the bytes are
read directly from the device.

Returned Value

On successful completion, read returns an integer indicating the number of bytes placed in the
buffer. If the file is opened in the text mode, then read does not count the carriage returns or Ctrl-Z
characters in the number of bytes read. On the end-of-file, read returns 0. On error, read returns -
1 and sets the errnolssf] global variable to one of the following two values:

EACCES Permission denied
EBADF Bad file number

© 2021 Phyton, Inc. Microsystems and Development Tools

328 CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.199 Function Rectangle

Declaration:
void Rectangle(unsigned long handle, int x1, int y1, int X2, int y2);
Description

Draws an unpainted rectangle using the pen selected with the SelectPen(=3 function and paints it
using the brush selected with the SelectBrushl[s3 function; (x1, y1) are the coordinates of the
upper left corner; (x2, y2) are the coordinates of the lower right corner.

8.4.5.200 Function RedrawScreen

Declaration:
void RedrawScreen();
Description

Updates all open windows of the name. Use this function, when the script file changes the
microcontroller resources and you want to view the result of the change. A script file cannot
update the screen on its own, because it takes significant time (as compared with the script file
execution speed).

Example:
SetByte(addr, AS_DATA, 0x11);

RedrawScreen();

8.4.5.201 Function ReloadProgram

Declaration:
void ReloadProgram();
Description

Reloads a program that was the last loaded into the microcontroller memory. It is equivalent to the
Re-Load program in the File menu.| 51

8.4.5.202 Function RemoveButtons

Declaration:
void RemoveButtons(unsigned long handle);
Description

Removes all buttons from the window that were added by the AddButton[2 function. This
function is useful, when a script file is restarted and the user window used by this script file
contains buttons generated by the script file during the previous run.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 329

8.4.5.203 Function rename

Declaration:

int rename(char oldname[], char newnamel]);

Description

Renames a file.

rename changes the name of a file from oldname to newname

Directories in oldname and newname need not be the same, so rename can be used to move a
file from one directory to another. Wildcards are not allowed.

This function will fail (EACCES), if either file is currently open in any process.
Returned Value

On success, rename returns 0. On error (if the file cannot be renamed), it returns -1 and the
global variable is set to one of the following values:

EACCES Permission denied: filename already exists or the path is invalid
ENOENT No such file or directory
ENOTSAM Not same device

8.4.5.204 Function rewind

Declaration:

void rewind(unsigned long stream);

Description

Repositions the file pointer to the beginning of the stream.

rewind(stream) is equivalent to fseek[23 (stream, OL, SEEK_SET), except that rewind clears the
end-of-file and error indicators, while fseek clears the end-of-file indicator only. After rewind, the
next operation on the update file can be either input or output.

8.4.5.205 Function Right

Declaration:
void Right(int count=1);
Description

Move the cursor positions right. The same result can be achieved by incrementing the CurCollzh
built-in variable.

8.4.5.206 Function rmdir

Declaration:
int rmdir(char path[]);
Description

© 2021 Phyton, Inc. Microsystems and Development Tools

330 CPI2_MODEL Device Programmers - CPI2-B1

Removes a directory.
rmdir deletes the directory, whose path is given by path. The directory named by path:
must be empty

must not be the current working directory

must not be the root directory
Returned Value

rmdir will return O, if the directory is successfully deleted. The returned value of -1 indicates an
error and the errnol 1) global variable contains one of the following values:

EACCES Permission denied
ENOENT Path or file function not found

8.4.5.207 Function SaveData

Declaration:

void SaveData(unsigned char file_name[], int format, int addr_space, unsigned long start_addr,
unsigned long end_addr);

Description

Saves the microcontroller memory area in the file.
Parameters:

file_name - the name of unloaded file.

format - the format of unloaded file. Character constants with

the prefix SF_ declared in the system.h header file

are provided for this parameter. To understand this better,

open the Save file dialog and go through the

format names.
addr_space - the microcontroller memory space, from where data is unloaded.
start_addr - the initial address of unloaded area.

end_addr - the final address of unloaded area (inclusive).
Example
SaveData("C:\\PROGW\TEST.HEX", SF_HEX, AS_CODE, 0, Ox3FFF);

8.4.5.208 Function SaveDesktop

Declaration:

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 331

void SaveDesktop(char file_name[]);
Description
Saves the screen configuration in the specified file (see Configuration Files) =21

8.4.5.209 Function SaveFile

Declaration:

int SaveFile();

Description

Saves the file from the current window/1ss).

8.4.5.210 Function SaveOptions

Declaration:

void SaveOptions(char file_namel[]);

Description

Saves the options in the specified file (see Configuration Files| 52

8.4.5.211 Function scanf

Declaration:
int scanf(char formatf], ...);
Description

The scanf function displays prompt to enter a character string. The string you enter is parsed in
accordance with the format line.

scanf scans a series of input fields one character at a time reading from a stream. After that, each
field is formatted in accordance with a format specifier passed to scanf in the format string
pointed to by format. Finally, scanf stores the formatted input at the address passed to it as the
argument following the format. The number of format specifiers and addresses must be the same
as the number of input fields.

Notes

1. Your arguments passed to this function shall match the format line. In case of mismatch, the
CPI2-B1 program may crash, because it cannot check the correspondence between the format
string and parameters passed. For details on format specifiers, see the scanf[=f Format
Specifiers.

2. Al arguments for this function shall be arrays, because only the array parameters are passed
by address to functions. Also, see example below.

scanf can stop scanning a particular field before it reaches the normal end-of-field character
(whitespace) or it can terminate entirely for a number of reasons. See scanf(ss1) for a discussion
on possible causes.

Returned Value

scanf returns the number of input fields successfully scanned, converted and stored. The return
value does not include the scanned fields that were not stored. If no fields are stored, then 0 will
be returned.

© 2021 Phyton, Inc. Microsystems and Development Tools

332

CPI2_MODEL Device Programmers - CPI2-B1

Example
int i[1];
float f[1];
char name[64];
scanf("%d %f %s", i, f, name);
/I f"123 4.56 String" is entered in the prompt, then:

/1 i[0] will assume value 123,

/l name will be equal to the string "String".

8.4.5.212 Function Search

Declaration:
int Search(char text[], int in_block=0);
Description

Searches for text text. The search area is defined by the in_block parameter: if it is 0, the search
will be performed in the whole text, otherwise, in the marked block only.

The search is always performed from the cursor position.

The search options are defined by the CaseSensitive[2), WholeWords[34 and
RegqularExpressions| 33 built-in variables.

If text is found, then Search will return 1, otherwise it will return 0. The string that was found is
copied to the LastFoundString[e variable. This is because the found string may not be the same
as the search argument

8.4.5.213 Function searchpath

Declaration:

int searchpath(char file_name[], char path[]);
Description

Searches the operating system path for a file.

searchpath attempts to locate a file by searching along the operating system path specified by the
PATH=... directive in the environment. The complete path-name string is stored in path. First,
searchpath searches for the file in the current directory of the current drive. If the file is not found
there, the PATH environment variable will be fetched and each directory in the path will be
searched in turn until the file is found or the path is exhausted. If the file is located, the string with
the full path name will be copied to path. This string can be used in a call to access the file (for
example, with fopen(zs3).

searchpath returns TRUE on success, otherwise it returns FALSE.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 333

8.4.5.214 Function SearchReplace

Declaration:
unsigned long SearchReplace(char text[], char new_text[], int in_block=0, int replace_all=0);
Description

Searches for text and replaces. The replace_all parameter specifies, whether the search is
continued after the first occurence of text is replaced. If replace_all is 0, then only the first
occurence will be replaced, otherwise, all occurences.

SearchReplace returns the number of replaces

8.4.5.215 Function SelectBrush

Declaration:
void SelectBrush(unsigned long handle, unsigned long color);
Description

Selects a brush for drawing with the specified color. By default, a brush with the standard color is
selected, when the window opens. Brushes are used for drawing painted figures such as circles,
rectangles, etc.

8.4.5.216 Function SelectFont

Declaration:
void SelectFont(unsigned long handle, char name(], int height);
Description

Selects a font for text output. As opposed to the SetWindowFont[= function, this font can be
proportional. It is used for displaying text with the DisplayTextF[27 function anywhere in the
window.

name is the line with the font name; height specifies the font height.

8.4.5.217 Function SelectPen

Declaration:
void SelectPen(unsigned long handle, unsigned long color, int width=1, int style=PS_SOLID);
Description

Selects a pen for drawing with the specified parameters. The standard pen (a solid line with the
width of 1) and the standard color are selected by default, when the window opens. Pens are used
for drawing lines, circumferences, etc.

Parameters:
color

width - the pen width; certain videoadapters face problems while drawing lines
with a width greater than 1,

style - the line type:

© 2021 Phyton, Inc. Microsystems and Development Tools

334

CPI2_MODEL Device Programmers - CPI2-B1

PS_SOLID -sold

PS DOT - dotted
PS DASHDOT - dash-and-dot
PS DASHDOTDOT - dash-and-dot-and-dot

8.4.5.218 Function SetBkColor

Declaration:

void SetBkColor(unsigned long handle, unsigned long color);
Description

Sets up the window background color.

8.4.5.219 Function SetBkMode

Declaration:
void SetBkMode(unsigned long handle, int mode);
Description

Sets the text display mode for the window. For the mode parameter, the system.h system header
file contains two constants: OPAQUE and TRANSPARENT. When text is displayed (see
DisplayText[27, DisplayTextF[21) and the display mode is set to OPAQUE, then the rectangle
with text will be first filled with the background color. In the TRANSPARENT mode, the text
overlaps the previous output.

8.4.5.220 Function SetBreak

Declaration:

void SetBreak(unsigned long addr);

Description

Sets up the code breakpoint at the specified address

8.4.5.221 Function SetBreaksRange

Declaration:
voi d Set BreaksRange(unsi gned | ong start_addr, unsigned |ong end_addr);
Description

Sets up the code breakpoints in the range from start_addr to end_addr inclusive.

8.4.5.222 Function SetByte

Declaration:
void SetByte(unsigned long addr, int addr_space, unsigned int value);

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 335

Description

Writes value (byte) to the specified address in the specified memory area (the parameter).
Constants with the AS__ prefix for microcontroller memory areas (address spaces) are defined in
the system.h header file.

Example
SetByte(0x2000, AS_CODE, OxFF);

8.4.5.223 Function SetCaption

Declaration:

void SetCaption(unsigned long handle, int set);

Description

Removes or restores the window's caption bar in accordance with the value of set.

8.4.5.224 Function setdisk

Declaration:

int setdisk(int drive);

Description

Sets the current drive number.

setdisk sets the current drive to the one associated with drive: 0 for A, 1 for B, 2 for C, and so on.

8.4.5.225 Function SetDword

Declaration:
void SetDword(unsigned long addr, int addr_space, unsigned long value);
Description

Writes a double word (32 bits) to the specified address in the specified memory area (the
addr_space parameter). Constants with the AS_ prefix for microcontroller memory areas
(address spaces) are defined in the system.h header file.

Example
SetDword(0x2000, AS_CODE, 0x12345678);

8.4.5.226 Function SetFileName

Declaration:

void SetFileName(char namel]);

Description

Sets the file name for the current Source [183)

© 2021 Phyton, Inc. Microsystems and Development Tools

336

CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.227 Function setftime

Declaration:

int setftime(long handle, unsigned long time);
Description

Sets the file date and time.

setftime sets the file date and time of the disk file associated with the open handle to the date and
time provided in the time parameter. The file must be open for writing; the EACCES error will
occur if the file is open for read-only access. The file must not be written to after the setftime call
or the changed information will be lost. setftime requires the file to be open for writing; an
EACCES error will occur if the file is open for read-only access. The time parameter has the
following layout:

Bits Value

0..4 two seconds
5..10 minutes
11...15 hours
16...20 days
21...24 months

25...31 year-1980
Returned Value

setftime returns 0 on success. In the event of an error, -1 is returned and the errnol #h global
variable is set to one of the following values:

EACCES Permission denied
EBADF Bad file number
EINVFNC Invalid function number

8.4.5.228 Function SetMark

Declaration:

void SetMark(int number);

Description

Sets the bookmark with the numberNumber shall be within 1...10.

8.4.5.229 Function setmem

Declaration:
void setmem(void s[], unsigned int length, char value, int index=0);
Description

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 337

In the object specified by ssetmemvalue (and converted into the unsigned char).
Returned value
None.

8.4.5.230 Function SetMemory

Declaration:
void SetMemory(void src[], int n, unsigned long addr, int addr_space);
Description

Writes n-byte memory block to the specified address in the specified memory area (the
addr_space parameter) from the src array. Constants with the prefix for microcontroller memory
areas (address spaces) are defined in the system.h header file.

Example
SetMemory("12345678", 8, 0x20, AS_DATA);

8.4.5.231 Function setmode

Declaration:
int setmode(long handle, int amode);

Sets mode of an open file.

setmode sets the mode of the opened file associated with handle to either binary or text. The
amode argument must have the value of either O_BINARY or O_TEXT, never both. (These
symbolic constants are defined in system.h).

Returned Value

setmode returns the previous translation mode, if successful. On error, it returns -1 and sets the
errnolssl global variable to

EINVAL Invalid argument

8.4.5.232 Function SetPixel

Declaration:
void SetPixel(unsigned long handle, int x, int y, unsigned long color);
Draws one point of the specified color[&1 in the specified place.

8.4.5.233 Function SetTextColor

Declaration:
void SetTextColor(unsigned long handle, unsigned long color);

Description

© 2021 Phyton, Inc. Microsystems and Development Tools

338 CPI2_MODEL Device Programmers - CPI2-B1

Sets up color[&) of the text printed out by the wprintf[=8 function, or displayed by the DisplayText
and DisplayTextF[27 functions. The color you set remains unchanged until SetTextColor is called
for the next time. The standard color is used by default.

Example

unsigned long handle = OpenStreamW indow("Serial port");
SetTextColor(handle, OXFF);

wprintf(handle, "Will be written in red color\n");
SetTextColor(handle, OXFF00);

wprintf(handle, "Will be written in green color");

8.4.5.234 Function SetToolbar

Declaration:
void SetToolbar(unsigned long handle, int set);
Description

Removes or restores the window's toolbar in accordance with the value of set.

8.4.5.235 Function SetUpdateMode

Declaration:

void SetUpdateMode(unsigned long handle, int update);
Description

Sets up the window update mode. By default, all graphical output is immediately displayed in the
window. The SetUpdateMode function sets up a different update mode, when graphical output is
cached in the memory and drawing is carried out by calling the UpdateWindow|3) function. Using
this, the drawing is performed faster. The update parameter can assume two values:

UM _IMMEDIATE - immediate drawing;
UM_ONREQUEST - drawing by calling the UpdateWindow function.
Example

ulong handle = OpenUserWindow("Test");

MoveTo(handle, 20, 20);
LineTo(handle, 40, 40);
LineTo(handle, 45, 45);
UpdateWindow(handle);

8.4.5.236 Function SetWindowFont

Declaration:

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 339

void SetWindowFont(unsigned long handle, char font_name[], int height);
Description
Sets up the font for the specified window.

The handle parameter is the window identifier produced by the call of the , and FindWindow/2s7)
functions.

font_name is the string with the font name; is the font height.
Only monospaced fonts, such as Courier or Fixedsys, shall be used.

You can draw with any font, in the User window[13, To select the font, use the SelectFont[33)
function.

Example
unsigned long handle = OpenWindow(WIN_DUMP);

SetWindowFont(handle, "Courier New", 12);

8.4.5.237 Function SetWindowSize

Declaration:
void SetWindowSize(unsigned long handle, int w, int h);
Description

Sets up the new size for the specified window. The handle parameter is the window identifier
produced by the call of the OpenWindow[8, and FindWindow| 287 functions. w and are the new
width and height of the window (in pixels). The size also includes the non-user area of the window
(the frame and title).

The position of the window upper left corner does not change.

8.4.5.238 Function SetWindowSizeT

Declaration:
void SetWindowSizeT(unsigned long handle, int w, int h);
Description

Sets up the new size for the specified window in text units. Since almost all windows of CPI2-B1
use the pseudotext mode, it can be useful to specify the window size only in terms of text.

The handle parameter is the window identifier produced by the call of the OpenWindow/=s), and
FindWindow[28 functions. w is the number of text characters in the line; h is the number of lines
in the window.

8.4.5.239 Function SetWord

Declaration:
void SetWord(unsigned long addr, int addr_space, unsigned int value);
Description

© 2021 Phyton, Inc. Microsystems and Development Tools

340 CPI2_MODEL Device Programmers - CPI2-B1

Writes a word (16 bits) to the specified address in the specified memory area (the addr_space
parameter). Constants with the AS__ prefix for microcontroller memory areas (address spaces)
are defined in the system.h header file.

Example
SetWord(0x2000, AS_CODE, OxFFFF);

8.4.5.240 Function sin

Declaration:

float sin(float x);

Description

The sin function calculates the sine of the floating-point number x.
Returned value

The sin function returns the sine of x.

8.4.5.241 Function sprintf

Declaration:
void sprintf(char dest[], unsigned char format[], ...);
Description

The sprintf function displays the values of transferred parameters in the dest line in accordance
with the format line.

Note. Your arguments passed to this function shall match the format line. In case of mismatch,
the CPI2-B1 program may crash, because it cannot check the correspondence between the
format string and parameters passed.

Returned value
None.

8.4.5.242 Function sqrt

Declaration:

float sqrt(float x);

Description

The sqrt function calculates the square root of number x.
Returned value

The sqrt function returns the square root of x. The returned value for negative arguments is 0.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 341

8.4.5.243 Function srand

Declaration:
void srand(unsigned int seed);
Description

Initializes a random number generator by a specified number.

8.4.5.244 Function sscanf

Declaration:

int sscanf(char buff], char formatf], ...);

Description

The sscanf function parses the buf string in accordance with the format line.

sscanf scans a series of input fields one character at a time reading from a stream. After that,
each field is formatted in accordance with a format specifier passed to sscanf in the format string
pointed to by format. Finally, sscanf stores the formatted input at the address passed to it as the
argument following the format. The number of format specifiers and addresses must be the same
as the number of input fields.

Notes

1. Your arguments passed to this function shall match the format line. In case of mismatch, the
CPI2-B1 program may crash, because it cannot check the correspondence between the
format string and parameters passed. For details on format specifiers, see the scanfl 3 Format
Specifiers.

2. All arguments for this function shall be arrays, because only the array parameters are passed
by address to functions. Also, see example for scanf[1)

sscanf can stop scanning a particular field before it reaches the normal end-of-field character
(whitespace) or it can terminate entirely for a number of reasons. See scanf[3) for a discussion
on possible causes.

Returned Value

8.4.5.245 Function Step

Declaration:

void Step();

Description

Executes one machine instruction (the low-level step mode).

Note. The screen is not updated automatically after this function is called. To organize the automatic update,

use the RedrawScreen[%2 function at the appropriate moment.

8.4.5.246 Function Stop

Declaration:

© 2021 Phyton, Inc. Microsystems and Development Tools

342 CPI2_MODEL Device Programmers - CPI2-B1

void Stop();
Description
Stops the program under execution.

8.4.5.247 Function stpcpy

Declaration:

int stpcpy(char dest[], char src[], int dest_index=0, int src_index=0);
Description

The stpcpysrc line to the dest line and attaches the zero character.
Returned value

The stpcpy function returns the number of the last byte copied to dest

8.4.5.248 Function strcat

Declaration:

void strcat(char dest[], char src[], int dest_index=0, int src_index=0);
Description

The strcat function joins the line to the dest line and ends the dest line with zero.
Returned value

None.

8.4.5.249 Function strchr

Declaration:
int strchr(char s[], int ¢, int index=0);
Description

The strchr function searches the first entry of character cs. The zero characters also participate
in the search.

Returned function

The strchr function returns the number of the found character to s and returns -1, if there is no
such character there.

8.4.5.250 Function strcmp

Declaration:

int strcmp(char s1[], char s2[], int s1_index=0, int s2_index=0);
Description

The strcmps1 and s2 letter-by-letter and returns the result of the search.
Returned value

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference

343

The function returns the following values of comparison result:
Value Meaning

<0 slis less than s2
=0 slis equalto s2
>0 slis greater than s2

8.4.5.251 Function strcmpi

Declaration:
int strcmpi(char s1[], char s2[], int s1_index=0, int s2_index=0);
The same as stricmpl[a)

8.4.5.252 Function strcpy

Declaration:
void strcpy(char dest([], char srcf], int dest_index=0, int src_index=0);
Description

The strcpy function copies the contents of line src to line dest and attaches the zero character.

Returned value
None.

8.4.5.253 Function strcspn

Declaration:

int strcspn(char s1[], char s2[], int s1_index=0, int s2_index=0);
Description

The function searches any character from line s2 to line s1.
Returned value

The strcspn function returns the number of the first character in line s1 equal to any character

from line s2. Zero will be returned, if the first character in line s1 is equal to any character from line

s2. If there are no such characters there, then the length of line s1 will be returned (the zero
character is not taken into account).

8.4.5.254 Function stricmp

Declaration:
int stricmp(char s1[], char s2[], int s1_index=0, int s2_index=0);
Description

The stricmp function compares lines s1 and s2 letter-by-letter regardless of the character case

and returns the result of the search.

© 2021 Phyton, Inc. Microsystems and Development Tools

344 CPI2_MODEL Device Programmers - CPI2-B1

Returned value
The stricmp function returns the following comparison results:

Value Meaning

<0 slis less than s2
=0 slis equal to s2
>0 sl is greater than s2

8.4.5.255 Function strlen

Declaration:
int strlen(char s[], int index=0);
Description

The strlen function calculates the length of line src in bytes. The last zero character is not
counted.

Returned value
The strlen function returns the length of line src.

8.4.5.256 Function striwr

Declaration:

void strlwr(char s[], int index=0);

Description

The striwr function converts line s to the lower case.
Returned value

None.

8.4.5.257 Function strncat

Declaration:
void strncat(char dest[], char src]], int n, int dest_index=0, int src_index=0);
Description

The strncat function attaches the maximum of n characters from line scr to line dest and ends
dest with the zero character. If there are less than n characters in line , then the whole line src
together with the zero character will be copied.

Returned value
None.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 345

8.4.5.258 Function strncmp

Declaration:

int strcnp(char si[], char s2[], int sl_index=0, int s2_index=0);
Description

The strcmp function compares lines s1 and s2 letter-by-letter and returns the result of the search.
Returned value

The strcmp function returns the following values of comparison result:

Val ue Meani ng

<0 sl is less than s2
=0 sl is equal to s2
>0 sl is greater than s2

8.4.5.259 Function strncmpi

Declaration:
int strncmpi(char dest[], char src[], int n, int dest_index=0, int src_index=0);
Description

The strncmpi function compares the first n bytes of lines s1 and s2 letter-by-letter regardless of
the character case and returns the comparison result.

Returned value
The strncmpi function returns the following values of the lines s1 and s2

<0 slis less than s2
=0 slis equal to s2
>0 slis greater than s2

8.4.5.260 Function strncpy

Declaration:
void strncpy(char dest[], char src[], int n, int dest_index=0, int src_index=0);
Description

The strncpy function copies the maximum of n characters from line scrn characters in line src,
then the zero characters will be added to line dest to extend it up to the size of n.

Returned value
None.

© 2021 Phyton, Inc. Microsystems and Development Tools

346 CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.261 Function strnicmp

Declaration:
int strnicmp(char dest[], char src[], int n, int dest_index=0, int src_index=0);

The same as strncmpil =

8.4.5.262 Function strnset

Declaration:

void strnset(char s[], int c, int n, int index=0);

Description

The strnset function sets the maximum of n characters from line s to zero.
Returned value

None.

8.4.5.263 Function strpbrk

Declaration:
int strpbrk(char s1[], char s2[], int s1_index=0, int s2_index=0);
Description

Function strpbrk searches for the first occurrence of any character from line s2 in line s1. The
zero character is not the search element.

Returned value

The strpbrk function returns the number of the found character in line s1. If line s1 does not
contain any characters from line s2, then -1 will be returned.

8.4.5.264 Function strrchr

Declaration:

int strchr(char s[], int c, int index=0);

Description

The strchr function searches the first entry of character c in line s. The zero characters also participate in the
search.

Returned function

The strchr function returns the number of the found character to s and returns -1, if there is no such character
there.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 347

8.4.5.265 Function strrev

Declaration:

void strrev(char s, int index=0);

Description

The strrev function reverses the byte order in line s. For example, if we write:
char s[] = "1234"; strrev(s);

then the lines will contain "4321".

Returned value

8.4.5.266 Function strset

Declaration:

void strset(char s, int ¢, int index=0);

Description

The strset function sets all characters in line s to the value of c.
Returned value

None.

8.4.5.267 Function strspn

Declaration:
int strspn(char s1[], char s2[], int s1_index=0, int s2_index=0);

The strspn function searches in the line s21 for symbols, which are absent in line s2.

Returned value

The strspn function returns the number of the first character in line s1, which is known to be
absent in line s2. If there are no such symbols in line s1, then the length of line s1 will be returned
(the zero character is not taken into account).

8.4.5.268 Function strstr

Declaration:
int strstr(char s1[], char s2[], int s1_index=0, int s2_index=0);
Description

The strstr function searches for the first occurrence of the string from s2 in line s1 (the zero
character is not taken into account).

© 2021 Phyton, Inc. Microsystems and Development Tools

348 CPI2_MODEL Device Programmers - CPI2-B1

Returned value

The strstr function returns the number of the first byte of the string from s2, or returns -1, if there
is no such string there.

8.4.5.269 Function strtol

Declaration:

long strtol(char s[], int endptr(], int radix, int index=0);

Converts an ASCII-string (the s parameter; index specifies shift in the line) into a long number.
The radix parameter is the radix used for conversion (2...36).

String s may include the following components:

[ws] [sn] [0] [x] [ddd]

[ws] - Optional spaces or tabulation symbols

[sn] - Optional sign (+ or -)

[0] - Optional zero (0)

[X] - Optional x or X

- Optional digits

endptr array contains that character number).

If radix is equal to 0, then radix will be selected by the first few characters of the s string:
First character Second character String interpretation

0 1-7 Octal
0 X or X Hexadecimal
1-9 Decimal

Returned value
The converted long integer number.

8.4.5.270 Function strtoul

Declaration:

unsigned long strtoul(char s[], int endptr(], int radix, int index=0);

Description

The strtoul function is the same as strtol[34, except that it returns the unsigned long integer.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 349

8.4.5.271 Function strupr

Declaration:

void strupr(char s[], int index=0);

Description

The strupr function converts line s to the upper case.
Returned value

None.

8.4.5.272 Function tan

Declaration:

float tan(float x);

Description

The tan function calculates the tangent of the floating-point number x.
Returned value

The tan function returns the tangent of argument Xx.

8.4.5.273 Function tanh

Declaration:
float tanh(float x);
Description

The tanh function calculates the hyperbolic tangent of the floating-point number x. The argument should range
from -88.72280 to 88.72280.

Returned function

The tanh function returns the hyperbolic tangent of argument x.

8.4.5.274 Function tell

Declaration:

long tell(long handle);

Description

Gets the current position of the file pointer.

tell gets the current position of the file pointer associated with handle and expresses it as the
number of bytes from the beginning of the file.

Returned Value

tell returns the current file pointer position. Returned -1 (long) indicates an error, and the errnol el
global variable is set to

© 2021 Phyton, Inc. Microsystems and Development Tools

350 CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.275 Function TerminateAllScripts

Declaration:

void TerminateAllScripts();

Description

Stops execution of all script files (except the script called by this function).

8.4.5.276 Function TerminateScript

Declaration:
void TerminateScript(char file_name[]);

Description

Stops execution of the specified script file and unloads it from the memory, if possible. The file
name parameter is the script file name without path and extension.

8.4.5.277 Function Text

Declaration:

void Text(char text[]);

Description

text text from the cursor position, as if it were typed from the keyboard.

8.4.5.278 Function toascii

Declaration:

int toascii(unsigned char c);

Description

The toascii function cuts off the high bit of parameter c.
Returned value

The toascii function returns the value of ¢ cut down to 7 bits

8.4.5.279 Function Tof

Declaration:
void Tof();
Description

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 351

Move the cursor to the top of the file (position (1:1)).

8.4.5.280 Function tolower

Declaration:
int tolower(unsigned char c);
Description

tolower function converts character c to the lower case. If ¢ is not an alphabetic character, then it
will not be converted.

Returned value
The tolower function returns character c in the lower case.

8.4.5.281 Function toupper

Declaration:
int toupper(unsigned char c);
Description

The toupper function converts character ¢ to the upper case. If ¢ is not an alphabetic character,
then it will not be converted.

Returned value
The toupper function returns character ¢ in the upper case.

8.4.5.282 Function ultoa

Declaration:
void ultoa(unsigned long value, char string[], int radix);

Description Converts an unsigned long integer (value) into the character string (string). The radix
parameter is the radix used for conversion (2...36).

8.4.5.283 Function unlink

Declaration:

int unlink(char file_name]);
Description

Deletes a file.

unlink deletes the file specified by file_name. Any drive, path, and file name can be used as the
filename. Wildcards are not allowed. This call cannot delete read-only files.

Note. If your file is open, be sure to close it before unlinking it.
Returned Value

On success, unlink returns 0. On error, it returns -1 and sets the errno[¢) global variable to one of
the following values:

© 2021 Phyton, Inc. Microsystems and Development Tools

352 CPI2_MODEL Device Programmers - CPI2-B1

EACCES Permission denied
ENOENT Path or file name not found

8.4.5.284 Function unlock

Declaration:

int unlock(long handle, long offset, long length);
Description

Releases file-sharing locks.

unlock provides interface to the operating system file-sharing mechanism. unlock removes a lock
previously placed with a call to lock[=ss1. To avoid error, all locks must be removed before closing a
file. The program must release all locks before completing.

Returned Value
On success, unlock returns 0. On error, it returns -1.

8.4.5.285 Function Up

Declaration:
void Up(int count=1);
Description

Move the cursor count lines up. The same result can be achieved by decrementing the
CurLine[s} built-in variable.

8.4.5.286 Function UpdateWindow

Declaration:
voi d Updat eW ndow(unsi gned | ong handl e) ;
Description

Draws an image in the specified window. The image is cached in the memory during graphical output function
calls. Calling this function makes sense only when selecting the mode of drawing with the
SetUpdateMode[33 function call with the UM_ONREQUEST parameter

8.4.5.287 Function Wait

Declaration:

voi d Wait(unsigned |long m croseconds);

Description

Suspends execution of the script file until the specified interval of the time is up.

The <%CM%> cannot trace extremely short time intervals, because some time is needed for data
transmission through the serial channel.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 353

Example:
while (1) /1 endl ess cycle
{

Wait (100); // to wait for 100 m croseconds.
$P1 ~= 1; /1 to invert bit 0 in port P1

8.4.5.288 Function WaitExprChange

Declaration:

void WaitExprChange(char str]);

Description

Suspends execution of the script file until the expression specified in the str line changes its value.
The peculiarities of this function for the CPI2-B1 are the same as for .

Note that you should not precede the variable names with '$' sign in the expression string.
Example:

while (1) // the endless cycle

{
WaitExprChange("P1 & 2"); // to wait until value of bit 1

/I of port P1 changes

P2=P1&2; Il to execute certain action

}

8.4.5.289 Function WaitExprTrue

Declaration:
voi d Wai t Expr True(char str[]);

Description

Suspends execution of the script file until the expression specified in the str line becomes True as the result
of executing.

The expression operands should be available in the continuous emulation mode, otherwise the expression is
always False.

An operand value poll is executed within the specified time interval. Therefore, the expression should remain
True during this interval, otherwise the programmer cannot trace the moment, when the expression becomes
True.

Note. You should not precede the variable names with '$' sign in the expression string.

Example:
while (1) /1 the endl ess cycle
{

© 2021 Phyton, Inc. Microsystems and Development Tools

354 CPI2_MODEL Device Programmers - CPI2-B1

Wi t Expr True(" Counter > 200"); /1 to wait for the condition to
become True
Stop(); /]l to stop the program

printf("Counter overflow at 94X"', $PC); // to display the nessage

8.4.5.290 Function WaitGetMessage

Declaration:

void WaitGetMessage(int id);
Description
WaitSendMessagel 35

8.4.5.291 Function WaitMemoryAccess

Declaration:

voi d Wai t MenoryAccess(unsi gned | ong addr, int addr_space, int numbytes, int
flags);

Description

Suspends execution of the script file until the processor (the program being executed) accesses the specified
memory area. Parameters:

addr - the nmenory area address.
addr _space - the address space. Constants with prefix AS_
are given in the systemh file.
num bytes - the amount of bytes in the nmenory area.
fl ags - the flags that define the type of nenory access:
MA_READ - reading, MA_WRITE - writing,
MA_READ | MA_WRITE - both reading and writing.

This function does not work in the emulators.

After return from the function, the built-in variables contain information on the latest traced memory access:

LastMemAccAddr[38 the memory address
LastMemAccAddrSpacelEﬁ the type of address space
LastMemAcclen[38 the amount of bytes

LastMemAccType[362) the type of access (MA_READ, MA_WRITE).
Example:

while (1) /1 endl ess cycle

{

Wi t MenoryAccess(0x80, AS_DATA, 1, MA WRITE);
/1 to wait for wite to the data nmenory cell with the address of
0x80 (bytes).
$P1 ~= 1, /1 to invert bit 0 in port P1
}

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 355

8.4.5.292 Function WaitSendMessage

Declaration:
void WaitSendMessage(int id, unsigned int int_data, unsigned long long_data);
Description

The WaitSendMessage and WaitGetMessage| 34 functions provide a mechanism for message
exchange between two copies of the CPI2-B1 program (or other Phyton products) running
simultaneously. These functions are used mostly for simulators and allow simulation of multi-
processor systems that exchange data with each other.

To simulate, say, a two programmers system, you should launch two copies CPI2-B1 and set up
the exchange of data between them. You can start the second copy of CPI2-B1 by copying the
UprogNT2.EXE file to a file with another name and then starting it.

The WaitSendMessage function "sends a message" to another copy of CPI2-B1 and waits until
the message is "delivered"”, i.e. the receiver copy of CPI2-B1 calls the WaitGetMessage function. If
the receiver has already called WaitGetMessage and is waiting for an incoming message, the
WaitSendMessage function returns immediately, otherwise it will return, when a period of model
time is passed. The model time flows, when the simulated program runs.

When calling WaitSendMessage and WaitGetMessage, you supply the id parameter that identifies
the message. The message will be delivered to the copy of CPI2-B1 that is waiting for message
with the same id.

The int_data and long_data parameters are the user data. You may set these parameters to any
values you wish. When the receiver's WaitGetMessage returns the control, the transmitter's
int_data value is copied to the receiver's LastMessagelnt[3) built-in variable and long_data is
copied to LastMessageLong] 363,

Note that CPI2-B1 uses its own internal means for message exchange, not the message
mechanism of Windows.

Example
#define SecondCopyMsg 0
#define InitExchange 0

#define InitExchangeOk O
Run(); // start model time

WaitSendMessage(SecondCopyMsg, InitExchange, 0);
WaitGetMessage(SecondCopyMsg);
if (LastMessagelnt != InitExchangeOk)
{
printf("Exchange failed");

return;

}

© 2021 Phyton, Inc. Microsystems and Development Tools

356 CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.293 Function WaitStop

Declaration:
voi d WaitStop();
Description

Suspends execution of the script file until the program stops. The program can be stopped either by a
breakpoint or manually.

8.4.5.294 Function WaitWindowEvent

Declaration:
void WaitWindowEvent(unsigned long handle);
Description

Allows to organize interaction between user and the User window[188 and the okro MNoTok
BBoga/BbiBogal 188, The function waits for an event associated with the specified window and
returns control to the script file, when the event occurs. The function locates type of the occurred
event and places relevant data into the internal variables accessible with the following functions:

LastEvent| 303
LastEventint{1...4}[8
Example

ulong handle = OpenUserWindow("Interactive Window");
while (1)

{

WaitWindowEvent(handle);

switch (LastEvent(handle))

{

case WE_CLOSE: return; /l window is closed, script file is being completed
case WE_REDRAW: Redraw(handle); // to call our function Redraw,

case WE_MOUSEBUTTON: Change(handle); // to call our function Change,
break; / that responds to the clicked

/I mouse button

}

8.4.5.295 Function wgetchar

Declaration:

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 357

void wgetchar(unsigned long handle);
Description

Waits for pressing an alphanumeric key on the keyboard, when the specified window has input
focus, that is, is active. The pressed key code can be obtained with the LastChar| 3 function.

The entered character is automatically displayed in the window.
Example

unsigned long handle = OpenStreamW indow("Serial port");
wprintf(handle, "Press \"E\" for exit");

wgetchar(handle);

if (toupper(LastChar(handle)) =="E") return

8.4.5.296 Function wgethex

Declaration:
void wgethex(unsigned long handle);
Description

Waits for two hexadecimal digits (a byte value) to be entered from the keyboard. The entered
number can be obtained with the LastChar| 05 function.

The entered characters are automatically displayed in the window. The Enter key moves the
window cursor to the beginning of the new line.

8.4.5.297 Function wgetstring

Declaration:
void wgetstring(unsigned long handle);
Description

Waits until the character string is ended by pressing the Enter key. The entered string can be
obtained with the LastString[308 function.

The entered characters are automatically displayed in the window.

8.4.5.298 Function WindowHotkey

Declaration:
void WindowHotkey(unsigned long handle, int key);
Description

Sends the local menu command corresponding to the hot key (parameter key) to the specified
window. The local window menu lists the hot keys. key is the ASCII value of the key without
indicating Ctrl: for example, to imitate pressing Ctrl+T in the window, the key parameter shall be
equal to 'T'.

Example

© 2021 Phyton, Inc. Microsystems and Development Tools

358

CPI2_MODEL Device Programmers - CPI2-B1

unsigned long handle = OpenWindow(WIN_WATCHES);
WindowHotkey(handle, 'A); // imitates pressing Ctrl+A

8.4.5.299 Function WordLeft

Declaration:

void WordLeft();

Description

Moves the cursor to the next word (on the right).

8.4.5.300 Function WordRight

Declaration:

void WordRight();

Description

Moves the cursor to the previous word (on the left).

8.4.5.301 Function wprintf

Declaration:
void wprintf(unsigned long handle, char formatf], ...);

Displays the values of transferred parameters in the window in accordance with the format line.

Attention! You are responsible for matching the arguments transferred to wprintf function into the
line format. A mismatch may bring CPI2-B1 to failure.

Example
unsigned long handle = OpenStreamWindow("Serial port");

wprintf(handle, "SP = %04X", $SP\n");

8.4.5.302 Function write

Declaration:

int write(long handle, void buf[], int len);
Description

Writes to a file.

write writes the buffer of data to the file or device specified by handle. The handle file handle is
obtained from the creatl2Aopen[3%, duplz73, or dup2[=7 call.

This function attempts to write bytes from the buffer pointed to by buf to the file associated with
handle. Except for the case, when write is used to write to a text file, the amount of bytes written to

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 359

the file will be no more than the amount requested. On text files, when write sees a linefeed (LF)
character, it outputs a CR/LF pair.

If the amount of bytes actually written is less than that requested, the condition should be
considered an error and probably indicates a full disk. For disks or disk files, the writing always
proceeds from the current file pointer. For devices, bytes are sent directly to the device.

Returned Value

write returns the number of bytes written. A write to a text file does not count the generated
carriage returns. In case of error, write returns -1 and sets the errnol s global variable to one of
the following values:

EACCES Permission denied
EBADF Bad file number

8.4.5.303lock

Declaration:
int lock(long handle, long offset, long length);
Description

Sets file-sharing locks. lock provides interface to the operating system file-sharing mechanism.

The lock can be placed on arbitrary, nonoverlapping regions of any file. A program attempting to
read or write into the locked region will retry the operation three times. If all three retries fail, then
the call will fail with error.

Returned Value
lock returns 0 on success. On error, lock returns -1 and sets the errnol31) global variable to
EACCES Locking violation

8.4.5.304 Variable fmode

Declaration:
extern int _fmode;
This is the file operation mode (text or binary).

8.4.5.305 Variable AppIName

Declaration:

extern char ApplIName[];

This is the program name, i.e. the string of "CM-ARM".
Available only for reading.

© 2021 Phyton, Inc. Microsystems and Development Tools

360

CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.306 Variable BlockCol1

Declaration:

int BlockCol1;

This is the number of the left column of block in the current window[ze8). BlockCol1 is zero for the
line blocks. If no block is marked, BlockColl will also be zero.

Also, see Text Editor Functions|[2s0.

8.4.5.307 Variable BlockCol2

Declaration:

int BlockCol2;

This is the number of the right column of block in the current Source [183. BlockCol2 is zero for the
line blocks. If no block is marked, BlockCol2 will also be zero.

Also, see Text Editor Functions|[2s0)

8.4.5.308 Variable BlockLinel

Declaration:

int BlockLinel;
This is the number of the upper line of block in the current Source/ .

If no block is marked, BlockCol2 will be zero.
Also, see Text Editor Functions[2s0)

8.4.5.309 Variable BlockLine?2

Declaration:

int BlockLine2;

This is the number of the lower line of block in the current Source| 1.8
If no block is marked, BlockCol2 will be zero.

Also, see Text Editor Functions|2s0)

8.4.5.310 Variable BlockStatus

Declaration:

int BlockStatus;

This is the type of block in the current Source [18 The system.h system header file contains
definitions of constants:

EB_NONE - no block
EB_LINE - line block
EB_VERT - vertical block

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 361

EB_STREAM - stream block
Also, see Text Editor Functions[2sd).

8.4.5.311 Variable CaseSensitive

Declaration:

int CaseSensitive;

Source [1)

Also, see Text Editor Functions.

8.4.5.312 Variable CurCol

Declaration:
int CurCol;

This is the number of the current column (the column the cursor is in) in the current Source[s).
Columns are numbered with 1.

If the cursor is beyond the line end, then CurCol will contain 0.

Assigning a value to CurCol changes the cursor position. Also, see functions GotoXY[=00, Uplas2),
Downl 274, Left[=oARight 28, Tofl=s, Eof[2AEoll 280

8.4.5.313 Variable CurLine

Declaration:
int CurLine;
Source[18, Lines are numbered with 1.

Assigning a value to CurLine changes the cursor position. Also, see functions GotoXY/[200, Up[332,
Down[27, , Rightl=2), Toflss0), Eofl 27, Eoll2ed).

8.4.5.314 Variable DesktopName

Declaration:
extern char DesktopName[];
This string is the name of the current screen configuration file (see Configuration Files| 2.

Available only for reading.

8.4.5.315 Variable errno

Declaration:
extern int errno;
This is the error code set up by some built-in functions such as read[32.

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

362

CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.316 Variable InsertMode

Declaration:

int InsertMode;
This is the insert mode for the current Source [1%). Assigning a value to InsertMode toggles the
insert mode for the window.

Also, see Text Editor Functions|[2s0.

8.4.5.317 Variable LastFoundString

Declaration:

char LastFoundString[];

This is the string with the text that was last found in the current Source [1%). Because the search
argument may contain regular expretion, the string found may not be the same as the search

argument.
Also, see Text Editor Functions[250\.

8.4.5.318 Variable LastMemAccAddr

Declaration:
extern unsigned long LastMemAccAddr;

This is the microcontroller memory address accessed at the last return from the
WaitMemoryAccess| 33 function.

8.4.5.319 Variable LastMemAccAddrSpace

Declaration:
extern unsigned int LastMemAccAddrSpace;

This is the type of microcontroller address space accessed at the last return from the
WaitMemoryAccess|[3 function

8.4.5.320 Variable LastMemAccLen

Declaration:
extern int LastMemAccLen;
WaitMemoryAccess| = function.

8.4.5.321 Variable LastMemAccType

Declaration:

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 363

extern int LastMemAccType;

This is the microcontroller memory access type that caused a return from the
WaitMemoryAccess| 34 function. For example, MA_READ, MA WRITE or a combination of them.

8.4.5.322 Variable LastMessagelnt

Declaration:

unsigned int LastMessagelnt;
LastMessagelnt keeps the 16-bit parameter received by the WaitGetMessage function.

8.4.5.323 Variable LastMessagelLong

Declaration:
unsigned long LastMessagelLong;
LastMessagelnt keeps the 32-bit parameter received by the WaitGetMessagelss4 function.

8.4.5.324 Variable MainWindowHandle

Declaration:
extern unsigned long MainWindowHandle;
This is HWND of the main window of CPI2-BL1. It is only for experienced programmers.

8.4.5.325 Variable NumWindows

Declaration:
extern int NumWindows;

This is the number of windows opened in CPI2-BL1. Its value changes dynamically, as windows
are opened or closed.

8.4.5.326 Variable RegularExpressions

Declaration:

int RegularExpressions;
Sets up the use of regular expretions for the operation of search in the current Source [183.

Also, see Text Editor Functions[2s8).

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

364 CPI2_MODEL Device Programmers - CPI2-B1

8.4.5.327 Variable SelectedString

Declaration:

extern char SelectedString[];
This is the string selected from the menu at the last call of the built-in ExecMenul2s0! function.

8.4.5.328 Variable SystemDir

Declaration:
extern char SystemDir[];
This string is the name of the directory, where the CPI2-B1 package is installed.

Available only for reading.

8.4.5.329 Variable WholeWords

Declaration:
i nt Whol eWor ds;
Sets up the whole words option for the operation of search in the current Source [188] window[188,

Also, see Text Editor Functions[2sd)

8.4.5.330 Variable WindowHandles

Declaration:
extern unsigned long WindowHandles[];

This is the listing of the CPI2-B1 window handles organized as an array of the NumWindows size.
It is only for experienced programmers.

8.4.5.331 Variable WorkFieldHeight

Declaration:
extern unsigned int WorkFieldHeight;

This is the height of the CPI2-B1 window user area in pixels. It may be useful for locating windows
from script files.

Available only for reading.

8.4.5.332 Variable WorkFieldWidth

Declaration:
extern unsigned int WorkFieldWidth;

© 2021 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 365

This is the width of the CPI2-B1 window user area in pixels. It may be useful for locating windows
from script files.

Available only for reading.

8.5 ACI Fuctions and Structures

This section contains detailed descriptions of ACI functions and structures.
8.5.1 ACI Fuctions
This sections contains alphabetical list of all ACI functions.

8.5.1.1 ACI_AlIProgOptionsDefault

ACI_FUNC ACI_AllProgOptionsDefault();

Description

This function sets default device-specific options and parameters specified in the Device and
Algorithm Parameters Editor[31 window. These default parameter sets vary. They are defined by the
device manufacturers in the device data sheets.

Note! This function does not physically restore the default settings into the device being
programmed. It actually writes to some virtual memory locations in the host PC's RAM, associated
with physical locations in the target device's memory and registers. In order to complete programming
the device parameters and to physically fix them in the device's memory you should execute an
appropriate Program command (function) in the Device Parameters command group by means of
the ACI_ExecFunction|zsn or ACI_StartFunction[s7) with appropriate attributes.

8.5.1.2 ACI_BuffersDialog

ACI_BuffersDialog();

Description

This macro opens the Memory Dump Window Setup| ¢ dialog. The dialog will be visible irrespective
of the ChipProg-02 main window status; the main window can remain closed but the Memory Dump
Window Setup@ dialog will appear on the computer screen to allow the buffer setup. See the dialog
example below.

© 2021 Phyton, Inc. Microsystems and Development Tools

366 CPI2_MODEL Device Programmers - CPI2-B1

Memory Dump Window Setup

Display Options Checksum

Buffer Options
(@ Buffer #0 [V AsCll pane
() Buffer #1 [] Limit dump to layer size

[]signed decimal and hex values
[] Always display '+ or'-

[]Leading zeroes for decimal numbers
[]Reverse bytes inwords (MSE first)

[]Reverse words in dwords

Display Data As:

Bytes
@ Words (16 bits) []Reverse dwords in qwords
() Double Words (32 bits)
() Quad Words (64 bits) Monprintable ASCIl characters

[]Replace characters 0x00...0x20

Display Format [v] Replace characters 0x80...0xFF

(D) Binary Replace with: ()" (dot)
(@ Hexadecimal @ Space
() Decimal
o« OK ¥ Cancel © Help

8.5.1.3 ACI_ConnectionStatus
ACI_FUNC ACI_ConnectionStatus();

Description

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 367

Get a current connection status. If the connection is active, i.e. the programmer or multiple
programmers set by the ACI_SetConnection[s) function, is operable and responds requests sent via
ACI, the return code is ACI_ERR_SUCCESS. I, for any reason, the connection was broken the return
code is ACI ERR_NOT_CONNECTED.

See also: ACI_SetConnection[37), ACI_GetConnection[sss).

8.5.1.4 ACI_CreateBuffer

ACI_FUNC ACI_CreateBuffer(ACIl_Buffer Params|ss] * params);
Description
This function creates a buffer with the parameters specified by the ACI_Buffer Params|[s7 structure.

The ChipProg-02 program automatically assigns the buffer #0 so it is not necessary to create this
buffer by a separate command.

See also the ACI_Buffer_Params|s7] structure description.

8.5.1.5 ACI_ErrorString
ACI_FUNC ACI_ErrorString(ACI_ErrorString Params|sst] * params);
Description
Get the string describing the result of the last ACI function call.

All ACI functions return the ACI_ERR_xxx error code but this is may not be enough to find out the exact
reason of the error. The string returned by ACI_ErrorString describes the error in detail.

8.5.1.6 ACI_ExecFunction

ACI_FUNC ACI_ExecFunction(ACI_Function_Params/3 * params);

Description

This function launches one of the programming operation (Read, Erase, Verify, etc.) specified by the
ACI Function Params/[3#). During execution the ACl_ExecFunction does not allow calling any other
ACI function until the programming operation, initiated by the ACI_ExecFunction function, completes
the job. The ACI_ExecFunction[ss7] from the ACI_StartFunction[s7] that returns control immediately after
it was called.

8.5.1.7 ACI_Exit
ACI_FUNC ACI_EXxit();

Description

© 2021 Phyton, Inc. Microsystems and Development Tools

368

CPI2_MODEL Device Programmers - CPI2-B1

8.5.1.8

8.5.1.9

8.5.1.10

Call of this function stops the ChipProg-02 software. In most cases the programmer practically
immediately stops running. Sometimes, after calling the ACI_EXxit function, it continues working for a
while to correctly complete an earlier launched process. After all, the CPI2-B1 will stop and quit itself
after finding that the controlling process has ended.

It is possible, however, that the ChipProg-02 software will keep running even after the control process
has completely stopped. This is an abnormal situation and, as a result, it will be impossible to re-

establish communication with the programmer hardware by launching the ACI_Launch[s71 function. In
this case you should manually close the ChipProg-02 program via the Windows Task Manager.

ACI|_FileLoad

ACI_FUNC ACI_FileLoad(ACIl_File_Params|ssi|* params);
Description

This function loads a specified file into a specified buffer's layer. The control program running on the
host PC should not worry about the file's format settings - the ChipProg-02 software takes care of this.

ACI|_FileSave

ACI_FUNC ACI_FileSave(ACl_File Params|ssi* params);
Description

This function saves a specified file from a specified buffer's layer. The ChipProg-02 software enables
saving files[103in all popular formats: HEX, Binary, etc..

ACI_FillLayer

ACI_FUNC ACI_FillLayer(ACI_Memory_Params[s# * params);
Description

This function fills a whole active layer of a specified memory buffer with a specified data pattern. This
function works much faster than the ACI WriteLayer function which writes data to the buffer layer.

Note! This function fills the programmer's memory buffer with a specified data pattern but does not
physically write them to the device being programmed. In order to physically write data from the
buffer to the device execute the programmer command (function) Program by means of the
ACI_ExecFunction[3h or AC|_StartFunction| 37 with appropriate attributes.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 369

8.5.1.11 ACI_GangStart

ACI_FUNC ACI_GangStart(ACl_GangStart_Params[s3 * params);

Description

This function is used to control multiple device programmers|[197 only when the ChipProg-02 program
was launched from the command line with the /gang key to drive a CPI2-B1 gang programmer or a
cluster of multiple programmers connected to one PC! See also the ACI Launchls71] function. For
controlling a single CPI2-B1 device programmer use ACI_StartFunction[s7 or ACI_ExecFunction| e,

The ACI_GangStart function launches Auto Programmingl 108 on multiple CPI2-B1 device
programmers for the programming socket specified in the SiteNumber parameter of the
ACI_PStatus_Params!| 3 structure. The function returns control immediately. In order to detect the
ending time of the ACI_GangStart execution, use the ACI GetStatus[s1] function.

8.5.1.12 ACI_GangTerminateFunction
ACI_FUNC ACI_GangTerminateFunction(ACl_GangTerminate Params|3]* params);

Description

This function, similar to the ACI_TerminateFunction|33 which is applicable for stopping a single device
programmer, is intended for terminating a current programming operation on one programming site
belonging to the multiprogramming cluster or a gang programmer. The programming site (or socket)
number is specified by the SiteNumber parameter from the AClI_GangTerminate_Params structure.

This function can be used only for the CPI2-B1 programmers launched in the gang mode[197 (see

the /gang parameter among other Command line options[128 for the ACI Launchls7 function). In order to
terminate an operation for a running single-site CPI2-B1 programmer use the
ACI_TerminateFunction| 7).

When the ACI_GangTerminateFunction initiates stopping a current operation it returns the control either
when the operation was successfully stopped or with a delay defined by the Timeout parameter.

8.5.1.13 ACI_GetConnection
ACI_FUNC ACI_GetConnection(ACl_Connection Params|ssi] * params);

Description

This function allows getting the identifier of a current device programmer connection. If a number of
single CPI2-B1 programmers were launched, one after another, by multiple executions of the
ACI_Launchl# function, then executing the ACI_GetConnection| 33 function returns a current
Connectionld[3l parameter as a part of theACI_Launch_Params|? structure.

See also ACI SetConnection[7).
8.5.1.14 ACI_GetDevice

ACI_FUNC ACI_GetDevice(ACI_Device Params| i * params);

© 2021 Phyton, Inc. Microsystems and Development Tools

370 CPI2_MODEL Device Programmers - CPI2-B1

Description

This function gets the device's part number (name) and the name of the manufacturer of the device
being programmed now (for example: M25P32VME, Micron; MCO9S08DNG0AMLC, NXP, etc.).

8.5.1.15 ACI_GetLayer

ACI_FUNC ACI_GetLayer(ACI_Layer_Params|ss#* params);
Description
This function gets the parameters of a specified memory buffer and buffer's layer.

See also the ACI_Layer Params|sss structure description.

8.5.1.16 ACI_GetProgOption

ACI_FUNC ACI_GetProgOption(ACI_ProgOption_Params(% * params);
Description

This function gets current settings from the Device and Algorithm Parameters Editor window. As an
example see this window for one of the microcontrollers below.

Device and Algorithm Parameters Editor [wl==lE
Edit | MinValue | MaxValue | DefaultValue | AllDefault |
Mame Value Description

Device Parameters

®Fuse Bits o

- Lock bits Lock bits

- Calibration Byte 00h Calibration value for the internal RC Oscillator
Algorithm Parameters

- Algarithm "In-System Programming" | Programming algorithm

- Oscillator Frequency | 2500 kHz Oscillator frequency

- Delay afterVecis On | 120 ms Delay after Vee is On

- Programming Mode | .. Programming Mode

-Wee 500V Power supply voltage

Note! This function does not physically read the specified information from the device being
programmed. It reads from some virtual memory locations in the host PC's RAM, associated with
physical locations in the target device's memory and registers. If the option that you would like to
check is a property of the device's memory or registers, then first you have to execute the
programmer command (function) Read in the command group Device Parameters by means of the
ACI_ExecFunction[ssM or ACI_StartFunction[s with appropriate attributes. Then you can read the
execute the ACI_GetProgOption function.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 371

See also the ACI_ProgOption_Params|389 structure description.

8.5.1.17 ACI_GetProgrammingParams

ACI_FUNC ACI_GetProgrammingParams(ACl_Programming Params|zsl* params);

Description

This function gets current programming parameters specified in the tab Option[108 of the Program
Manager| 09l window (memory buffer configurations, programming options, test of the device insertion,
etc.).

See the ACI_Programming_Params|3 structure description.

8.5.1.18 ACI_GetStatus

ACI_FUNC ACI_GetStatus(ACI_PStatus Params|ssl* params);

Description

This function gets the programmer status that includes:
1) The status of the programming operation initiated by the AC|_StartFunction[s call (whether it
has completed or it is still in progress);

2) The device insertion status (certainly if this option is enabled in the tab Option[10 of the Program
Manager| 109 window).

8.5.1.19 ACI_Launch
ACI_FUNC ACI_Launch(ACI_Launch Params|35* params);

Description

This function launches the ChipProg-02 software. Optionally this ACI function can launch the
programmer with a specified Command line options[28) and load the file that will configure[s21the CPI2-
B1 hardware.

Note! This ACI function must always be called before any other ACI function !
8.5.1.20 ACI_LoadConfigFile

ACI_FUNC ACI_LoadConfigFile(ACl_Config Params|sel* params);

© 2021 Phyton, Inc. Microsystems and Development Tools

372 CPI2_MODEL Device Programmers - CPI2-B1

Description

This function loads the CPI2-B1 configuration parameters that include all the settings available via the
ChipProg-02 dialogs (memory buffer configurations, programming options, test of the device insertion,
etc.).

The ChipProg-02 program automatically saves some programming options and settings, including the
type of selected device, the device parameters, the start and end addresses of the device being
programmed, the buffer start address, and a set of the Auto Programming[09 commands. Then it
automatically restores these parameters when the user changes the device type.

See also: ACI_SetProgrammingParams/s77), ACl_SetProgOption[s7), ACI_GetProgrammingParams|s71,
ACI_GetProgOption[30), ACI_SaveConfigFile[s4)

8.5.1.21 ACI_LoadFileDialog

ACI_LoadFileDialog();
Description

This macro opens the Load File[12 dialog. The dialog will be visible irrespective of the ChipProg-02
main window status; the main window can remain closed but the Load File[102 dialog will appear on the
computer screen. See the dialog example below.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 373

< Load File

File Name:

| ARay\ TESTS\PIC\16C73A\16\GIBR10.HE>

e L, Browse..

File Format:

Buffer to load file to:

(@) Standard/Extended Intel HEX (* hex*.mcs)
{_)Binary image (*.bin}

{IMotorola S-record (*hex*.s** mot)
(JPOF (*pof)

() JEDEC (* jed)

(OPRG (" prg)

(_JHoltek OTP {* otp)

() Angstrem SAV (*.sav)

(IASCI Hex (* i)

{JASCI Octal (*.0t)

Start address for binary image: 0

Offsetfor loading addresses: |0

(@) Buffer #0
() Buffer #1

Layerto load file to:

(® Code (32 MB), bytes
()Invalid Block Map (128 KB). bytes

OK

i Cancel @ Help

8.5.1.22 ACI_LoadProject

ACI_FUNC ACI_LoadProject(ACl_Project Params|s»]* params);

Description

Load the project. The path to the project file is specified in the ProjectName member of the
ACI_Project_Params structure. The project must be previously prepared and saved manually in the

programmer shell application.

Using this function is convenient because loading a project automatically performs the following:

The programmer shell settings are loaded;

The device chosen in the project is loaded,;

The programming options are set to the values specified in the project;
Files specified in the project are loaded to the buffers;

Settings for the Checksum, SerialNumber, Shadow areas, etc. are loaded.

Loading a project with ACI_LoadProject() is the same as loading a project in the programmer shell.

© 2021 Phyton, Inc. Microsystems and Development Tools

374 CPI2_MODEL Device Programmers - CPI2-B1

8.5.1.23 ACI_ReadlLayer

ACI_FUNC ACI_ReadLayer(ACI_Memory_Params[ss$* params);

Description

This function reads data from a specified memory buffer. The data size is limited by 16M Bytes.

Note! This function reads the data from the programmer's memory buffer but does not physically
read out the content of the selected target device. In order to physically read out the device
memory content, execute the programmer command (function) Read by means of the
ACI_ExecFunction[=s or AC|_StartFunction| s with appropriate attributes.

8.5.1.24 ACI_ReallocBuffer

ACI_FUNC ACI_ReallocBuffer(ACI_Buffer Params| s * params);

Description

This function changes the size of the layer #0 in the memory buffer specified in the
ACI| Buffer_Params|[38 structure.

See also the ACI Buffer Params|[7 structure description.

8.5.1.25 ACI_SaveConfigFile

ACI_FUNC ACI_SaveConfigFile(ACl_Config Params|s3e)* params);

Description

This function saves the CPI2-B1 options specified in the tab Option| 1% of the Program Manager| 09
window (memory buffer configurations, programming options, test of the device insertion, etc.).

The ChipProg-02 program automatically saves some programming options and settings including a
type of the selected device, the device parameters, the start and end addresses of the device being
programmed, the buffer start address, and a set of the Auto Programming[16] commands and then
automatically restores these parameters when the user changes the device type.

Cwm. Takxke: ACI SetProgrammingParams| 37, ACI_SetProgOption[s7e),
ACI GetProgrammingParams[37h, ACI GetProgOption[37d), ACI LoadConfigFile[s7h

8.5.1.26 ACI_SaveFileDialog

ACI_SaveFileDialog();

Description

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 375

This macro sends a command that opens the Save File[4 dialog. The dialog will be visible
irrespective of the ChipProg-02 main window status; the main window can remain closed but the Save
File[103 dialog will appear on the computer screen. See the dialog example below.

« Save file from buffer

File name
|C:‘;F’rojects‘LPauIAmrides‘LLasers‘;MajcrCaliber.hexi v) Browse..
Addresses File format
Start [0 v] (@ Standard/Extended Intel HEX
() Binary image
End: |0x107FFFF v| O Motorola S
POF
All O
() JEDEC
D\? (PRG
() ASCI Hex
()ASCI Octal
Buffer to save file from: Layer to save file from:
(@ Buffer #0 (@ Code (32 MB). bytes
() Buffer #1 {(JInvalid Block Map (128 KB). bytes
< 0K i Cancel £ Help

8.5.1.27 ACI_SelectDeviceDialog

ACI_SelectDeviceDialog();

Description

This macro sends a command that opens the Select Device| 8 dialog. The dialog will appear on the
screen irrespective of the ChipProg-02 main window status; the main window can remain closed but
the Select Devicel[s dialog will appear on the computer screen.

© 2021 Phyton, Inc. Microsystems and Development Tools

376

CPI2_MODEL Device Programmers - CPI2-B1

8.5.1.28

8.5.1.29

8.5.1.30

85.131

ACI_SerializationDialog
ACI_SerializationDialog();

Description

This macro sends a command that opens the Serialization, Checksum, and Log Dialog] &3,

ACI|_SetConnection
ACI_FUNC ACI_SetConnection(ACIl_Connection_Params|ssil * params);

Description

This function identifies a current device programmer connection. Use this function when you control a
number of device programmers by means of multiple calls of the ACI_Launchls71] function. Each
connection gets its own unique identifier. Executing of the ACI_Launch[s function returns the
Connectionld[1 as part of the ACI_Launch_Params| 3@ structure.

After establishing the connection, all the ACI functions following the ACI_SetConnection function will
work exclusively with the established connection. If, for example, a cluster of six CPI2-B1 programmers
is launched in the gang mode, a whole cluster driven by the ACI will represent a single connection,
but not six connections.

When ACI controls only one CPI2-B1 programmer it is not necessary to execute the
ACI_SetConnection function; the ACI_Launch function automatically assigns a Connectionlds1) that is
the next one in order.

The Connectionld can be always checked by executing the function ACI_GetConnection|se).

ACI_SetDevice

ACI_FUNC ACI_SetDevice(ACl_Device Params|ssil * params);
Description

This function chooses the device to be programmed. Along with the device type, the function
automatically loads the device parameters, start and end addresses and the buffer start address. Also,
it restores the Auto Programming/[108 command list if the selected device type has ever been selected
earlier, but the parameters listed above were changed during the programming session.

ACI_SetProgOption

ACI_FUNC ACI_SetProgOption(ACl_ProgOption_Params[3¥* params);

Description

This function sets device-specific options and parameters, which are specified in the Device and
Algorithm Parameters Editor[%31 window. As an example see this window for one of the
microcontrollers below.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 377

Device and Algorithm Parameters Editor [wl==lE
Edit | MinValue | MaxValue | DefaultValue | AllDefault |
Mame Value Description

Device Parameters

®Fuse Bits o

- Lock bits Lock bits

- Calibration Byte 00h Calibration value for the internal RC Oscillator
Algorithm Parameters

- Algarithm "In-System Programming" | Programming algorithm

- Oscillator Frequency | 2500 kHz Oscillator frequency

- Delay afterVecis On | 120 ms Delay after Vee is On

- Programming Mode | .. Programming Mode

-Wee 500V Power supply voltage

Note! This function does not physically write the specified information into the device being
programmed. It actually writes to some virtual memory locations in the host PC's RAM, associated
with physical locations in the target device's memory and registers. In order to complete programming
the device parameters and to physically program them into the device's memory you should execute
an appropriate Program command (function) in the command group Device Parameters, by means
of the ACI_ExecFunction[3 or ACI_StartFunction[32 with appropriate attributes.

See also the ACI_ProgOption_Params| = structure description.

8.5.1.32 ACI_SetProgrammingParams

ACI_FUNC ACI_SetProgrammingParams(ACl_Programming Params| 33 * params);
Description

This function sets programming parameters specified in the tab Option| 109 of the Program Manager|09)
window (memory buffer configurations, programming options, test of the device insertion, etc.).

See also the ACI_Programming_Params|=3] structure description.

8.5.1.33 ACI_SettingsDialog

ACI_SettingsDialog();
Description

This macro opens the Configure > Preferences| 7 setting dialog. The dialog will be visible
irrespective of the ChipProg-02 main window status; the main window can remain closed but the
Configure > Preferences| 7 setting dialog will appear on the computer screen, thus allowing
manipulations in the dialog.

© 2021 Phyton, Inc. Microsystems and Development Tools

378

CPI2_MODEL Device Programmers - CPI2-B1

8.5.1.34

8.5.1.35

8.5.1.36

8.5.2

8.5.21

ACI_StartFunction

ACI_FUNC ACI_StartFunction(ACl_Function Params|ss]* params);
Description

This function launches one of the programming operation (Read, Erase, Verify, etc.) specified by the
ACI_Function_Params|zs3 and immediately returns control to the external application no matter whether
the programming operation, initiated by the ACI_StartFunction, has or has not completed. The
ACI_StartFunction[s7is different from the ACl _ExecFunction[se). It is possible to check if the
operation has completed by the ACl_GetStatus/=1l function call. This allows monitoring the execution
of programming operations if they last for a long time.

ACI_TerminateFunction

ACI_FUNC ACI_TerminateFunction();
Description

This function terminates a current programming operation initiated by the ACI_StartFunction[37 call.

ACI_WriteLayer

ACI_FUNC ACI_WriteLayer(ACl_Memory_Params[3# * params);
Description

This function writes data to a specified memory buffer. The data size is limited by 16M Bytes.

Note! This function writes the data to the programmer's memory buffer but does not physically
program the device. In order to physically write data from the buffer to the device's memory, execute
the programmer command (function) Program by means of the ACI _ExecFunction[3? or
ACI_StartFunction[37 with appropriate attributes.

ACI Structures

This sections contains alphabetical list of all ACI structures.

ACI_Buffer_Params

typedef struct tagACl Buffer Params
{
UINT Size; // (in) Size of structure, in bytes
DWORD LayerOSizelLow; // (in/out) Low 32 bits of layer 0 size, in bytes

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 379

DWORD LayerQSizeHigh; // (in/out) High 32 bits of layer 0 size, in bytes

// Layer size is rounded up to a nearest value supported by p
LPCSTR BufferName; // (in) Buffer name
UINT BufferNumber; // For ACI CreateBuffer(): out: Created buffer number
// For ACI _ReallocBuffer(): in: Buffer number to realloc
UINT NumBuffers; // (out) Total number of currently allocated buffers
UINT NumLayers; // (out) Total number of layers in a buffer

} ACI_Buffer_Params;

This structure member represents buffer layer #0's size in Bytes. This
size lies in the range between 128K Bytes and 32G Bytes (may be
changed in the future). The ChipProg-02 allows assigning buffers with

Layer 0Si zeLow, fixed sizes only (see the list on the picture below). Any intermediate value

Layer 0Si zeHi gh will be automatically rounded up to one of the reserved buffer sizes. For
example, if you enter '160000' the programmer will assign a 1MB buffer
layer.

Since it is used with the ACI_CreateBuffer[s function this structure
Buf f er Nane member represents the name of the buffer that will be created. If used
with the ACI_ReallocBuffer[s74) function will be ignored.

After calling the ACI_CreateBuffer[3s? function this structure member
Buf f er Nunber returns the created buffer's number. After calling the
ACI_ReallocBuffer| 7 function - the number of the buffer, size of which
should be changed (re-allocate).

NunBuf f er s This structure member represents the current number of memory buffers
being opened.

This structure member represents the number of layers in memory

NunmLayer s
y buffers. This value is the same for all opened buffers.

© 2021 Phyton, Inc. Microsystems and Development Tools

380 CPI2_MODEL Device Programmers - CPI2-B1

Buffer Configuration

Buffer name, Code settings EEPROM

Buffer Name

Buffer #0 o

Size of layer 'Code".

128 KB i

1MB
2MB
4MB
8MB
16 MB
|32mB i
64 MB
128 MB
256 MB
512 MB
1GB
2GB
4GB
8GB
16 GB
32 GB

< 0K ¥ Cancel © Help

See also: ACI CreateBuffer[ss7, ACI ReallocBuffer[s72

8.5.2.2 ACI_Config_Params
typedef struct tagACl_Config_Params

{
UINT Size; // (in) Size of structure, in bytes
LPCSTR FileName; // (in) Options file name to load/save configuration
} ACI_Config_Params;
Fi | eNane This is the name of the file that configures the
programmer.

See also: ACI LoadConfigFilel 38, ACI SaveConfigFile[3

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 381

8.5.2.3 ACI_Connection_Params

typedef struct tagACl_Connection_Params
{
UINT Size; // (in) Size of structure, in bytes
LPVOID Connectionld; // ACI_SetConnection(): (in), ACI_GetConnection(): (out)
// Connection identifier
} ACI_Connection_Params;

Connecti onl d An identifier of the connection with a particular device programmer. This is an
abstract, internally used, ACI parameter.

See also: ACI SetConnection[37), ACI GetConnection[ze3).

8.5.2.4 ACI Device Params

typedef struct tagACl _Device Params

{
UINT Size; // (in) Size of structure, in bytes
CHAR Manufacturer[64]; // (in |] out) Device Manufacturer
CHAR Name[64]; // (in |] out) Device Name
} ACI_Device_Params;
Manuf act ur er The manufacturer of the device being programmed
Nane The device part number as it is displayed in the
programmer's device list

See also: ACI SetDevicel37®), ACI GetDevicelss)

8.5.2.5 ACI _ErrorString_Params

typedef struct tagACl_ErrorString_Params

{
UINT Size; // (in) Size of structure, in bytes
CHAR ErrorString[256]; // (out) Error string describing error code ACI_ERR ... returned
// call to ACI function
} ACI_ErrorString_Params;
ErrorString String describing the error returned by the last ACI function call.

See also: ACI_ErrorString[3
8.5.2.6 ACI _File Params

typedef struct tagACl_File_Params

© 2021 Phyton, Inc. Microsystems and Development Tools

382

CPI2_MODEL Device Programmers - CPI2-B1

{
UINT Size; // (in) Size of structure, in bytes
LPCSTR FileName; // (in) File name
UINT BufferNumber; // (in) Buffer number
UINT LayerNumber; // (in) Layer number
UINT Format; // (in) File format: see ACI_PLF ... and ACI_PSF_xxx constants
DWORD StartAddressLow; // (in) Low 32 bits of start address for ACI_FileSave().
// For ACI_FileLoad(): Ignored if Format != ACI_PLF BINARY
DWORD StartAddressHigh; // (in) High 32 bits of start address for ACI_FileSave().
// For ACI_FileLoad(): Ignored if Format != ACI_PLF_BINARY
DWORD EndAddressLow; // (in) ACI_FileSave(): Low 32 bits of end address
DWORD EndAddressHigh; // (in) ACI_FileSave(): High 32 bits of end address
DWORD OffsetLow; // (in) Low 32 bits of address offset for ACI_FileLoad()
DWORD OffsetHigh; // (in) High 32 bits of address offset for ACI_FileLoad()

} ACI_File Params;

Fi | eNanme

The name of the file to be loaded to the CPI2-B1 buffer.

Buf f er Nunber

The ordinal number of the destination buffer. Buffer numbers begins from
zero.

Layer Nurber

The ordinal number of the memory layer in the buffer. Layer numbers begins
from zero.

For mat

The loadable file's format. See the description of the ACI_PLF_XXX*
constants in the aciprog.h header file (see below).

St art Addr essLow,
St art Addr essHi gh

1) If used with the ACI_FileSave[3] function this parameter specifies the first
(start) address in the source memory layer, from which the file will be

saved.

2) If used with the ACI_FileLoad)[3 function, but only when it loads a file in
the binary format (Format == ACI_PLF_BINARY), this parameter specifies
the first (start) address of the destination memory layer, in which the file will
be loaded. Binary images do not carry any addresses for the file loading.

EndAddr essLow,
EndAddr essHi gh

If used with the ACI_FileSave| 38 function this parameter defines the last
(end) address of the source memory layer, from which the file will be saved.

O fset Low,

O fset Hi gh

The address offset that shifts the file position in the destination memory
layer. The offset can be negative as well as positive.

This is the bit definition from the aciprog.h header file:

*// ACI File formats for ACI_FileLoad()

#define AC|_PLF_INTEL_HEX
#define ACI_PLF_BINARY
#define ACI_PLF_MOTOROLA S

#define ACI_PLF_POF

#define ACI_PLF_JEDEC

#define ACI_PLF_PRG
#define ACI_PLF_OTP
#define ACI_PLF_SAV

#define ACI_PLF_ASCIl_HEX
#define AC|_PLF_ASCI_OCTAL

0 // Standard/Extended Intel HEX
1 // Binary image
2 // Motorola S-record
3 /[POF
4 || JEDEC
5 IIPRG
6 // Holtek OTP
7 Il Angstrem SAV
8 // ASCIl Hex
9 // ASCII Octal

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 383

See also: ACI FileLoad[=68, ACI FileSavelss).

8.5.2.7 ACI _Function_Params

typedef struct tagACl_Function_Params

{
UINT Size; // (in) Size of structure, in bytes
LPCSTR FunctionName; // (in) Name of a function to execute. If a function is under a
// To execute Auto Programming, set FunctionName to NULL,
UINT BufferNumber; // (in) Buffer number to use
BOOL Silent; // (in) On error, do not display error message box, just copy e

CHAR ErrorMessage[512];

// (out) Error message string if ACI_ExecFunction() fails

} ACI_Function_Params;

Functi onNane

The name of the CPI2-B1 function is one of those listed in the window Functions
of the ChipProg-02 Program Manager tab[100. They are divided in two group (see
the picture below): (1) the main functions applicable to a majority of the target
devices (Blank Check, Erase, Read, Program, Verify) and (2) the device-
specific lower level functions accessible through expandable sub-menus (for
example, Program Device Parameters, Erase Sectors, Lock Bits > Program
Lock Bit 1, EEPROM > Read, etc.). For such device-specific functions the
FunctionName should be specified in the following way: <List
name>"<Function name> (for example, Device Parameters”Program).

To launch the AutoProgramming batch set the FunctionName either to NULL, a
blank string, or the "Auto Programming".

There is no restrictions in use of uppercase and lowercase characters in the
function names.

Buf f er Nunber

The ordinal number of the buffer the function operates with.

Si | ent

If this parameter is TRUE, then the error message dialog will be suppressed, the
function execution will be terminated and will return the
ACI_ERR_FUNCTION_FAILED code, and the error message will be copied to
the ErrorMessage.

Err or Message

The destination of the error message that will be issued if the function fails.

© 2021 Phyton, Inc. Microsystems and Development Tools

384 CPI2_MODEL Device Programmers - CPI2-B1

Frogram Manager [BIE3
Program Manager Options Statistics

Device Status:

Buffer. | Buffer #0: Code (16 MB), bytes, ID location (128 KB), bytes, Data (125 KB) ~

Functions

™ Elank Check
- Program i . @ Execute
- Read Main functions

-~ Verify Repetitions:
- Erase

[-Data
=-Device Parameters & ID
- Blank Check Device-specific

~Program functions © Hep

1 R

% Edit Auto...

- Auto Programming

Checking memary

See also: ACI ExecFunction[z), ACI StartFunction[s73), ACI GetStatus|[s71)

8.5.2.8 ACI_GangStart_Params

typedef struct tagACl_GangStart_Params

{
UINT Size; // (in) Size of structure, in bytes
UINT SiteNumber; // (in) Site number to start auto programming at
UINT BufferNumber; // (in) Buffer number to use
BOOL Silent; // (in) On error, do not display error message box. Use ACI _Get

} ACI_GangStart Params;

The number of the device programmer socket in the gang programmer or in
Si t eNunber a programming cluster comprised of multiple CPI2-B1 programmers for
which the ACI_GangStart[3 function is launched. The site (Socket) numbers
begin from #0.

The ordinal number of the memory buffer[%, content of which is required by
Buf f er Nunmber the ACI_GangStart[% function. Numbers of CPI2-B1 memory buffers begin
from #0.

If this parameter is TRUE, then the error message dialog will be suppressed,
Si | ent the function execution will be terminated _and the
ACI_ERR_FUNCTION_FAILED code will be returned.. Use the

ACI GetStatus|=71] function to receive the error message.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 385

See also: AC| GangStart[ss9, ACI GetStatus[a7h

8.5.2.9 ACI_GangTerminate_Params

typedef struct tagACl_GangTerminate_Params

{
UINT Size; // (in) Size of structure, in bytes
INT SiteNumber; // (in) Site number to terminate operation (-1 == all sites)
INT Timeout; // (in) Timeout in milliseconds (-1 == infinite) to wait for op
BOOL SiteStopped; // (out) TRUE if operation was stopped, FALSE if timeout occurre

} ACI_GangTerminate_ Params;

The site (socket) number you want terminating a current operation on. Socket
Si t eNurtber numbers begin from 0 (zero). If you specify SiteNumber = -1 (minus one) this will
terminate operations on all sites of the gang machine.

A time interval in milliseconds, during of which the ACI_GangTerminateFunction|3s)
holds expecting an acknowledgment of the successful operation termination. The
function will return control either upon getting such an acknowledgment or upon

Ti meout expiring a specified Timeout.

If you specify the Timeout = -1 (minus one) it will never expire.

This parameter indicates whether the ACI_GangTerminateFunction| s succeeded.
|In case of successful termination an operation before expiring the Timeout the
SiteStopped parameter sets TRUE. Otherwise, it will be set FALSE.

Si t eSt opped

See also: ACl _GangTerminateFunction[369, ACI TerminateFunction[373.

8.5.2.10 ACI _Launch_Params

typedef struct tagACl_Launch_Params

{
UINT Size; // (in) Size of structure, in bytes
LPCSTR ProgrammerExe; // (in) Programmer executable file name
LPCSTR CommandLine; // (in) Optional programmer command-line parameters
UINT DebugMode; // (in) Debug mode. See DM_xxx constants
UINT NumSites; // (out) For Gang mode: Number of sites
LPVOID Connectionld; // (out) Connection identifier

CHAR ProgrammerName[64]; // (out) Programmer name
} ACI_Launch_Params;

© 2021 Phyton, Inc. Microsystems and Development Tools

386

CPI2_MODEL Device Programmers - CPI2-B1

Pr ogr anmer Exe

This is the name of the programmer executable file. If the parameter does not
include a full path then the program will search for the UprogNT2.EXE file
into the folder where the ACI.DLL resides.

The target folder name, where the the UprogNT2.EXE file resides, is defined
by the parameter "Folder" of the ""HKLM\SOFTW ARE\Phyton\Phyton
ChipProg-02 Programmer\x.yy.zz" key. It is supposed that multiple ChipProg-
02 versions can be installed on the host computer.

CommandLi ne

This structure member specifies the Command line options[2% . One of the
option is NULL (no keys). If the host computer drives a cluster|197) of multiple
programmers then the only way to launch a certain programmer is to specify
the /N<serial number> for the CommandLine structure member.

DebugMbde

The following options can be set for this parameter in accordance to the
declaration in the ACIProg.h file:

DM _GUI_HIDDEN - makes the CPI2-B1 GUI[<1 invisible. The software stops
issue the messages that are normally visible in the GUI except the messages
about critical system errors (for example, if a PC looses connection with the
CPI2-B1 hardware).

DM _GUI VISIBLE - makes the CPI2-B1 GUI[41 visible. This constant
enables to manipulate with the CPI2-B1 programmer in between of the ACI
function calls. These manipulations includes, but not limited to, opening and
resizing windows, watching and modifying data in buffers, executing
commands, etc.

DM_GUI_NONE - completely disables any operation with the GUI that
becomes invisible. No messages, even those which warn about very critical
system errors, will be issued to the computer screen. The user's application,
that controls the programmer via the ChipProg-ISP2 ACI, should completely
handle all the errors issued by the ACI functions.

NunSi t es

If multiple CPI2-B1 programmers were launched in the gang[#1 mode, then
after return the NumSites indicates the number of device programmers in
the gang cluster.

Connectionl d

After return with the ACI ERR_SUCCESS code this field contains the
connection identifier - see the ACI_SetConnection[s78 and
ACI_GetConnection[s functions..

Pr ogr anmer Nanme

After return with the ACI_ERR_SUCCESS code this field contains a string
with the device programmer name, here CPI2-B1.

See also: ACI Launch[s7)

8.5.2.11 ACI_Layer_Params

typedef struct tagACl_Layer Params

{
UINT Size;

UINT BufferNumber;
UINT LayerNumber;

// (in) Size of structure, in bytes

DWORD LayerSizelow; // (out) Low 32 bits of layer size, in bytes

© 2021 Phyton, Inc. Microsystems and Development Tools

// (in) Number of buffer of interest, the first buffer numbe
// (in) Number of layer of interest, the first layer number

Reference 387

DWORD LayerSizeHigh; // (out) High 32 bits of layer size, in bytes

DWORD DeviceStartAddrLow; // (out) Low 32 bits of device start address for this layer
DWORD DeviceStartAddrHigh; // (out) High 32 bits of device start address for this layer
DWORD DeviceEndAddrLow; // (out) Low 32 bits of device end address for this layer
DWORD DeviceEndAddrHigh; // (out) High 32 bits of device end address for this layer
DWORD DeviceBufStartAddrLow; // (out) Low 32 bits of device memory start address in buffer
DWORD DeviceBufStartAddrHigh; // (out) High 32 bits of device memory start address in buffe
UINT UnitSize; // (out) Size of layer unit, in bits (8, 16 or 32)

BOOL FixedSize; // (out) Size of layer cannot be changed with ACI_ReallocBuff
CHAR BufferName[64]; // (out) Buffer name

CHAR LayerName[64]; // (out) Layer name, cannot be changed

UINT NumBuffers; // (out) Total number of currently allocated buffers

UINT NumLayers; // (out) Total number of layers in a buffer

} ACI_Layer_Params;

Buf f er Nunber

The ordinal number of the memory buffer[¢, content of which is required
by the ACI_GetLayer[s7) function. Numbers of CPI2-B1 memory buffers
begin from #0.

Layer Nunber

The ordinal number of the layer in the memory buffer[s, the content of
which is required by the ACI_GetlLayer| =70 function. The layer numbers
begins from #O0.

Layer Si zelLow,
Layer Si zeHi gh

Here the function returns the range of the memory layer's addresses in
bytes.

Devi ceSt ar t Addr Low

iDevi ceStart AddrHi g
h

Here the function returns the device's start address for the selected
memory layer. This address is the device's property and strictly depends
on the device type; usually this value is zero. Do not mix it up with the start
address of a programming operation that can be shifted by a certain offset
value.

Devi ceEndAddr Low,
Devi ceEndAddr Hi gh

Here the function returns the device's end address for the selected
memory layer. This address is the device's property and strictly depends
on the device type. Do not mix it up with the end address of a
programming operation editable in the setup dialog. The selected layer's
address range can be defined as a difference between the end address
and the start address plus 1.

Devi ceBuf St art Addr
Low,
Devi ceBuf St art Addr
H gh

Here the function returns the start address for the selected memory
buffer[s1 - usually this value is zero.

This structure member specifies formats of the data in a memory layer: 8

Unit Size
for the 8-bit devices, 16 - for 16-bit devices and 32 for 32-bit devices.
This flag, if TRUE, disables resizing the memory layer by the
Fi xedSi ze AC|_ReallocBuffer| s function. There is one restriction on use of this flag:

since the layer #0 is always resizeable the FixedSize is always FALSE
for the layer #0.

© 2021 Phyton, Inc. Microsystems and Development Tools

388 CPI2_MODEL Device Programmers - CPI2-B1

The ordinal number of the memory buffer[e, content of which is required
Buf f er Nunber by the ACI_GetLayer[33) function. Numbers of CPI2-B1 memory buffers
begin from #0.

The name of the memory buffer as it was defined in the CPI2-B1 interface
Buf f er Nane .
or by the ACI_CreateBuffer| 3671 function call.

Reserved name of the memory buffer's layer. It cannot be changed by the

Layer Nane
y ACLDLL user.
NunBuf fers The number of the assigned memory buffers.
NunLayer s The number of layers in the programmer's memory buffers. This is a pre-

defined device-specific value that is the same for all memory buffers.

See also: ACI_GetlLayer|[s
8.5.2.12 ACI_Memory_ Params

typedef struct tagACl_Memory_Params

{
UINT Size; // (in) Size of structure, in bytes
UINT BufferNumber; // (in) Number of buffer of interest, the first buffer number is O
UINT LayerNumber; // (in) Number of layer of interest, the first layer number is O
DWORD AddressLow; // (in) Low 32 bits of address, in layer units (natural to device
DWORD AddressHigh; // (in) High 32 bits of address, in layer units (natural to device
PVOID Data; // (in]| out) Buffer to data to read to or write from
DWORD DataSize; // (in) Size of data to read or write, in layer units, max. 16 MB
DWORD Fillvalue; // (in) Value to fill buffer with, used by ACI FillLayer() only

} ACI_Memory_ Params;

Buf f er Nunber The orQinaI number pf the buffer to read from or to write into. The buffer
numerical order begins from zero.

The ordinal number of the memory buffer's layer to read from or to write into.

Layer Number) .
Y The layer numerical order begins from zero.

The start address in the memory layer to read from or to write into

Addr essLow, represented in the units specified by the chosen device manufacturer - Bytes,
Addr essHi gh Words, Double Words. This structure member is ignored in case of use with
the ACI_FillLayer[3e8) function.

Since these are used with different ACI functions this structure member has
different meanings.In case of use with the ACI_ReadLayer|s74 function it
represents the pointer to the data read out from the CPI2-B1 buffer's layer. In
Dat a case of use with the AC|_WriteLayer|s7! - the pointer to the data to be written
to the CPI2-B1 buffer's layer. The Data is ignored if it is used with the
ACI_FillLayer[3¢ function.

_ This structure member represents the data format given in memory units
Dat aSi ze specified by the device manufacturer (Bytes, Words or Double Words). The
program ignores the DataSize if it is used with the ACI_FillLayer function.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 389

This is the data pattern that fills an active CPI2-B1 buffer's layer by means of
the ACI_FillLayer[e function. If, for example, the FillValue is presented in the
Fill Vval ue DWORD format then the 8-bit memory layers will be filled with the lower byte
of the FillValue pattern, the 16-bit layers - with the lower 16-bit word and the
32-bit layers - with a whole FillValue pattern.

See also: ACI ReadLayer[s, ACI WriteLayer[s3, ACI FillLayer| e

8.5.2.13 ACI_ProgOption_Params

typedef struct tagACl_ProgOption_Params

{
UINT Size;

LPCSTR OptionName;
CHAR Units[32];

CHAR ListString[64];

UINT OptionType;

BOOL ReadOnly;

union

{
LONG LongValue;
FLOAT FloatValue;
LPSTR String;
ULONG CheckBoxesValue;
UINT Statelndex;
LPBYTE Bitstream;

} Value;

UINT VSize;

UINT Mode;
} ACI_ProgOption_Params;

// (in) Size of structure, in bytes

// (in) Name of the option. For lists, it should be in the form
// (out) Option measurement units (“'kHz", "V, etc.)

CHAR OptionDescription[64]; // (out) Description of the option

// (out) For ACI_PO_LIST option: Option string for Value.ListlInde
// (out) Option type: see ACI_PO_xxx constants

// (out) Option is read-only

// (in || out) Option value

// (in
// (in
// (in
// (in
// (in
// (in

out) Value for ACI_PO LONG option

out) Value for ACI_PO FLOAT option

out) Pointer to string for ACI_PO_STRING option

out) Value for ACI_PO_CHECKBOXES option

out) State index for ACI_PO_LIST option

out) Pointer to bitstream data for ACI_PO BITSTREAM opt

// For ACI_SetProgOption():

//

in: Size of Bitstream if OptionType == ACI_PO_BITSTREAM

// For ACI_GetProgOption():

//
//

in: Size of buffer pointed by Bitstream if OptionType == AC
in: Size of buffer pointed by String if OptionType == ACI_P

// out: Size of buffer needed for storing Bitstream data if Opt

//

Set Value._Bitstream to NULL to get buffer size without

// out: Size of buffer needed for storing String if OptionType :

//

Set Value.String to NULL to get buffer size without set

// (in) For ACI_SetProgOption(): SEE ACI_PP_MODE ... constants

The name of the programming option - for example "Vcc". For the ACI_PO_LIST -
type options, where the options are grouped into a list, you should specify both the
Opt i onNane list name and the option name in the following way: <List name>”"<Option name>
(For example, Configuration_bits* Generator. There are no restrictions on use of
uppercase and lowercase characters in the option names.

) After executing the ACI_GetProgOption 378 function this structure member returns
Units an abbreviation of the units, in which the programmer represents or measures the
OptionName. For example, for the Vcc structure member, Units = "V".

© 2021 Phyton, Inc. Microsystems and Development Tools

390

CPI2_MODEL Device Programmers - CPI2-B1

Opti onDescription

After executing the ACI_GetProgOptionlE(h function this structure member returns
the option description.

After executing the ACI_GetProgOption[37 function for the ACI_PO_LIST - type

Li st String options this structure member returns a string that describes the current option's
value or status. For example, XT - Standard Crystal for the option Configuration
bits*Generator.

] After executing the ACI_GetProgOption[37 function this structure member returns

Opti onType the option's presentation format - for example: integer, floating point, list, bitstream,
etc.. See the ACI_PO_xxx* constant description in the aciprog.h header file below.

ReadOnl y Setting ReadOnly=TRUE disables modification of the option specified by the
ACI_GetProgOptionl 37 function.

Use of this union depends on the ACI_PO_LONG* option type as it is shown in the
matrix_below:

J—

Option type Use of the Value union

ACI_PO_LONG The option is in the Value.LongValue

ACI_PO_FLOAT The option is in the Value.HoatValue

ACI_PO_STRING The option is represented as a string, the pointer on which
is in the Value.String. See the note below| 399,

ACI_PO_CHECKBOXES | The option represents a 32-bitinteger word, in which you
can individually toggle each bit that represents a particular

val ue flag in the option setting dialog. The option is in the

Value.CheckBoxesValue. See, for example, the Fuse
setting dialog for the ATtiny45 MCU implemented as an
array of check boxes[39h,

ACI_PO_LIST It represents a list of alternative choices. Only one of them
can be selected ata time, so the parameter changes its
value in arange 0, 1, 2 to N. The option is in the
Value.CheckStatelndex. See, for example, the Oscillators
setting dialog for the PIC12F509 MCU implemented as an
alternatively chosen radio buttons[393)

ACI_PO_BITSTREAM Stream of bits. This option type is notin use yet but can be
used for future applications.

VSi ze Size of the buffer assigned for storing the string if the option type is the
ACI_PO_STRING. See the note below[398)

Mode of using of the structure member Value (See the description of the
ACIl_PP_xxx** constants in the aciprog,h<) header file:
—

The Mode setting (value) | Use of the parameter Value

ACI_PP_MODE_VALUE |1) For measuring (getting): use the Value in order to get an
actual Option value;

2) For setting: use the Value to set a particular Option
value.

ACI_PP_MODE_DEFAUL | 1) Ifused with the ACI_GetProgOption[370 function it

Mode T _VALUE

issues a command to put the default Option value into the
Value.

2) If used with the ACI_SetProgOption [37 function, the
Value will be ignored; the Option will be set to the default
level defined in the CPI2-B1 hardware.

ACI_PP_MODE_MIN_VAL
UE

1)If used with the ACI_GetProgOption[378 function it
commands to put the minimal Option value into the Value.
2) If used with the ACI_SetProgOption[378 function the

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 391

Value will be ignored; the Option will be set to the minimal
level defined in the CPI2-B1 hardware, ifitis possible for
the Option of this type.

ACI_PP_MODE_MAX_VA | 1) If used with the ACI_GetProgOption[37 function it

LUE commands to put the maximal Option value into the Value.
2) Ifitis used with the ACI_SetProgOption[378 function the
Value will be ignored; the Option will be set to the maximal
level defined in the CPI2-B1 hardware, ifitis possible for
the Option of this type.

This is the bit definition from the aciprog.h header file:

*// ACI Programming Options defines

#define ACI_PO_LONG 0 // Signed integer option

#define ACl_PO_FLOAT 1 // Floating point option

#define ACl_PO_STRING 2 /I String option

#define ACl PO_CHECKBOXES 3 // 32-bit array of bits

#define ACI_PO_LIST 4 |/ List (radiobuttons)

#define ACI_PO_BITSTREAM 5 /I Bit stream - variable size bit array

**[[ACI Programming Option Mode constants for ACI_GetProgOption()/ACI_SetProgOption()
#define ACl_PP_MODE_VALUE 0 // Get/set value specified in Value member of the
ACI|_ProgOption_Params structure

#define ACl PP_MODE_DEFAULT_VALUE 1 // Get/set default option value, ignore Value member
#define ACI_PP_MODE_MIN_VALUE 2 // Get/set minimal option value, ignore Value member
#define ACl_ PP_MODE_MAX VALUE 3 /I Get/set maximal option value, ignore Value
member

Note for use of the ACI_GetProgOption:

In order to get the buffer size necessary for storing the Option ACI_PO_STRING, you should make the
first call of the ACI_GetProgOption function with the Value.String= NULL. Then the function will return
the VSize equal to the buffer size, including zero at the string's end. In your program, assign the buffer
of this size, put the Value.String into the buffer pointer and call the ACI_GetProgOption again.

© 2021 Phyton, Inc. Microsystems and Development Tools

392

CPI2_MODEL Device Programmers - CPI2-B1

« Fuse Bits

[]CKSELT
[v]CKSEL2
[«]CKSEL3
[v]sUTD

[]suUT1

[|BODEN

[|BODLEVEL
[|BOOTRST
[«|BOOTSZ0
[«]BOOTSZ1
[]EESAVE

[JCKOPT

Check all Uncheck all

MNote
'Checked’ option means logical state '0°

& Cancel

All default

2 Help

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 393

< Oscillator

()LP oscillator

()XT oscillator

()JHS oscillator

()EC oscillator with CLKOUT on RAG
()EC oscillator with port on RAG

()JHS oscillator with PLL enabled

() External RC oscillator with port on RAG
()Internal RC oscillator with port on RAG
() Internal RC oscillator with CLKOUT on RAG

(@ External RC oscillator with CLKOUT on RAE

o’ QK

& Cancel

£ Help

See also: ACI_GetProgOption[38), ACI_SetProgOption[78)

8.5.2.14 ACI_Programming_Params

typedef struct tagACl_Programming_Params

{
UINT Size; // (in)
BOOL InsertTest; // (in
BOOL CheckDeviceld; // (in
BOOL ReverseBytesOrder; // (in
BOOL BlankCheckBeforeProgram; // (in
BOOL VerifyAfterProgram; // (in
BOOL VerifyAfterRead; // (in
BOOL SplitData; // (in
BOOL DeviceAutoDetect; // (in
BOOL DialogBoxOnError; // (in
UINT AutoDetectAction; // (in
DWORD DeviceStartAddrLow; // (in
DWORD DeviceStartAddrHigh; // (in
DWORD DeviceEndAddrLow; // (in
DWORD DeviceEndAddrHigh; // (in

DWORD DeviceBufStartAddrLow; // (in
DWORD DeviceBufStartAddrHigh; // (in
} ACI_Programming_Params;

Size of structure, in bytes
out) Test if device is attached
out) Check device identifier
out) Reverse bytes order in buffer
out) Perform blank check before programming
out) Verify after programming
out) Verify after read
out) Split data: see ACI_SP_xxx constants
out) Auto detect device in socket (not all of the
out) On error, display dialog box
out) Action to perform on device autodetect or *S
out) Low 32 bits of device start address for prog
out) High 32 bits of device start address for pro
out) Low 32 bits of device end address for progral
out) High 32 bits of device end address for progr
out) Low 32 bits of device memory start address i
out) High 32 bits of device memory start address

I nsert Test
(Irrelevant for CPI12-B1)

This is the command to check the device insertion before starting any programming
operations on the device. The procedure will check if every chip leads have good
contact in the programming socket.

© 2021 Phyton, Inc. Microsystems and Development Tools

394

CPI2_MODEL Device Programmers - CPI2-B1

CheckDevicel d

This is the command to check a unique internal device identifier before the device
programming.

Rever seByt esOr der

This is the command to reverse the byte order in 16-bit words when programming the
device, reading it or verifying the data. This structure member does not effect the data
value in the CPI2-B1 memory buffers - these data remain the same as they were
loaded.

Bl ankCheckBef or ePr o
gram

This is the command to check whether the device is blank[19) before executing the
Program| 195 command.

VerifyAfterProgram

This is the command to verijyllTﬂ the data written into the device every time after
executing the Program[195 command.

VerifyAfterRead

This is the command to veri1y|1_9ﬂ the data written into the device every time after
executing the Read[199 command.

SplitData

This is the command to ﬂm data in accordance with the value of the constants
ACI_SP_xxx* in the aciprog.h file (see below). This allows 8-bit memory devices to
be cascaded in multiple memory chips to be used in the systems with 16- and 32-bit
address and data buses.

Devi ceAut oDet ect
(Irrelevant for CPI2-B1)

This is the command to scan all the device's leads in a process of the device
insertion into the programming socket. If the DeviceAutoDetect is TRUE the
programmer will check whether all of the device's leads are reliably gripped by the
programmer socket's sprung contacts. Only when the reliable device insertion is
acknowledged, the program launches a chosen programming operation, script 178 or
a batch of single operations programmed in the Auto Programmingméﬂ dialog.
(Irrelevant for CPI2-B1)

Di al ogBoxOnEr r or

If this structure member is TRUE then any error that occurs in any programming
operation will generate error messages and will open associated dialogs. If this
attribute is FALSE the error messages will not be issued.

Aut oDet ect Act i on
(Irrelevant for CPI2-B1)

If the DeviceAutoDetect is TRUE then values of the ACI_AD_xxx** constants in the
aciprog.h file define a particular action triggered either on manual pushing the Start
button or upon auto detection of reliable insertion of the device into the programmer's
socket (see below). (Irrelevant for CPI12-B1)

AutoDetectAction What to do (action)

value

ACI_AD_EXEC_FUN JLaunch the programming operation (function) currently highlighted
CTION in the Program Managertabmﬁ.

ACI_AD_EXEC_AUT JLaunch a batch of single operations programmed in the Auto

¢} Programming| 108 dialog.

ACI_AD_EXEC_SCR |Perform the script specified in the Script File[73 dialog.
IPT

ACI_AD_DO_NOTHI |Do not act (ignore). Then itis possible to resume operations only
NG by executing either the ACI_ExecFunction| 367 or

AC|_StartFunction[378).

Devi ceSt art Addr Low,
Devi ceSt art Addr Hi gh

This structure member defines a physical start address of the device to perform a
specified programming operation (function). For example: "“...read the chip content
beginning at the address 7Fh". Not all the functions use this parameter.

Devi ceEndAddr Low,
Devi ceEndAddr Hi gh

This parameter defines a physical end address, beyond which a specified
programming operation (function) will not proceed. For example: "...program the chip
until the address OFFh". Not all the programmer functions use this parameter.

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 395

) This structure member defines the buffers layer's start address from which to perform
Devi ceBuf St art Addr L e . . . B .
ow a specified programming operation (function). For example: "...read the chip and
De;/i ceBuf St art Addr H | move the data to the buffer beginning at the address 10h". Not all the programmer
i gh functions use this parameter.

This is the bit definition from the aciprog.h header file:

* [/ ACI Data Split defines
#define ACI_SP_NONE
#define ACI_SP_EVEN _BYTE
#define ACI_ SP_ODD_BYTE
#define ACI_SP_BYTE_O
#define ACI_SP_BYTE_1
#define ACl SP_BYTE_2
#define ACl SP_BYTE_3

U WNEO

** || ACI Device Auto-Detect or 'Start' button action
#define ACI_ AD_EXEC_FUNCTION 0 // Execute the function currently selected in the list

#define ACI_AD_EXEC_AUTO 1// Execute the Auto Programming command

#define ACI_AD_EXEC_SCRIPT 2 /I Execute the script chosen in the programmer Script File
dialog

#define ACI_AD_DO_NOTHING 3 // Do nothing

See also: ACI SetProgrammingParams/[s), ACl_GetProgrammingParams|s71)

8.5.2.15 ACI_ProjectParams

typedef struct tagACl_Project_Params

{
UINT Size; // (in) Size of structure, in bytes

LPCSTR ProjectName; // (in) Project file name
} ACI_Project_Params;

ProjectName Project file name with extension.

See also: ACI LoadProject[37.

8.5.2.16 ACI_PStatus_Params

typedef struct tagACl_PStatus Params

{

UINT Size; // (in) Size of structure, in bytes

UINT SiteNumber; // (in) For the Gang mode: site number to get status of, otherwi
BOOL Executing; // (out) The function started by ACI_StartFunction() is executin
UINT PercentComplete; // (out) Percentage of the function completion, valid id Executi
UINT DeviceStatus; // (out) Device/socket status, see the ACI_DS XXX constants

BOOL NewDevice; // (out) New device inserted, no function has been executed yet.
BOOL FunctionFailed; // (out) TRUE if last function failed

© 2021 Phyton, Inc. Microsystems and Development Tools

396

CPI2_MODEL Device Programmers - CPI2-B1

CHAR
CHAR

FunctionName[128];
ErrorMessage[512];

} ACI_PStatus_Params;

If the ChipProg-02 was launched in the Gang mode (with the command line
key /gang) and controls either the gang programmer or a cluster of single
programming machines, then before starting the ACI_GetStatus| 371 function the

Si t eNunber] i)) i
SiteNumber parameter must contain the ordinal number of the programming site
(socket) for which the status is required. The site numbers begin from #0.

; This parameter is TRUE while the CPI2-B1 operation, launched by the

Executi ng . .
ACI_StartFunction[=7), is in progress.

Per cent Conpl | While the Executing == TRUE this parameter represents a percentage of the

ete

function completion - from 0 to 100.

Devi ceSt at us

(Irrelevant for CPI12-
B1)

This structure member defines insertion of the device into the programmer ZIF
socket if the device insertion auto detection function is enabled. See the description
of the ACI_DS_XXX* constants in the aciprog.h file. See the matrix below:

Status Description

ACI_DS _OK The device is in the socket and the device's leads are reliably gripped

by the programmer's ZIF socket's sprung contacts.

ACI_DS_OUT_OF_SOCK
ET

There is no device in the programmer's ZIF socket.

ACI_DS_SHIFTED The device's leads are reliably inserted into the socket but the device
is incorrectly positioned in the socket (shifted or inserted upside
down). The same status may indicate that the device type selected in
the Select Device[58" does not correspond to the type of chip in the

programmer's socket.

ACI_DS_BAD_CONTACT | The device's leads are not reliably gripped by the socket's sprung
contacts. In most cases this is an intermediate situation while an

operator is inserting the chip to the socket or is removing it.

ACI_DS_UNKNOWN Itis impossible to detect the status because the device insertion auto
detection feature is disabled or this feature is not supported by this

programmer at all.

NewDevi ce

(Irrelevant for CPI2-
B1)

This structure member is a flag that acknowledges replacing a programmed device
in the programmer's socket by a new, presumably a blank device. It works only
when the device insertion auto detection function is enabled. The NewDevice ==
FALSE while the already programmed chip is still in the socket and has not been
replaced by a new one. After removing the programmed device from the socket the
NewDevice toggles to TRUE.

Functi onFai |
ed

This is an indicator of the function execution's result. It is set to FALSE when the
ACI_StartFunction| 3 launches a programming operation and remains FALSE

© 2021 Phyton, Inc. Microsystems and Development Tools

// (out) Name of a function being executed if Executing '= FALSE
// (out) Error message string if FunctionFailed '= FALSE

Reference 397

while the operation is in progress. If the programming operation fails and the
parameter Executing becomes FALSE the FunctionFailed flag toggles to TRUE.

_ This is either the name of the programming operation (function) being currently
Funct i onNane | executed or the name of the failed function, if the FunctionFalied == TRUE.

The destination of the error message if the function fails, i.e. the FunctionFalied

Error Message
== TRUE.

This is the bit definition from the aciprog.h header file:

*// AC| Device Status

#define ACl DS _OK 0 // Device detected, pin contacts are ok

#define ACl DS _OUT_OF SOCKET 1 // No device in the socket

#define ACI_DS_SHIFTED 2 /I' Wrong device insertion is detected (shifted or inserted
upside down)

#define ACI DS_BAD_CONTACT 3 // Bad pin contact(s)

#define ACI DS_UNKNOWN 4 /I Unknown (Auto Detect is probably off)

See also: ACI ExecFunction|zsh, ACI StartFunctionl s, ACI GetStatus|[s7)

© 2021 Phyton, Inc. Microsystems and Development Tools

398 CPI2_MODEL Device Programmers

Index

_ff_attrib
_ff date
ff name
_ff_size
_ff time
_fmode
_fullpath
_GetWord
_printf 266

_A -

About
software version 90
266
168, 172
DLL 158
External application
External control 158
AClexamples 165
ACI functions
ACI structures
ACl structures
ACI functions
acos 266
ActivateWindow
Add Watch
dialog
AddButton
AddrExpr 267
AddWatch 267
Algorithm Parameters 93
AllProgOptionsDefault 238
Alphabetical List of Script Language Built-in Functions
and Variables 256
Alternate Forms for printf Conversion
Angstrem SAV 103
APl 268
Application Control Interface
ACI 158
ACI functions

264

264
264
265
265
359
265
265

abs
ACI

158

160

164

266

184
266

322

158

ACI header
ACI structures
DLL 158
External application
External control 158
Programming automation 158
Application Control Interface exaples
AppIName[] 359
Arrays 227
ASCII Hex
asin 268
atan 268
ATE control 24
atof 268
atoi 269
Auto Programming 108
Automatic Word Completion
AutoWatches
pane 182
AutoWatches pane

_B -

BackSpace 269
Backspace unindents 83
Basic Data Types 209
Basic Types 227
Binary image 103
Blank 243
Blank Check 243
Block Operations
BlockBegin 269
BlockColl 360
BlockCol2 360
BlockCopy 269
BlockDelete 269
BlockEnd 270
BlockFastCopy 270
BlockLinel 360
BlockLine2 360
BlockMove 270
BlockOff 270
BlockPaste 270
Blocks 83, 187
copying / moving
line blocks 187
non-persistent blocks
persistent 83

158
158

158

103

189

182

187

187

187

165

© 2021 Phyton, Inc. Microsystems and Development Tools

Index

Blocks 83, 187
persistent blocks 187
standard blocks 187
vertical 83
vertical blocks 187

BlockStatus 360

Buffer 18, 243

Buffer access functions 232

Buffer Configuration
dialog 61

Buffer Dump
window 95

Buffer layer 18

Buffers 61
dialog 61
memory allocation 61

_C -

Calculator

dialog 88
CallLibraryFunction 270
CaseSensitive 361
ceil 271
Character constants 209
Character operation functions 247
chdir 271
Check 243
Check Blank 194
Check Sum 243
CheckSum 69, 232, 243, 271
ChipProg

main menu 50
ChipProg-ISP

software characteristics 21
ChipProg-ISP2 19
chsize 271
ClearAlBreaks 272
ClearBreak 272
ClearBreaksRange 272
clearerr 272
ClearWindow 273
CLl 18
close 273
CloseWindow 273
Colors 80

tab 80
Command line 18, 168, 169

Command Line Interface 18
Command Line Keys 120
Command Line Mode 18
Command line options 120, 125
Command Line Parameters 120
Commands

menu 86
Commands Menu 86
Comments 206
Composite operator 220
Condensed Mode 188
Condensed Mode Setup

dialog 194
Conditional Compilation 231
Conditional Operator If-Else 222
Configurating Editor

dialog 83
Configuration 57
buffer 61

editor Options 57
environment 57
Configuration Files 52
Configuration Menu 57

Configure the device to be programmed
Configuring a Buffer
dialog 97
Confirm Replace
dialog 192
Console
window 104
Window Console 104
cos 274
CPI2-B1 19
hardware characteristics 20
CPI2-B1 major features
brief characteristics 20
Cr 274
creat 274
creatnew 275
creattemp 275
CurChar 276

CurCol 361
Curcuit 276
CurLine 361

Custom signature 245

Cycle Operator Do-While 224
Cycle Operator For 225
Cycle Operator While 224

399

196

© 2021 Phyton, Inc. Microsystems and Development Tools

400 CPI2_MODEL Device Programmers

D -

Data byte order 210

data caching 134

Debug shell control functions 252
Declaration: 285

Define Font 80

Define key 81

Definitions
adapter 17
buffer 17

memory buffer 17
sub-level 17

delay 276
DelChar 276
DelLine 277

Description 285

Description of Script Language 205
Descriptions 227

DesktopName[] 361

Device and Algorithm Parameters

window 93
Device Information
window 92

Device Parameters 93
Device programming control functions 237
Device serialization 68

Difference Between the Script Language and the C
Language 205
diftime 277

Directives of the Script Language Preprocessor
230

Discard device 68

Discard serial numbers 68

Display from address
dialog 100

Display from Line Number
dialog 194

Display Watches Options
dialog 183

DisplayText 277

DisplayTextF 277

DLL 168,172

Down 278

dup 278

dup2 278

DUT 22

DUT connection 22

" E -

Edit Information to be programmed
Edit Key Command
dialog 86
Editor Key Mapping
tab 85
Editor window 186
Ellipse 279
Environment
dialog 79
eof 279
Eol 280
Erase 195
errno 361
Ethernet 22,74
Ethernet settings B1 122
Even byte 110
Event Wait Functions 255
Examples of ACluse 165
Examples of Expressions 204
exec 280
ExecFunction 238
ExecMenu 280
ExecScript 281
exit 281
ExitProgram 282
exp 282
Expr 282
Expressions 202
External Object Description 229

_E -

fabs 282
fclose 282
fdopen 283
feof 283

ferror 284
fflush 284
fgetc 284

fgets 285

File format 103
File Menu

overview 51

196

© 2021 Phyton, Inc. Microsystems and Development Tools

Index

FileChanged 285
filelength 285

filelength returns the length (in bytes) of the file

associated with handle. 285
fileno 285

FilRect 286

findfirst 286

findnext 286

FindWindow 287
FirstWord 287

FloatExpr 287
Floating-point constants 208
floor 287

fmod 288
frmerge 263
fnsplit 288
Fonts 80

tab 80
fopen 288
Format 206

Format and nesting 220
Formatted input-output functions 250
ForwardTill 289

ForwardTillNot 289

fprintf 289

fputc 290

fputs 290

FrameRect 290

fread 291

FreeLibrary 291

freopen 291

frexp 292

fscanf 292

fseek 293

ftell 293

Functions for file and directory operation
fwrite 294

-G -

GangExecute 239
GangGetError 239
GangStatus 239
GangWaitComplete 239
General Editor

settings 83

General syntax of the script file language

GetBadDeviceCount 240

GetByte 233, 294

getc 294

getcurdir 295

getcwd 295

getdate 295

getdfree 296

getdisk() 296
GetDword 233, 299
getenv 296
GetFileName 296
getftime 296
GetGoodDeviceCount 240
GetLine 297

GetMark 297
GetMemory 233, 297
GetProgOptionBits 240
GetProgOptionFloat 240
GetProgOptionList 240
GetProgOptionLong 241
GetProgOptionString 241
Gets file size in bytes. 285
GetScriptFileName 298
gettime 298

getw 299
GetWindowHeight 299
GetWindowWidth 299
GetWord 234

Global Variable Definition 228
GotoXY 300

Graphical output functions 253
GUI 48

“H -

Help
menu 90
On-line 28
Highlight

multi-line Comments 83
Highlight Active Tabs 82
Highlighting

Syntax 83, 189
History file 52
Holtek OTR 103
Hot Keys 81
How to Get On-line Help 28
How to start a script file 177
How to write a script file 184

401

© 2021 Phyton, Inc. Microsystems and Development Tools

402 CPI2_MODEL Device Programmers

HStep 300

I/O Stream
window 180
I/O Stream window operation functions 254
ICP 17
Identifier Change (#define) 230
Identifiers 207
Inclusion of Files (#include) 230
inport 301
inportb 301
InsertMode 362
Inspect 301
Install ChipProg 32
Install the ChipProg Software 32
Integer constants 207
Introduction 17
InvertRect 301
isalnum 302
isalpha 302
isascii 302
isatty 302
iscntrl 303
isdigit 303
isgraph 303
islower 303
ISP
ISP HV Mode 17
ISP Mode 17
isprint 304
ispunct 304
isspace 304
isupper 304
isxdigit 304
itoa 305

_] -

JEDEC 103
Job 133

S L -

LabVIEW 168, 169, 172, 173
LabVIEW Integration 173

LAN 22,74
LastChar 305
LastEvent 305
LastEventint{1...4} 306
LastFoundString 362
LastMemAccAddr 362
LastMemAccAddrSpace 362
LastMemAccLen 362
LastMemAccType 362
LastMessagelnt 363
LastMessageLong 363
LastString 306
layer 18,61
Left 307
LineTo 306
Load file

dialog 102
Load session 52
Load the file into the buffer 195
LoadDesktop 306
LoadLibrary 307
LoadOptions 307
LoadProgram 234, 307
LoadProject 308
Local Variable Definition 228
lock 359
locking 308
log 309
Logfile 73
logl0 309
long filelength(long handle); 285
Long integer constants 208
Iseek 309
ltoa 310

M -

Main menu

commands 50
Main menu bar 50
MainWindowHandle 363
Mapping

hot keys 81
Mathematical functions 245
MaxAddr 235, 310
memccpy 310
memchr 310
memcmp 311

© 2021 Phyton, Inc. Microsystems and Development Tools

Index

memcpy 311

memicmp 311

memmove 312

Memory Dump Window Setup
dialog 98

Memory Blocks
operations 100

Memory layer 18

memset 312

Menu
Project 52
View 52
Menu File 51
load file 51
save file 51
Menu Help 90

Menu Script 88
Message box

always display 82
MessageBox 312
MessageBoxEx 312
Messages

tab 82
MinAddr 235, 313
Miscellaneous Settings 82
mkdir 313
Modify Address

dialog 100
Modify Memory

dialog 100
Motorola S-record 103
MoveTo 314
MoveWindow 314
movmem 314
mprintf 241
Multi-File Search Results

dialog 192

Multi-programming mode 197

- N -
NumWindows 363
-0 -

Odd byte 110
On success

403

EBADF Bad file number 285
On-line Help 28
On-the-Fly
On-the-Fly Command Line Options 127
On-the-Fly Options 127
On-the-Fly Control
Example 132
On-the-Fly Control utility 126
On-the-Fly utility return codes
return codes 131
open 314
Open Project 54
dialog 54
OpenEditorWindow 315
OpenProject 241
OpenStreamWindow 315
OpenUserWindow 316
OpenWindow 316
Operands 204
Operations and Expressions
About 210
Arithmetic Conversions in Expressions
Arithmetic Operations 211
Array Operations 216
Assignment Operations 212
Bit Operations 216
Logical Operations 215
Operand Execution Order 219
Operand Metadesignation 211
Operation Execution Priorities and Order
Other Operations 217
Operations with Expressions 202
Operations with Memory Blocks 100
Operator Break 221
Operator Continue 222
Operator Goto 222
Operator label 220
Operator Return 222
Operator-expression 221
Operators 220

Options
dialog 78
Options&split
dialog 109

Other Various Functions 255
outport 317

outportb 317

Overview

219

218

© 2021 Phyton, Inc. Microsystems and Development Tools

404 CPI2_MODEL Device Programmers

Overview
User Interface 48

_P-

Packages/Adapters 58
peek 317

peekb 317

POF 103

poke 317

pokeb 318

Polyline 318

pow 318

powl0 318

Predefined Symbols in the Script File Compilation
231

Preferances 78
PRG 103
printf 319
printf Conversion Type Characters 319
ProgOptionDefault 241
Program a Device 195
Program Manager 107
Auto Programming 107
dialog 107
Operation Progress 107
window 105
Programmer 17
work with 194
Programming
check blank 194
configure the device 196
edit Infformation 196
erase 195
load the file 195
program a Device 195
read a device 195
save the data 197
verify 197
write Information into the Device 196
Programming automation 158
Project 47
Project Menu 52
Project Options
dialog 53
Project Repository
dialog 56
Projects 47

47, 53

pscanf 325
putc 326
putenv 326
putw 326

Quick Start 28
Quick Watch

enabled 82
Quick Watch Function 190

"R -

rand 327
random 327
randomize 327
read 327
Read a Device 195
ReadShadowArea 241
Rectangle 328
RedrawScreen 328
Regular Expressions
search for 193
RegularExpressions 363
Relation Operations 214
ReloadProgram 235, 328
Remote control 120
RemoveButtons 328
rename 329
Replace Text
dialog 191
Repository 56
Response files 125
Returned Value 285

rewind 329
Right 329
rmdir 329

Run ChipProg 32

_S-

Save file from buffer
dialog 104
Save session 52
Save the data read out from a device
SaveData 235, 330

© 2021 Phyton, Inc. Microsystems and Development Tools

Index

SaveDesktop 330
SaveFile 331
SaveOptions 331
scanf 331
Script 176, 178, 204
menu 88
Script file manipulation functions
Script Files 176, 204
dialog 178
Script Language Built-in Functions
Script Language Built-in Variables
Script source window

open 178
SDcard 134
Search 332

Search for Regular Expressions
Search for Text

dialog 190
Searchmask 58
searchpath 332
SearchReplace 333
Select color 80
Select device 58

dialog 58
SelectBrush 333
SelectedString[] 364
SelectFont 333
SelectPen 333
Serial number 68
Serialization 69
Serialization, Checksum, Log file

dialog 63
Set/Retrieve Bookmark
dialog 193

SetBkColor 334
SetBkMode 334
SetBreak 334
SetBreaksRange 334
SetByte 236, 334
SetCaption 335
SetDevice 236
setdisk 335
SetDword 236, 335
SetFileName 335
setftime 336
SetMark 336
setmem 336
SetMemory 237, 337

250

231
256

193

setmode 337
SetPixel 337
SetProgOption 242
SetTextColor 337
SetToolbar 338
SetUpdateMode 338
SetWindowFont 338
SetWindowSize 339
SetWindowSizeT 339
SetWord 237, 339
Signature 245
Signature String 70
Simple example of a script file 176
sin 340
Sounds 78
Splitdata 110
sprintf 340
sgrt 340
srand 341
sscanf 341
Standalone 132, 133
Stand-Alone 132
Standalone Mode 132
Standalone Operation 132
Standard/Extended Intel HEX 103
Start Address 243
Startup 38
Static IP address 74
Statistics

dialog 111
Step 341
Stop 341
stpcpy 342
strcat 342
strchr 342
strcmp 342
strcmpi 343
strcpy 343
strcspn 343
Stream file functions 249
stricmp 343
String operation functions 246
strlen 344
striwr 344
strncat 344
strncmp 345
strncmpi 345
strncpy 345

405

© 2021 Phyton, Inc. Microsystems and Development Tools

406 CPI2_MODEL Device Programmers

strnicmp 346 Up 352
strnset 346 UpdateWindow 352
strpbrk 346 UusB 22
strrchr 346 User
strrev 347 window 180
strset 347 User Interface 48
strspn 347 overview 48
strstr 347
strtol 348
strtoul 348 - V N
strupr 349 Verify programming 197
Sub-Laygr 61 View 52
adc!ltlonal 61 View Menu 52
main 61
Sub-Layer 'Code' 61
Sub-layer 'ID location' 61 - W -
Syntax Highlighting 189
System Requirements 32 Wait 352
SystemDir[] 364 WaitExprChange 353
WaitExprTrue 353
T WaitGetMessage 354
= - WaitMemoryAccess 354
. WaitSendMessage 355
Tab Size 83 WaitStop 356
tan 349 WaitWindowEvent 356
tanh 349 Watches
target device 22 window 182
tell ,349 . Watches Window
TerminateAllScripts 350 add Watch 184

TerminateScript 350
Terminology 17
Terminology and Definitions 17

display Watches Options 183
WE_* constants 305
wgetchar 356

Text 350 wgethex 357

Text Ed_'t 186, wgetstring 357

Text P:dItOI’ functions 250 WholeWords 364

toascii 350 Window

Tof 350 menu 89

tolower 351 Menu Window 89

Toolbar Window Device Information 92

tab 82 Window Dump Setup

toupper 351 dialog 98
Window Editor 186

- U - Window /O Stream 180
Window Program Manager 105

ultoa 351 Window User 180

Undo Count 83 Window Watches 182

unlink 351 WindowHandles[] 364

unlock 352 WindowHotkey 357

© 2021 Phyton, Inc. Microsystems and Development Tools

Index

Windows 92

Windows operation functions and other system
functions 253

Wizard 38

Word Completion 189

WordLeft 358

WordRight 358

Work with Programmer 194
WorkFieldHeight 364
WorkFieldWidth 364

wprintf 358

write 358

Write Information into the Device 196
WriteShadowArea 242

407

© 2021 Phyton, Inc. Microsystems and Development Tools

Back Cover

	Introduction
	Terminology
	CPI2-B1 device programmer
	Features Overview
	Hardware characteristics
	Software features
	Communication Interfaces
	Connector TARGET
	Connector CONTROL
	Single- and Gang-site programming

	Installation and Launching
	Getting Assistance
	Hardware installation
	System Requirements
	Software Installation
	Launching device programmers
	Setup Wizard and Startup Dialog

	Control Interfaces
	Using Projects
	Graphical User Interface
	User Interface Overview
	Toolbars
	Menus
	The File Menu
	Configuration Files

	The View Menu
	The Project Menu
	The Project Options Dialog
	The Open Project Dialog
	Export and Import Project Dialogs
	Project Repository

	The Configure Menu
	The Select Device Dialog
	The Buffers Dialog
	The Buffer Configuration Dialog

	The Serialization, Checksum, and Log Dialog
	Shadow Areas
	General settings
	Device Serialization
	Checksum
	Signature string
	Custom Shadow Areas
	Log file

	The Sata Caching, Standalone... Dialog
	IP Address Setting Dialog
	Simplified User Interface Editor
	The Preferences Dialog
	The Environment Dialog
	Fonts
	Colors
	Mapping Hot Keys
	Toolbar
	Messages
	Miscellaneous Settings

	The Editor Otions Dialog
	The General Tab
	The Key Mappings Tab
	The Edit Key Command Dialog

	The Commands Menu
	Calculator

	The Script Menu
	The Window Menu
	The Help Menu
	License Management Dialog

	Windows
	The Device Information Window
	The Device and Algorithm Parameters Window
	The Buffer Dump Window
	The 'Configuring a Buffer' dialog
	The 'Buffer Setup' dialog
	The 'Display from address' dialog
	The 'Modify Data' dialog
	The 'Memory Blocks' dialog
	The 'Load File' dialog
	File Formats

	The 'Save File' dialog

	The Console Window
	The Program Manager Window
	The Program Manager tab
	Auto Programming

	The Options tab
	Split data

	The Statistics tab

	The Memory Card Window
	Windows for Scripts

	Simplified User Interface
	Settings of Simplified User Interface
	Operations with Simplified User Interface

	Command Line Interface
	Command Line Options
	Command Line Option Files

	On-the-Fly Control Interface
	On-the-Fly Command Line Options
	On-the-Fly utility return codes
	On-the-Fly Control Examples

	Standalone Operation Mode
	Preparing Standalone Mode Jobs
	Data Caching
	Standalone Jobs
	Standalone mode settings
	Device serialization
	Permissions and setting limits
	SD card window

	Switching to Standalone Mode
	Standalone Mode Monitor
	Example of Setting Up Standalone Mode

	Software Development Kit (SDK)
	ACI Components
	Using ACI
	ACI Functions
	ACI Structures
	Examples
	API Explorer

	Integration with NI LabVIEW
	LabVIEW Integration Using Command Line
	LabVIEW Integration Using ACI
	LabVIEW Integration Examples

	Scripting
	Scripting Overview
	Simple example

	The Startup Script
	Running Scripts
	The Script Files Dialog
	The User Window
	The I/O Stream Window

	Debugging a Script
	The Script Window
	Menu and Toolbar
	The AutoWatches Pane

	The Watches Window
	The Display Watches Options Dialog
	The Add Watch Dialog

	Script Editor
	The File Menu
	The Edit Menu
	Block Operations
	Condensed Mode
	Syntax Highlighting
	Automatic Word Completion
	The Quick Watch Function
	Dialogs
	The Search for Text Dialog
	The Replace Text Dialog
	The Confirm Replace Dialog
	The Multi-File Search Results Dialog
	Search for Regular Expressions
	The Set/Retrieve Bookmark Dialogs
	The Condensed Mode Setup Dialog
	The Display from Line Number Dialog

	Reference
	How to ...
	How to check if device is blank
	How to erase a device
	How to read data from device
	How to program a device
	How to load a file into a buffer
	How to edit data before programming
	How to configure target device
	How to write information into the device

	How to verify programming
	How to save data to disc
	Multi-Target Programming

	Error Messages
	Error Load/ Save File
	Error Addresses
	Error sizes
	Error command-line option
	Error Programming option
	Error DLL
	Error USB
	Error programmer hardware
	Error internal
	Error confiquration
	Error device
	Error check box
	Error mix
	Warning

	Expressions
	Operations
	Operands
	Expression Examples

	Scripting Reference
	Scripting Language Description
	Difference Between Scripting and C Languages
	Scripting Language Syntax
	Format
	Comments
	Identifiers
	Reserved words
	Integer constants
	Long integer constants
	Floating-point constants
	Character constants
	String constants

	Basic Data Types
	Data byte order
	Operations and Expressions
	Operand Metadesignation
	Arithmetic Operations
	Assignment Operations
	Relation Operations
	Logical Operations
	Array Operations
	Bit Operations
	Other Operations
	Operation Execution Priorities and Order
	Operand Execution Order
	Arithmetic Conversions in Expressions

	Operators
	Format and nesting
	Operator label
	Composite operator
	Operator-expression
	Operator Break
	Operator Continue
	Operator Return
	Operator Goto
	Conditional Operator If-Else
	Cycle Operator While
	Cycle Operator Do-While
	Cycle Operator For

	Functions
	Function Definition
	Function Call
	The main Function

	Descriptions
	Basic Types
	Arrays
	Local Variable Definition
	Global Variable Definition
	Variable Initialization
	External Object Description

	Directives of the Script Language Preprocessor
	Identifier Change (#define)
	Inclusion of Files (#include)
	Conditional Compilation

	Predefined Symbols in the Script File Compilation

	Built-in Functions by Group
	Buffer access functions
	CheckSum
	GetByte
	GetDword
	GetMemory
	GetWord
	LoadProgram
	MaxAddr
	MinAddr
	ReloadProgram
	SaveData
	SetByte
	SetDevice
	SetDword
	SetMemory
	SetWord

	Device programming control functions and variables
	Function AllProgOptionsDefault
	Function ExecFunction
	Function GangExecute
	Function GangGetError
	Function GangStatus
	Function GangWaitComplete
	Function GetBadDeviceCount
	Function GetGoodDeviceCount
	Function GetProgOptionBits
	Function GetProgOptionFloat
	Function GetProgOptionList
	Function GetProgOptionLong
	Function GetProgOptionString
	Function mprintf
	Function OpenProject
	Function ProgOptionDefault
	Function ReadShadowArea
	Function SetProgOption
	Function WriteShadowArea
	Variable BlankCheck
	Variable BufferStartAddr
	Variable Checksum
	Variable ChipEndAddr
	Variable ChipStartAddr
	Variable DeviceBatchSize
	Variable DialogOnError
	Variable GangMode
	Variable InsertTest
	Variable LastErrorMessage[]
	Variable NumSites
	Variable ReverseBytesOrder
	Variable SerialNumber
	Variable Signature
	Variable VerifyAfterProgram
	Variable VerifyAfterRead

	Mathematical functions
	String operation functions
	Character operation functions
	Functions for file and directory operation
	Stream file functions
	Formatted input-output functions
	Script File Manipulation Functions
	Text editor functions
	Debug shell control functions
	Windows operation functions and other system functions
	Graphical output functions
	I/O Stream window operation functions
	Event Wait Functions
	Other Various Functions

	Built-in Variables by Group
	List of Built-in Functions and Variables
	Scripting Functions
	fnmerge
	Function _ff_attrib
	Function _ff_date
	Function _ff_name
	Function _ff_size
	Function _ff_time
	Function _fullpath
	Function _GetWord
	Function _printfv
	Function abs
	Function acos
	Function ActivateWindow
	Function AddButton
	Function AddrExpr
	Function AddWatch
	Function API
	Function asin
	Function atan
	Function atof
	Function atoi
	Function BackSpace
	Function BlockBegin
	Function BlockCopy
	Function BlockDelete
	Function BlockEnd
	Function BlockFastCopy
	Function BlockMove
	Function BlockOff
	Function BlockPaste
	Function CallLibraryFunction
	Function ceil
	Function chdir
	Function CheckSum
	Function chsize
	Function ClearAllBreaks
	Function ClearBreak
	Function ClearBreaksRange
	Function clearerr
	Function ClearWindow
	Function close
	Function CloseProject
	Function CloseWindow
	Function cos
	Function Cr
	Function creat
	Function creatnew
	Function creattemp
	Function CurChar
	Function Curcuit
	Function delay
	Function DelChar
	Function DelLine
	Function difftime
	Function DisplayText
	Function DisplayTextF
	Function Down
	Function dup
	Function dup2
	Function Ellipse
	Function eof
	Function Eof
	Function Eol
	Function exec
	Function ExecMenu
	Function ExecScript
	Function exit
	Function ExitProgram
	Function exp
	Function Expr
	Function fabs
	Function fclose
	Function fdopen
	Function feof
	Function ferror
	Function fflush
	Function fgetc
	Function fgets
	Function FileChanged
	Function filelength
	Function fileno
	Function FillRect
	Function findfirst
	Function findnext
	Function FindWindow
	Function FirstWord
	Function FloatExpr
	Function floor
	Function fmod
	Function fnsplit
	Function fopen
	Function ForwardTill
	Function ForwardTillNot
	Function fprintf
	Function fputc
	Function fputs
	Function FrameRect
	Function fread
	Function FreeLibrary
	Function freopen
	Function frexp
	Function fscanf
	Function fseek
	Function ftell
	Function fwrite
	Function GetByte
	Function getc
	Function getcurdir
	Function getcwd
	Function getdate
	Function getdfree
	Function getdisk()
	Function getenv
	Function GetFileName
	Function getftime
	Function GetLine
	Function GetMark
	Function GetMemory
	Function GetScriptFileName
	Function gettime
	Function getw
	Function GetWindowHeight
	Function GetWindowWidth
	Function GetWord
	Function GetWord
	Function GotoXY
	Function HStep
	Function inport
	Function inportb
	Function Inspect
	Function InvertRect
	Function isalnum
	Function isalpha
	Function isascii
	Function isatty
	Function iscntrl
	Function isdigit
	Function isgraph
	Function islower
	Function isprint
	Function ispunct
	Function isspace
	Function isupper
	Function isxdigit
	Function itoa
	Function LastChar
	Function LastEvent
	Function LastEventInt{1...4}
	Function LastString
	Function LineTo
	Function LoadDesktop
	Function Left
	Function LoadLibrary
	Function LoadOptions
	Function LoadProgram
	Function LoadProject
	Function locking
	Function log
	Function log10
	Function lseek
	Function ltoa
	Function MaxAddr
	Function memccpy
	Function memchr
	Function memcmp
	Function memcpy
	Function memicmp
	Function memmove
	Function memset
	Function MessageBox
	Function MessageBoxEx
	Function MinAddr
	Function mkdir
	Function MoveTo
	Function MoveWindow
	Function movmem
	Function open
	Function OpenEditorWindow
	Function OpenStreamWindow
	Function OpenUserWindow
	Function OpenWindow
	Function outport
	Function outportb
	Function peek
	Function peekb
	Function poke
	Function pokeb
	Function Polyline
	Function pow
	Function pow10
	Function printf
	printf Conversion Type Characters
	printf Flag Characters
	printf Format Specifier Conventions
	%e or %E Conversions
	%f Conversions
	%g or %G Conversions
	%x or %X Conversions
	Alternate Forms for printf Conversion

	printf Format Specifiers
	printf Format String
	printf Input-size Modifiers
	printf Precision Specifiers
	printf Width Specifiers

	Function pscanf
	Function putc
	Function putenv
	Function putw
	Function rand
	Function random
	Function randomize
	Function read
	Function Rectangle
	Function RedrawScreen
	Function ReloadProgram
	Function RemoveButtons
	Function rename
	Function rewind
	Function Right
	Function rmdir
	Function SaveData
	Function SaveDesktop
	Function SaveFile
	Function SaveOptions
	Function scanf
	Function Search
	Function searchpath
	Function SearchReplace
	Function SelectBrush
	Function SelectFont
	Function SelectPen
	Function SetBkColor
	Function SetBkMode
	Function SetBreak
	Function SetBreaksRange
	Function SetByte
	Function SetCaption
	Function setdisk
	Function SetDword
	Function SetFileName
	Function setftime
	Function SetMark
	Function setmem
	Function SetMemory
	Function setmode
	Function SetPixel
	Function SetTextColor
	Function SetToolbar
	Function SetUpdateMode
	Function SetWindowFont
	Function SetWindowSize
	Function SetWindowSizeT
	Function SetWord
	Function sin
	Function sprintf
	Function sqrt
	Function srand
	Function sscanf
	Function Step
	Function Stop
	Function stpcpy
	Function strcat
	Function strchr
	Function strcmp
	Function strcmpi
	Function strcpy
	Function strcspn
	Function stricmp
	Function strlen
	Function strlwr
	Function strncat
	Function strncmp
	Function strncmpi
	Function strncpy
	Function strnicmp
	Function strnset
	Function strpbrk
	Function strrchr
	Function strrev
	Function strset
	Function strspn
	Function strstr
	Function strtol
	Function strtoul
	Function strupr
	Function tan
	Function tanh
	Function tell
	Function TerminateAllScripts
	Function TerminateScript
	Function Text
	Function toascii
	Function Tof
	Function tolower
	Function toupper
	Function ultoa
	Function unlink
	Function unlock
	Function Up
	Function UpdateWindow
	Function Wait
	Function WaitExprChange
	Function WaitExprTrue
	Function WaitGetMessage
	Function WaitMemoryAccess
	Function WaitSendMessage
	Function WaitStop
	Function WaitWindowEvent
	Function wgetchar
	Function wgethex
	Function wgetstring
	Function WindowHotkey
	Function WordLeft
	Function WordRight
	Function wprintf
	Function write
	lock
	Variable _fmode
	Variable ApplName
	Variable BlockCol1
	Variable BlockCol2
	Variable BlockLine1
	Variable BlockLine2
	Variable BlockStatus
	Variable CaseSensitive
	Variable CurCol
	Variable CurLine
	Variable DesktopName
	Variable errno
	Variable InsertMode
	Variable LastFoundString
	Variable LastMemAccAddr
	Variable LastMemAccAddrSpace
	Variable LastMemAccLen
	Variable LastMemAccType
	Variable LastMessageInt
	Variable LastMessageLong
	Variable MainWindowHandle
	Variable NumWindows
	Variable RegularExpressions
	Variable SelectedString
	Variable SystemDir
	Variable WholeWords
	Variable WindowHandles
	Variable WorkFieldHeight
	Variable WorkFieldWidth

	ACI Fuctions and Structures
	ACI Fuctions
	ACI_AllProgOptionsDefault
	ACI_BuffersDialog
	ACI_ConnectionStatus
	ACI_CreateBuffer
	ACI_ErrorString
	ACI_ExecFunction
	ACI_Exit
	ACI_FileLoad
	ACI_FileSave
	ACI_FillLayer
	ACI_GangStart
	ACI_GangTerminateFunction
	ACI_GetConnection
	ACI_GetDevice
	ACI_GetLayer
	ACI_GetProgOption
	ACI_GetProgrammingParams
	ACI_GetStatus
	ACI_Launch
	ACI_LoadConfigFile
	ACI_LoadFileDialog
	ACI_LoadProject
	ACI_ReadLayer
	ACI_ReallocBuffer
	ACI_SaveConfigFile
	ACI_SaveFileDialog
	ACI_SelectDeviceDialog
	ACI_SerializationDialog
	ACI_SetConnection
	ACI_SetDevice
	ACI_SetProgOption
	ACI_SetProgrammingParams
	ACI_SettingsDialog
	ACI_StartFunction
	ACI_TerminateFunction
	ACI_WriteLayer

	ACI Structures
	ACI_Buffer_Params
	ACI_Config_Params
	ACI_Connection_Params
	ACI_Device_Params
	ACI_ErrorString_Params
	ACI_File_Params
	ACI_Function_Params
	ACI_GangStart_Params
	ACI_GangTerminate_Params
	ACI_Launch_Params
	ACI_Layer_Params
	ACI_Memory_Params
	ACI_ProgOption_Params
	ACI_Programming_Params
	ACI_ProjectParams
	ACI_PStatus_Params

