
© 2021 Phyton, Inc. Microsystems and Development Tools

CPI2-Gx

Gang In-System Device Programmers

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written
permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective
owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or
from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable
for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this
document.

Printed: May 2021 in (whereever you are located)

© 2021 Phyton, Inc. Microsystems and Development Tools

3Contents

3

© 2021 Phyton, Inc. Microsystems and Development Tools

Table of Contents

Foreword 0

Part I Introduction 17

... 171 Terminology

... 192 CPI2-Gx device programmer

.. 20Features Overview

.. 21Hardware characteristics

.. 22Software features

.. 23Programming channels

.. 25Communication Interfaces

.. 25Connector TARGET

.. 29Connector CONTROL

.. 30Gang- and Single-site programming

Part II Installation and Launching 32

... 321 Getting Assistance

... 332 Hardware installation

... 343 System Requirements

... 354 Software Installation

... 385 Launching device programmers

... 426 Setup Wizard and Startup Dialog

Part III Control Interfaces 46

... 471 Using Projects

... 482 Graphical User Interface

.. 48User Interface Overview

.. 49Toolbars

.. 50Menus

... 51The File Menu

... 52Configuration Files

... 52The View Menu

... 52The Project Menu

... 53The Project Options Dialog

... 54The Open Project Dialog

... 54Export and Import Project Dialogs

... 56Project Repository

... 57The Configure Menu

... 58The Select Device Dialog

... 61The Buffers Dialog

... 61The Buffer Configuration Dialog

... 63The Serialization, Checksum, and Log Dialog

... 64Shadow Areas

... 68General settings

... 69Device Serialization

... 69Checksum

CPI2-Gx Device Programmers - CPI2-Gx4

© 2021 Phyton, Inc. Microsystems and Development Tools

... 70Signature string

... 71Custom Shadow Areas

... 72Log file

... 74The Sata Caching, Standalone... Dialog

... 74IP Address Setting Dialog

... 77Simplified User Interface Editor

... 77The Preferences Dialog

... 79The Environment Dialog

... 80Fonts

... 80Colors

... 81Mapping Hot Keys

... 82Toolbar

... 82Messages

... 82Miscellaneous Settings

... 83The Editor Otions Dialog

... 83The General Tab

... 85The Key Mappings Tab

... 86The Edit Key Command Dialog

... 86The Commands Menu

... 87Calculator

... 88The Script Menu

... 89The Window Menu

... 89The Help Menu

... 90License Management Dialog

.. 92Windows

... 92The Device Information Window

... 93The Device and Algorithm Parameters Window

... 95The Buffer Dump Window

... 97The 'Configuring a Buffer' dialog

... 98The 'Buffer Setup' dialog

... 100The 'Display from address' dialog

... 100The 'Modify Data' dialog

... 100The 'Memory Blocks' dialog

... 102The 'Load File' dialog

... 103File Formats

... 104The 'Save File' dialog

... 104The Console Window

... 105The Program Manager Window

... 106The Program Manager tab

... 108Auto Programming

... 108The Options tab

... 109Split data

... 110The Statistics tab

... 112The Memory Card Window

... 113Windows for Scripts

... 1133 Simplified User Interface

.. 116Settings of Simplified User Interface

.. 120Operations with Simplified User Interface

... 1204 Command Line Interface

.. 121Command Line Options

.. 125Command Line Option Files

... 1265 On-the-Fly Control Interface

.. 127On-the-Fly Command Line Options

5Contents

5

© 2021 Phyton, Inc. Microsystems and Development Tools

.. 131On-the-Fly utility return codes

.. 132On-the-Fly Control Examples

Part IV Standalone Operation Mode 133

... 1341 Preparing Standalone Mode Jobs

.. 134Data Caching

.. 136Standalone Jobs

.. 137Standalone mode settings

.. 139Device serialization

.. 141Permissions and setting limits

.. 143SD card window

... 1442 Switching to Standalone Mode

... 1463 Standalone Mode Monitor

... 1484 Example of Setting Up Standalone Mode

Part V Software Development Kit (SDK) 159

... 1591 ACI Components

... 1602 Using ACI

... 1613 ACI Functions

... 1654 ACI Structures

... 1665 Examples

... 1676 API Explorer

Part VI Integration with NI LabVIEW 169

... 1701 LabVIEW Integration Using Command Line

... 1732 LabVIEW Integration Using ACI

.. 174LabVIEW Integration Examples

Part VII Scripting 177

... 1771 Scripting Overview

.. 177Simple example

... 1782 The Startup Script

... 1783 Running Scripts

.. 179The Script Files Dialog

.. 181The User Window

.. 181The I/O Stream Window

... 1814 Debugging a Script

.. 182The Script Window

... 182Menu and Toolbar

... 183The AutoWatches Pane

.. 183The Watches Window

... 184The Display Watches Options Dialog

... 185The Add Watch Dialog

... 1855 Script Editor

.. 187The File Menu

.. 187The Edit Menu

.. 188Block Operations

CPI2-Gx Device Programmers - CPI2-Gx6

© 2021 Phyton, Inc. Microsystems and Development Tools

.. 189Condensed Mode

.. 190Syntax Highlighting

.. 190Automatic Word Completion

.. 191The Quick Watch Function

.. 191Dialogs

... 191The Search for Text Dialog

... 192The Replace Text Dialog

... 193The Confirm Replace Dialog

... 193The Multi-File Search Results Dialog

... 194Search for Regular Expressions

... 194The Set/Retrieve Bookmark Dialogs

... 195The Condensed Mode Setup Dialog

... 195The Display from Line Number Dialog

Part VIII Reference 195

... 1951 How to ...

.. 195How to check if device is blank

.. 196How to erase a device

.. 196How to read data from device

.. 196How to program a device

... 196How to load a file into a buffer

... 197How to edit data before programming

... 197How to configure target device

... 197How to write information into the device

.. 198How to verify programming

.. 198How to save data to disc

.. 198Multi-Target Programming

... 1992 Error Messages

.. 199Error Load/ Save File

.. 200Error Addresses

.. 200Error sizes

.. 200Error command-line option

.. 201Error Programming option

.. 201Error DLL

.. 201Error USB

.. 201Error programmer hardware

.. 202Error internal

.. 202Error confiquration

.. 202Error device

.. 202Error check box

.. 202Error mix

.. 203Warning

... 2033 Expressions

.. 203Operations

.. 205Operands

.. 205Expression Examples

... 2064 Scripting Reference

.. 206Scripting Language Description

... 206Difference Between Scripting and C Languages

... 207Scripting Language Syntax

... 207Format

... 207Comments

7Contents

7

© 2021 Phyton, Inc. Microsystems and Development Tools

... 208Identifiers

... 208Reserved words

... 208Integer constants

... 209Long integer constants

... 209Floating-point constants

... 210Character constants

... 210String constants

... 210Basic Data Types

... 211Data byte order

... 211Operations and Expressions

... 212Operand Metadesignation

... 212Arithmetic Operations

... 213Assignment Operations

... 215Relation Operations

... 216Logical Operations

... 217Array Operations

... 217Bit Operations

... 218Other Operations

... 219Operation Execution Priorities and Order

... 220Operand Execution Order

... 220Arithmetic Conversions in Expressions

... 221Operators

... 221Format and nesting

... 221Operator label

... 221Composite operator

... 222Operator-expression

... 222Operator Break

... 223Operator Continue

... 223Operator Return

... 223Operator Goto

... 223Conditional Operator If-Else

... 225Cycle Operator While

... 225Cycle Operator Do-While

... 226Cycle Operator For

... 226Functions

... 226Function Definition

... 227Function Call

... 227The main Function

... 228Descriptions

... 228Basic Types

... 228Arrays

... 229Local Variable Definition

... 229Global Variable Definition

... 230Variable Initialization

... 230External Object Description

... 231Directives of the Script Language Preprocessor

... 231Identifier Change (#define)

... 231Inclusion of Files (#include)

... 232Conditional Compilation

... 232Predefined Symbols in the Script File Compilation

.. 232Built-in Functions by Group

... 233Buffer access functions

... 233CheckSum

... 234GetByte

CPI2-Gx Device Programmers - CPI2-Gx8

© 2021 Phyton, Inc. Microsystems and Development Tools

... 234GetDword

... 234GetMemory

... 235GetWord

... 235LoadProgram

... 236MaxAddr

... 236MinAddr

... 236ReloadProgram

... 236SaveData

... 237SetByte

... 237SetDevice

... 237SetDword

... 238SetMemory

... 238SetWord

... 238Device programming control functions and variables

... 239Function AllProgOptionsDefault

... 239Function ExecFunction

... 240Function GangExecute

... 240Function GangGetError

... 240Function GangStatus

... 240Function GangWaitComplete

... 241Function GetBadDeviceCount

... 241Function GetGoodDeviceCount

... 241Function GetProgOptionBits

... 241Function GetProgOptionFloat

... 241Function GetProgOptionList

... 242Function GetProgOptionLong

... 242Function GetProgOptionString

... 242Function mprintf

... 242Function OpenProject

... 242Function ProgOptionDefault

... 242Function ReadShadowArea

... 243Function SetProgOption

... 243Function WriteShadowArea

... 244Variable BlankCheck

... 244Variable BufferStartAddr

... 244Variable Checksum

... 244Variable ChipEndAddr

... 244Variable ChipStartAddr

... 244Variable DeviceBatchSize

... 245Variable DialogOnError

... 245Variable GangMode

... 245Variable InsertTest

... 245Variable LastErrorMessage[]

... 245Variable NumSites

... 245Variable ReverseBytesOrder

... 245Variable SerialNumber

... 246Variable Signature

... 246Variable VerifyAfterProgram

... 246Variable VerifyAfterRead

... 246Mathematical functions

... 247String operation functions

... 248Character operation functions

... 248Functions for file and directory operation

... 250Stream file functions

9Contents

9

© 2021 Phyton, Inc. Microsystems and Development Tools

... 251Formatted input-output functions

... 251Script File Manipulation Functions

... 251Text editor functions

... 253Debug shell control functions

... 254Windows operation functions and other system functions

... 254Graphical output functions

... 255I/O Stream window operation functions

... 256Event Wait Functions

... 256Other Various Functions

.. 257Built-in Variables by Group

.. 257List of Built-in Functions and Variables

.. 264Scripting Functions

... 264fnmerge

... 265Function _ff_attrib

... 265Function _ff_date

... 265Function _ff_name

... 266Function _ff_size

... 266Function _ff_time

... 266Function _fullpath

... 266Function _GetWord

... 267Function _printfv

... 267Function abs

... 267Function acos

... 267Function ActivateWindow

... 267Function AddButton

... 268Function AddrExpr

... 268Function AddWatch

... 269Function API

... 269Function asin

... 269Function atan

... 269Function atof

... 270Function atoi

... 270Function BackSpace

... 270Function BlockBegin

... 270Function BlockCopy

... 270Function BlockDelete

... 271Function BlockEnd

... 271Function BlockFastCopy

... 271Function BlockMove

... 271Function BlockOff

... 271Function BlockPaste

... 271Function CallLibraryFunction

... 272Function ceil

... 272Function chdir

... 272Function CheckSum

... 272Function chsize

... 273Function ClearAllBreaks

... 273Function ClearBreak

... 273Function ClearBreaksRange

... 273Function clearerr

... 274Function ClearWindow

... 274Function close

... 274Function CloseProject

... 274Function CloseWindow

CPI2-Gx Device Programmers - CPI2-Gx10

© 2021 Phyton, Inc. Microsystems and Development Tools

... 275Function cos

... 275Function Cr

... 275Function creat

... 276Function creatnew

... 276Function creattemp

... 277Function CurChar

... 277Function Curcuit

... 277Function delay

... 277Function DelChar

... 278Function DelLine

... 278Function difftime

... 278Function DisplayText

... 278Function DisplayTextF

... 279Function Down

... 279Function dup

... 279Function dup2

... 280Function Ellipse

... 280Function eof

... 280Function Eof

... 281Function Eol

... 281Function exec

... 281Function ExecMenu

... 282Function ExecScript

... 282Function exit

... 283Function ExitProgram

... 283Function exp

... 283Function Expr

... 283Function fabs

... 283Function fclose

... 284Function fdopen

... 284Function feof

... 285Function ferror

... 285Function fflush

... 285Function fgetc

... 286Function fgets

... 286Function FileChanged

... 286Function filelength

... 286Function fileno

... 287Function FillRect

... 287Function findfirst

... 287Function findnext

... 288Function FindWindow

... 288Function FirstWord

... 288Function FloatExpr

... 288Function floor

... 289Function fmod

... 289Function fnsplit

... 289Function fopen

... 290Function ForwardTill

... 290Function ForwardTillNot

... 290Function fprintf

... 291Function fputc

... 291Function fputs

... 291Function FrameRect

11Contents

11

© 2021 Phyton, Inc. Microsystems and Development Tools

... 292Function fread

... 292Function FreeLibrary

... 292Function freopen

... 293Function frexp

... 293Function fscanf

... 294Function fseek

... 294Function ftell

... 295Function fwrite

... 295Function GetByte

... 295Function getc

... 296Function getcurdir

... 296Function getcwd

... 296Function getdate

... 297Function getdfree

... 297Function getdisk()

... 297Function getenv

... 297Function GetFileName

... 297Function getftime

... 298Function GetLine

... 298Function GetMark

... 298Function GetMemory

... 299Function GetScriptFileName

... 299Function gettime

... 300Function getw

... 300Function GetWindowHeight

... 300Function GetWindowWidth

... 300Function GetWord

... 301Function GetWord

... 301Function GotoXY

... 301Function HStep

... 302Function inport

... 302Function inportb

... 302Function Inspect

... 302Function InvertRect

... 303Function isalnum

... 303Function isalpha

... 303Function isascii

... 303Function isatty

... 304Function iscntrl

... 304Function isdigit

... 304Function isgraph

... 304Function islower

... 305Function isprint

... 305Function ispunct

... 305Function isspace

... 305Function isupper

... 305Function isxdigit

... 306Function itoa

... 306Function LastChar

... 306Function LastEvent

... 307Function LastEventInt{1...4}

... 307Function LastString

... 307Function LineTo

... 307Function LoadDesktop

CPI2-Gx Device Programmers - CPI2-Gx12

© 2021 Phyton, Inc. Microsystems and Development Tools

... 308Function Left

... 308Function LoadLibrary

... 308Function LoadOptions

... 308Function LoadProgram

... 309Function LoadProject

... 309Function locking

... 310Function log

... 310Function log10

... 310Function lseek

... 311Function ltoa

... 311Function MaxAddr

... 311Function memccpy

... 311Function memchr

... 312Function memcmp

... 312Function memcpy

... 312Function memicmp

... 313Function memmove

... 313Function memset

... 313Function MessageBox

... 313Function MessageBoxEx

... 314Function MinAddr

... 314Function mkdir

... 315Function MoveTo

... 315Function MoveWindow

... 315Function movmem

... 315Function open

... 316Function OpenEditorWindow

... 316Function OpenStreamWindow

... 317Function OpenUserWindow

... 317Function OpenWindow

... 318Function outport

... 318Function outportb

... 318Function peek

... 318Function peekb

... 318Function poke

... 319Function pokeb

... 319Function Polyline

... 319Function pow

... 319Function pow10

... 320Function printf

... 320printf Conversion Type Characters

... 321printf Flag Characters

... 321printf Format Specifier Conventions

... 322%e or %E Conversions

... 322%f Conversions

... 322%g or %G Conversions

... 322%x or %X Conversions

... 323Alternate Forms for printf Conversion

... 323printf Format Specifiers

... 324printf Format String

... 324printf Input-size Modifiers

... 324printf Precision Specifiers

... 326printf Width Specifiers

... 326Function pscanf

13Contents

13

© 2021 Phyton, Inc. Microsystems and Development Tools

... 327Function putc

... 327Function putenv

... 327Function putw

... 328Function rand

... 328Function random

... 328Function randomize

... 328Function read

... 329Function Rectangle

... 329Function RedrawScreen

... 329Function ReloadProgram

... 329Function RemoveButtons

... 330Function rename

... 330Function rewind

... 330Function Right

... 330Function rmdir

... 331Function SaveData

... 331Function SaveDesktop

... 332Function SaveFile

... 332Function SaveOptions

... 332Function scanf

... 333Function Search

... 333Function searchpath

... 334Function SearchReplace

... 334Function SelectBrush

... 334Function SelectFont

... 334Function SelectPen

... 335Function SetBkColor

... 335Function SetBkMode

... 335Function SetBreak

... 335Function SetBreaksRange

... 335Function SetByte

... 336Function SetCaption

... 336Function setdisk

... 336Function SetDword

... 336Function SetFileName

... 337Function setftime

... 337Function SetMark

... 337Function setmem

... 338Function SetMemory

... 338Function setmode

... 338Function SetPixel

... 338Function SetTextColor

... 339Function SetToolbar

... 339Function SetUpdateMode

... 339Function SetWindowFont

... 340Function SetWindowSize

... 340Function SetWindowSizeT

... 340Function SetWord

... 341Function sin

... 341Function sprintf

... 341Function sqrt

... 342Function srand

... 342Function sscanf

... 342Function Step

CPI2-Gx Device Programmers - CPI2-Gx14

© 2021 Phyton, Inc. Microsystems and Development Tools

... 342Function Stop

... 343Function stpcpy

... 343Function strcat

... 343Function strchr

... 343Function strcmp

... 344Function strcmpi

... 344Function strcpy

... 344Function strcspn

... 344Function stricmp

... 345Function strlen

... 345Function strlwr

... 345Function strncat

... 346Function strncmp

... 346Function strncmpi

... 346Function strncpy

... 347Function strnicmp

... 347Function strnset

... 347Function strpbrk

... 347Function strrchr

... 348Function strrev

... 348Function strset

... 348Function strspn

... 348Function strstr

... 349Function strtol

... 349Function strtoul

... 350Function strupr

... 350Function tan

... 350Function tanh

... 350Function tell

... 351Function TerminateAllScripts

... 351Function TerminateScript

... 351Function Text

... 351Function toascii

... 351Function Tof

... 352Function tolower

... 352Function toupper

... 352Function ultoa

... 352Function unlink

... 353Function unlock

... 353Function Up

... 353Function UpdateWindow

... 353Function Wait

... 354Function WaitExprChange

... 354Function WaitExprTrue

... 355Function WaitGetMessage

... 355Function WaitMemoryAccess

... 356Function WaitSendMessage

... 357Function WaitStop

... 357Function WaitWindowEvent

... 357Function wgetchar

... 358Function wgethex

... 358Function wgetstring

... 358Function WindowHotkey

... 359Function WordLeft

15Contents

15

© 2021 Phyton, Inc. Microsystems and Development Tools

... 359Function WordRight

... 359Function wprintf

... 359Function write

... 360lock

... 360Variable _fmode

... 360Variable ApplName

... 361Variable BlockCol1

... 361Variable BlockCol2

... 361Variable BlockLine1

... 361Variable BlockLine2

... 361Variable BlockStatus

... 362Variable CaseSensitive

... 362Variable CurCol

... 362Variable CurLine

... 362Variable DesktopName

... 362Variable errno

... 363Variable InsertMode

... 363Variable LastFoundString

... 363Variable LastMemAccAddr

... 363Variable LastMemAccAddrSpace

... 363Variable LastMemAccLen

... 363Variable LastMemAccType

... 364Variable LastMessageInt

... 364Variable LastMessageLong

... 364Variable MainWindowHandle

... 364Variable NumWindows

... 364Variable RegularExpressions

... 365Variable SelectedString

... 365Variable SystemDir

... 365Variable WholeWords

... 365Variable WindowHandles

... 365Variable WorkFieldHeight

... 365Variable WorkFieldWidth

... 3665 ACI Fuctions and Structures

.. 366ACI Fuctions

... 366ACI_AllProgOptionsDefault

... 366ACI_BuffersDialog

... 367ACI_ConnectionStatus

... 368ACI_CreateBuffer

... 368ACI_ErrorString

... 368ACI_ExecFunction

... 368ACI_Exit

... 369ACI_FileLoad

... 369ACI_FileSave

... 369ACI_FillLayer

... 370ACI_GangStart

... 370ACI_GangTerminateFunction

... 370ACI_GetConnection

... 370ACI_GetDevice

... 371ACI_GetLayer

... 371ACI_GetMUXMode

... 371ACI_GetProgOption

... 372ACI_GetProgrammingParams

... 372ACI_GetStatus

CPI2-Gx Device Programmers - CPI2-Gx16

© 2021 Phyton, Inc. Microsystems and Development Tools

... 373ACI_Launch

... 373ACI_LoadConfigFile

... 373ACI_LoadFileDialog

... 374ACI_LoadProject

... 375ACI_ReadLayer

... 375ACI_ReallocBuffer

... 375ACI_SaveConfigFile

... 375ACI_SaveFileDialog

... 376ACI_SelectDeviceDialog

... 377ACI_SerializationDialog

... 377ACI_SetConnection

... 377ACI_SetDevice

... 377ACI_SetMUXMode

... 378ACI_SetProgOption

... 379ACI_SetProgrammingParams

... 379ACI_SettingsDialog

... 379ACI_StartFunction

... 379ACI_TerminateFunction

... 380ACI_WriteLayer

.. 380ACI Structures

... 380ACI_Buffer_Params

... 382ACI_Config_Params

... 382ACI_Connection_Params

... 382ACI_Device_Params

... 383ACI_ErrorString_Params

... 383ACI_File_Params

... 384ACI_Function_Params

... 385ACI_GangStart_Params

... 386ACI_GangTerminate_Params

... 386ACI_Launch_Params

... 387ACI_Layer_Params

... 389ACI_Memory_Params

... 390ACI_MUXMode_Params

... 390ACI_ProgOption_Params

... 395ACI_Programming_Params

... 397ACI_ProjectParams

... 397ACI_PStatus_Params

Index 400

Introduction 17

© 2021 Phyton, Inc. Microsystems and Development Tools

1 Introduction

CPI2-Gx Gang
In-System Device Programmers

User's Guide

Copyright © 2017-2020, Phyton, Inc. Microsystems and Development Tools, All rights reserved

1.1 Terminology

 Terms used in the document

ISP or in-system
programming

Operations on device mounted on a board in user equipment. ICP is
performed via a cable connecting programmer to the target either directly
or via needles or pogo contacts.

ICP or in-circuit
programming

Same as ISP above.

Mode of the in-system programming that is usually defined by the
programming signals voltage or the ISP interface (JTAG, SWD, UART,
SPI, etc.). Distinct ISP modes are enabled for different target devices and
more than one mode may exist for one device.

Target device or Target A serial flash memory device, microcontroller or programmable logical
device having memory inside which can be programmed by an in-system
device programmer. In CPI2-Gx GUI device names comprised of part
numbers (full or reduced) following types of ISP programming modes in
[] brackets (for example: PIC10F200 [ISP HV Mode], M25PX80 [ISP
Mode]).

DUT Device Under Test - same as target device above.

Start and End Addresses
(of the Target device)

Physical memory range of target device to perform programming
operations (read, write, verify, etc.) on.

Programming Interface On-device port that enables access to the internal memory that includes
but not limited to: SPI, I2C, JTAG, SWD, UART.

CPI2-Gx Device Programmers - CPI2-Gx18

© 2021 Phyton, Inc. Microsystems and Development Tools

ISP Mode Mode of the in-system programming. Distinct ISP modes are enabled for
different target devices and more than one mode may exist for one
device.

ISP JTAG Mode In-system programming using JTAG interface.

ISP SWD Mode In-system programming using SWD (single wire debug) interface.

ISP EzPort Mode In-system programming using Freescale proprietary EzPort interface.

ISP HV Mode In-system programming that requires application of relatively high voltage
to the target device (12V for example).

File In the CPI2-Gx context the term file may represent: a) an image of
information on a PC hard drive or other media that is supposed to be
written into the target device’s physical memory, or b) an image fetched
from the target device and stored on the disk or other media. Files in
ChipProg can be read from and written to a PC hard drive or CD.

Buffer or Memory buffer Buffers are intermediate data holders between data in files and data in
the target device. A buffer is a portion of computer memory (RAM) used
to temporarily store, edit and display data to be written to the target
device or read from the device. User can open any number of buffers of
any size only limited by available computer memory.

Buffer layer or sub-layer A buffer may hold several layers (also known as sub-layers) that
according to architecture and memory model of a particular target
device. For example, for some microcontrollers one buffer can include
the code and data memory layers (see more details below).

Buffer size Buffers size may vary from 128KB to 32GB.

Buffer start address The address to display the buffer contents from.

Checksum An arithmetic sum of all bytes of data in a specified part of buffer
calculated by programmer to ensure data integrity. The program has a
variety of algorithms for checksum calculation and allows writing the
checksum into a specified location of the target device.

Command Line mode Method of controlling a CPI2-Gx in which the user issues commands to
the computer program in the form of successive lines of text (command
lines).

Standalone Operation
Mode

CPI2-Gx device programmer contains internal memory card that can
hold all information that the device programmer needs to run without
further interaction with a PC.

Project An integrated set of information that completely describes the target
device, properties of data buffers, programming options and settings, list
of source and destination files with their properties, etc. ChipProg-02
stores projects in the computer memory. Each project with a unique
name can be stored and promptly reloaded for immediate execution.
Usually user creates a project to work with one type of device. Using
projects saves a lot of time during initial configuration of programmer
every time you start working with a new device.

Standalone job (or Job) This is the same as a project above but the ChipProg-ISP2 stores this
integrated set of information that completely describes the target device,
data to be programmed and other programming options and settings not
in a PC memory but on the SD card inside of the programmer hardware.

Introduction 19

© 2021 Phyton, Inc. Microsystems and Development Tools

Then a stored job can be launched by applying appropriate electrical
signals from the ATE to the connector CONTROL.

1.2 CPI2-Gx device programmer

ChipProg-ISP2 is a family of in-system device programmers produced by Phyton, Inc. Microsystems
and Development Tools. Currently this family consists of two models: a single-channel CPI2-B1 and
CPI2-Gx gang device programmer. See the ChipProg-ISP2 portfolio on the www.phyton.com.

A CPI2-Gx unit shown on the picture below is enclosed in a plastic housing with a small fan on a top.

Inside of this housing it is implemented as a compact motherboard with upright-positioned CPI2-GM1
plug-in modules. Up to seven CPI2-GM1 modules can be installed on a CPI2-Gx motherboard. Each
CPI2-GM1 module has a demultiplexer, which can be enabled by a special CPI2-DEMUX license.

A CPI2-Gx order code pattern is: CPI2-Gxx/yyPN, where:

 CPI2 – the family abbreviation;
 G – type of the programmer: gang;
 xx – number of direct programming channels (CPI2-GM1 modules plugged to motherboard)*;
 yy – number of demultiplexed programming channels (= xx*2);

http://www.phyton.com

CPI2-Gx Device Programmers - CPI2-Gx20

© 2021 Phyton, Inc. Microsystems and Development Tools

 P – orientation of the programming modules with respect to the motherboard: V for upright position;
 N - hardware revision (1, 2, etc.).

The following options are available for ordering:

Programmer model Number of direct channels Number of demultiplexed channels

CPI2-G02/04V1 2 4

CPI2-G03/06V1 3 6

CPI2-G04/08V1 4 8

CPI2-G05/10V1 5 10

CPI2-G06/12V1 6 12

CPI2-G07/14V1 7 14

Important Note. The CPI2-GM1 modules must be installed contiguously on the CPI2-Gx
motherboards. In other words, the placement of the modules must not skip motherboard slots.

CPI2-Gx device programmers are primarily intended for use in test fixtures for programming multi-
board panels. Multiple CPI2-Gx units can be daisy chained and driven from one computer. The
programmer works under control of the ChipProg-02 software package.

1.2.1 Features Overview

Features Overview

· Custom configurable - can be equipped by 2 to 7 CPI2-GM1 programming modules*

· Each CPI2-GM1 module is equipped by a demultiplexer that doubles a number of programming
channels (CPI2-DEMUX license is required).

· Up to 10x CPI2-G07/14V1 units can be controlled by a single computer.

· Programs devices with Vcc from 1.2V to 5.5V.

· Supports JTAG, SWD, SPI, SCI, I²C, UART, and other on-chip programming interfaces.

· Extremely fast.

· Can program some devices at a long distance of up to 5m (~15ft).

· Each programming module in the programmer works independently.

· USB 2.0 High Speed and LAN 100 Mbit/s communication interfaces.

· Each module has memory card that enables stand-alone operations.

· ATE interface for stand-alone operations.

· Friendly intuitive graphical user interface (GUI).

· Simplified graphical user interface for use by unskilled personnel.

· Application Control Interface (ACI) with SDK for developers.

· ACI enables control from programs in Visual Basic, C, C++, C#, etc.

· ACI enables control from National Instrument® LabVIEW™.

· On-the-fly utility allows controlling already launched programmer.

· Software includes scripting language.

· Project files are protected against hackers and corruption.

* Important Note. The CPI2-GM1 modules must be installed contiguously on the CPI2-Gx
motherboards. In other words, the placement of the modules must not skip motherboard slots.

Introduction 21

© 2021 Phyton, Inc. Microsystems and Development Tools

1.2.2 Hardware characteristics

Housing Options and Applications

· Plastic enclosure that can be easily mounted inside of ATE.

· Compact motherboard with seven mini DIMM slots for plugging in upright universal CPI2-GM1
programming modules. Configurations with 2, 3, 4, 5, 6, or 7 modules can be ordered.

Communication interfaces

· USB 2.0 High-speed.

· 100 Mbit/s Ethernet (LAN).

Powering the programmer

· From external power supply 9 to 18V/2.5A (not included).

Powering Targets from the Programmer

· Provides the target equipment with the voltages: Vcc (1.2 to 5.5V @ up to 350mА) and Vpp (1.2 to
15V @ up to 80mA).

Control Methods

· From Automated Test Equipment (ATE), In-Circuit Test System (ICT), or programming fixtures; from
command line or via Application Control Interface (DLL).

· Integration with National Instruments® LabVIEW™ software.

· On-the-fly management utility allows control of already launched and running device programmer.

· Scripting language for writing user scripts.

· Auto programming can be started by closing fixture lid or by connecting a device.

· Friendly and intuitive graphical user interface (GUI) for creating and debugging projects.

· Optional simplified user interface for unskilled personnel.

Standalone Control

· The programmer can work in a standalone mode.

· Each programming module stores up to 256 standalone jobs.

· 4 of these 256 standalone jobs can be launched by ATE signals.

· In a standalone mode each module can flash different device type with different data.

· Special utility allows monitoring standalone activity on a computer.

Signals to/from the Target (per one CPI2-G01 Module)

· Ten input/output lines with logical levels 1.2 to 5.5V that can be individually programmed as
TTL/CMOS logic I/O.

· The signal lines above alternate with GND lines for stable programming via long cables.

· Two input/output lines which can be individually programmed as TTL logic I/Os, GNDs, Vcc or Vpp.

· Each programming module has a built-in, software controllable demultiplexer that double a number of
programming channels for sequential programming.

Control Signals

· Start/Stop logic signal for external control.

· Output status signals for external control: BUSY, GOOD and ERROR.

· Two logic inputs for choosing one of 4 preloaded standalone jobs.

Dimensions

· CPI2-Gx unit: 162 x127 x 61 mm (~6-3/8 x 5 x 2-3/8 inch).

CPI2-Gx Device Programmers - CPI2-Gx22

© 2021 Phyton, Inc. Microsystems and Development Tools

1.2.3 Software features

NOTE. Some of the features and items below may be unavailable by the moment of sale of your CPI2-
Gx device programmer.

System Requirements

· Microsoft® Windows™ XP, 7, 8 or 10.

Software Features

· Supports loading and saving files in all popular formats.

· Unlimited number of data buffers can be open and maintained.

· Enables arithmetic operations with data blocks in buffers.

· Enables writing serial numbers, MAC addresses and other device-specific parameters into user-
selectable shadow areas of target devices.

· Allows writing of user-defined signatures and data blocks into target devices.

· Offers several algorithms for calculating checksums.

· Special DLL for user-defined checksum calculation.

· Writes programming session logs with real time stamps.

· The GUI has a special editor for easy setting of device and algorithm parameters, such as fuses, lock
bits, boot loader vectors, etc.

· Comprehensive self-test procedure.

Managing Projects and Configurations

· The software supports unlimited number of projects.

· Project files are protected against hackers and corruption.

· The software ensures data integrity - every data transfer to/from a PC or ATE system or memory
card is accompanied with CRC sum.

· The software allows storing and retrieving the state of user interface: configurations, colors, fonts, hot
keys and other settable preferences.

Computer Control Methods

· From Automated Test Equipment (ATE), In-Circuit Test System (ICT), or programming fixtures.

· From command line or via Application Control Interface (DLL).

· Integration with National Instruments® LabVIEW™ software.

· On-the-fly management utility allows control of already launched and running device programmer.

· Built-in scripting language for writing user scripts. Auto programming can be started by closing fixture
lid or by connecting a device.

· Friendly and intuitive graphical user interface (GUI) for creating and debugging projects.

· Optional simplified user interface for unskilled personnel.

Standalone Control

· The programmer can work in a standalone mode that does not require connection to a computer.

· Up to 256 standalone jobs can be stored on memory cards embedded into each programming
modules.

· Four of these 256 standalone jobs can be quickly chosen launched by ATE signals or from a
computer.

· Special utility allows monitoring standalone activity on a computer.

Introduction 23

© 2021 Phyton, Inc. Microsystems and Development Tools

1.2.4 Programming channels

CPI2-Gx gang device programmer has two programming channels: A and B. Each of these
channels is comprised by multiple sub-channels (sites) represented by CPI2-GM1 modules. A
CPI2-Gx device programmer may carry two to seven CPI2-GM1 modules. In turn, each CPI2-GM1
module has a miniature mezzanine board - demultiplexer, which by default is disabled. This
demultiplexer can be enabled by activation a special CPI2-DEMUX license. See the diagram below.

CPI2-Gx Device Programmers - CPI2-Gx24

© 2021 Phyton, Inc. Microsystems and Development Tools

Introduction 25

© 2021 Phyton, Inc. Microsystems and Development Tools

While this license is inactive the programmer can work only via the channel A. After activation the
CPI2-DEMUX license the programmer is able to program devices (or boards) via both A and B
channels - not concurrently but by rotation. The ChipProg-02 software allows the user to set the
following options:

· Via channel A, only;

· Via channel B, only;

· Via channel A first, then via channel B, etc.;

· Via channel B first, then via channel A, etc.;

In the GUI mode the options above can be chosen in the Program Manager tab.

In terms of the electrical and timing characteristics both A and B channels are 100% identical.
Signals and Ground lines of the A and B channels are populated to a pair of connectors
TARGET marked on the CPI2-Gx housing's top surface as Channel A and Channel B.

1.2.5 Communication Interfaces

CPI2-Gx is equipped with two communication interfaces: USB 2.0 and Ethernet (LAN) 100 Mbit/s. The
programmer's motherboard carries multi-port USB 2.0 hub and Ethernet 100 Mbit/s switch devices that
distribute communication interfaces to CPI2-GM1 modules installed in the programmer. Sockets for
USB and LAN connections are located on the front panel of the CPI2-Gx unit.

If the programmer is control from a graphical user interface (GUI), by default the Startup dialog
prompts the user to connect via USB. An operator may select the Ethernet radio button instead. If the
programmer is controlled from the command line and no ETH (Ethernet) options are specified in the
startup command line, the ChipProg-02 will establish connection with the programmer via USB. In order
to enable Ethernet communication use the ETH command options which are listed in the command
option matrix.

If a CPI2-Gx programmer, or a cluster comprised of multiple CPI2-Gx programmers, is controlled by
Ethernet there are two options of assigning IP addresses for the programming modules: dynamic, or
static IP addresses. By default, if the programmers are controlled via Ethernet, the ChipProg-02
software is set to get IP addresses dynamically distributed by your Internet router. Within a local
network, a DHCP server assigns a local IP address to each CPI2-GM1 module connected to the LAN.
However, it is possible to set unique static IP addresses for each CPI2-GM1 module.

1.2.6 Connector TARGET

TARGET connectors

CPI2-Gx has two 150-pin DIN connectors positioned on the side panels marked as TARGET -
channel A and TARGET - channel B. Read about programming channels here . Signal and
Ground pinouts are shown in tables below.

48 105

25

48 42

23

CPI2-Gx Device Programmers - CPI2-Gx26

© 2021 Phyton, Inc. Microsystems and Development Tools

Pin # Pin Name Description Pin # Pin Name Description Pin # Pin Name Description

A1 1/PA1 Site1: digital IO pin1 B1 GND Ground C1 1/PA7 Site1: digital IO pin7

A2 1/PA2 Site1: digital IO pin2 B2 GND Ground C2 1/PA8 Site1: digital IO pin8

A3 1/PA3 Site1: digital IO pin3 B3 GND Ground C3 1/PA9 Site1: digital IO pin9

A4 1/PA4 Site1: digital IO pin4 B4 GND Ground C4 1/PA10 Site1: digital IO pin10

A5 1/PA5 Site1: digital IO pin5 B5 GND Ground C5 1/PA11 Site1: digital IO pin11

A6 1/PA6 Site1: digital IO pin6 B6 GND Ground C6 1/PA12 Site1: digital IO pin12

A7 1/RCA Signal relay control B7 GND Ground C7 1/GRCA Ground relay control

A8 2/PA1 Site2: digital IO pin1 B8 GND Ground C8 2/PA7 Site2: digital IO pin7

A9 2/PA2 Site2: digital IO pin2 B9 GND Ground C9 2/PA8 Site2: digital IO pin8

A10 2/PA3 Site2: digital IO pin3 B10 GND Ground C10 2/PA9 Site2: digital IO pin9

A11 2/PA4 Site2: digital IO pin4 B11 GND Ground C11 2/PA10 Site2: digital IO pin10

A12 2/PA5 Site2: digital IO pin5 B12 GND Ground C12 2/PA11 Site2: digital IO pin11

A13 2/PA6 Site2: digital IO pin6 B13 GND Ground C13 2/PA12 Site2: digital IO pin12

A14 2/RCA Not for users B14 GND Ground C14 2/GRCA Not for users

A15 3/PA1 Site3: digital IO pin1 B15 GND Ground C15 3/PA7 Site3: digital IO pin7

A16 3/PA2 Site3: digital IO pin2 B16 GND Ground C16 3/PA8 Site3: digital IO pin8

A17 3/PA3 Site3: digital IO pin3 B17 GND Ground C17 3/PA9 Site3: digital IO pin9

A18 3/PA4 Site3: digital IO pin4 B18 GND Ground C18 3/PA10 Site3: digital IO pin10

A19 3/PA5 Site3: digital IO pin5 B19 GND Ground C19 3/PA11 Site3: digital IO pin11

A20 3/PA6 Site3: digital IO pin6 B20 GND Ground C20 3/PA12 Site3: digital IO pin12

A21 3/RCA Not for users B21 GND Ground C21 3/GRCA Not for users

A22 GND Ground B22 GND Ground C22 GND Ground

A23 4/PA1 Site4: digital IO pin1 B23 GND Ground C23 4/PA7 Site4: digital IO pin7

A24 4/PA2 Site4: digital IO pin2 B24 GND Ground C24 4/PA8 Site4: digital IO pin8

A25 4/PA3 Site4: digital IO pin3 B25 GND Ground C25 4/PA9 Site4: digital IO pin9

A26 4/PA4 Site4: digital IO pin4 B26 GND Ground C26 4/PA10 Site4: digital IO pin10

A27 4/PA5 Site4: digital IO pin5 B27 GND Ground C27 4/PA11 Site4: digital IO pin11

A28 4/PA6 Site4: digital IO pin6 B28 GND Ground C28 4/PA12 Site4: digital IO pin12

A29 4/RCA Not for users B29 GND Ground C29 4/GRCA Not for users

A30 5/RCA Not for users B30 GND Ground C30 5/GRCA Not for users

Introduction 27

© 2021 Phyton, Inc. Microsystems and Development Tools

A31 5/PA1 Site5: digital IO pin1 B31 GND Ground C31 5/PA7 Site5: digital IO pin7

A32 5/PA2 Site5: digital IO pin2 B32 GND Ground C32 5/PA8 Site5: digital IO pin8

A33 5/PA3 Site5: digital IO pin3 B33 GND Ground C33 5/PA9 Site5: digital IO pin9

A34 5/PA4 Site5: digital IO pin4 B34 GND Ground C34 5/PA10 Site5: digital IO pin10

A35 5/PA5 Site5: digital IO pin5 B35 GND Ground C35 5/PA11 Site5: digital IO pin11

A36 5/PA6 Site5: digital IO pin6 B36 GND Ground C36 5/PA12 Site5: digital IO pin12

A37 6/RCA Not for users B37 GND Ground C37 6/GRCA Not for users

A38 6/PA1 Site6: digital IO pin1 B38 GND Ground C38 6/PA7 Site6: digital IO pin7

A39 6/PA2 Site6: digital IO pin2 B39 GND Ground C39 6/PA8 Site6: digital IO pin8

A40 6/PA3 Site6: digital IO pin3 B40 GND Ground C40 6/PA9 Site6: digital IO pin9

A41 6/PA4 Site6: digital IO pin4 B41 GND Ground C41 6/PA10 Site6: digital IO pin10

A42 6/PA5 Site6: digital IO pin5 B42 GND Ground C42 6/PA11 Site6: digital IO pin11

A43 6/PA6 Site6: digital IO pin6 B43 GND Ground C43 6/PA12 Site6: digital IO pin12

A44 7/RCA Not for users B44 GND Ground C44 7/GRCA Not for users

A45 7/PA1 Site7: digital IO pin1 B45 GND Ground C45 7/PA7 Site7: digital IO pin7

A46 7/PA2 Site7: digital IO pin2 B46 GND Ground C46 7/PA8 Site7: digital IO pin8

A47 7/PA3 Site7: digital IO pin3 B47 GND Ground C47 7/PA9 Site7: digital IO pin9

A48 7/PA4 Site7: digital IO pin4 B48 GND Ground C48 7/PA10 Site7: digital IO pin10

A49 7/PA5 Site7: digital IO pin5 B49 GND Ground C49 7/PA11 Site7: digital IO pin11

A50 7/PA6 Site7: digital IO pin6 B50 GND Ground C50 7/PA12 Site7: digital IO pin12

Pin # Pin Name Description Pin # Pin Name Description Pin # Pin Name Description

A50 1/PB1 Site1: digital IO pin1 B50 GND Ground C50 1/PB7 Site1: digital IO pin7

A49 1/PB2 Site1: digital IO pin2 B49 GND Ground C49 1/PB8 Site1: digital IO pin8

A48 1/PB3 Site1: digital IO pin3 B48 GND Ground C48 1/PB9 Site1: digital IO pin9

A47 1/PB4 Site1: digital IO pin4 B47 GND Ground C47 1/PB10 Site1: digital IO pin10

A46 1/PB5 Site1: digital IO pin5 B46 GND Ground C46 1/PB11 Site1: digital IO pin11

A45 1/PB6 Site1: digital IO pin6 B45 GND Ground C45 1/PB12 Site1: digital IO pin12

A44 1/RCB Not for users B44 GND Ground C44 1/GRCB Not for users

A43 2/PB1 Site2: digital IO pin1 B43 GND Ground C43 2/PB7 Site2: digital IO pin7

A42 2/PB2 Site2: digital IO pin2 B42 GND Ground C42 2/PB8 Site2: digital IO pin8

CPI2-Gx Device Programmers - CPI2-Gx28

© 2021 Phyton, Inc. Microsystems and Development Tools

A41 2/PB3 Site2: digital IO pin3 B41 GND Ground C41 2/PB9 Site2: digital IO pin9

A40 2/PB4 Site2: digital IO pin4 B40 GND Ground C40 2/PB10 Site2: digital IO pin10

A39 2/PB5 Site2: digital IO pin5 B39 GND Ground C39 2/PB11 Site2: digital IO pin11

A38 2/PB6 Site2: digital IO pin6 B38 GND Ground C38 2/PB12 Site2: digital IO pin12

A37 2/RCB Not for users B37 GND Ground C37 2/GRCB Not for users

A36 3/PB1 Site3: digital IO pin1 B36 GND Ground C36 3/PB7 Site3: digital IO pin7

A35 3/PB2 Site3: digital IO pin2 B35 GND Ground C35 3/PB8 Site3: digital IO pin8

A34 3/PB3 Site3: digital IO pin3 B34 GND Ground C34 3/PB9 Site3: digital IO pin9

A33 3/PB4 Site3: digital IO pin4 B33 GND Ground C33 3/PB10 Site3: digital IO pin10

A32 3/PB5 Site3: digital IO pin5 B32 GND Ground C32 3/PB11 Site3: digital IO pin11

A31 3/PB6 Site3: digital IO pin6 B31 GND Ground C31 3/PB12 Site3: digital IO pin12

A30 3/RCB Signal relay control B30 GND Ground C30 3/GRCB Not for users

A29 GND Ground B29 GND Ground C29 GND Ground

A28 4/PB1 Site4: digital IO pin1 B28 GND Ground C28 4/PB7 Site4: digital IO pin7

A27 4/PB2 Site4: digital IO pin2 B27 GND Ground C27 4/PB8 Site4: digital IO pin8

A26 4/PB3 Site4: digital IO pin3 B26 GND Ground C26 4/PB9 Site4: digital IO pin9

A25 4/PB4 Site4: digital IO pin4 B25 GND Ground C25 4/PB10 Site4: digital IO pin10

A24 4/PB5 Site4: digital IO pin5 B24 GND Ground C24 4/PB11 Site4: digital IO pin11

A23 4/PB6 Site4: digital IO pin6 B23 GND Ground C23 4/PB12 Site4: digital IO pin12

A22 4/RCB Not for users B22 GND Ground C22 4/GRCB Not for users

A21 5/RCB Not for users B21 GND Ground C21 5/GRCB Not for users

A20 5/PB1 Site5: digital IO pin1 B20 GND Ground C20 5/PB7 Site5: digital IO pin7

A19 5/PB2 Site5: digital IO pin2 B19 GND Ground C19 5/PB8 Site5: digital IO pin8

A18 5/PB3 Site5: digital IO pin3 B18 GND Ground C18 5/PB9 Site5: digital IO pin9

A17 5/PB4 Site5: digital IO pin4 B17 GND Ground C17 5/PB10 Site5: digital IO pin10

A16 5/PB5 Site5: digital IO pin5 B16 GND Ground C16 5/PB11 Site5: digital IO pin11

A15 5/PB6 Site5: digital IO pin6 B15 GND Ground C15 5/PB12 Site5: digital IO pin12

A14 6/RCB Not for users B14 GND Ground C14 6/GRCB Not for users

A13 6/PB1 Site6: digital IO pin1 B13 GND Ground C13 6/PB7 Site6: digital IO pin7

A12 6/PB2 Site6: digital IO pin2 B12 GND Ground C12 6/PB8 Site6: digital IO pin8

A11 6/PB3 Site6: digital IO pin3 B11 GND Ground C11 6/PB9 Site6: digital IO pin9

A10 6/PB4 Site6: digital IO pin4 B10 GND Ground C10 6/PB10 Site6: digital IO pin10

A9 6/PB5 Site6: digital IO pin5 B9 GND Ground C9 6/PB11 Site6: digital IO pin11

A8 6/PB6 Site6: digital IO pin6 B8 GND Ground C8 6/PB12 Site6: digital IO pin12

A7 7/RCB Not for users B7 GND Ground C7 7/GRCB Not for users

A6 7/PB1 Site7: digital IO pin1 B6 GND Ground C6 7/PB7 Site7: digital IO pin7

A5 7/PB2 Site7: digital IO pin2 B5 GND Ground C5 7/PB8 Site7: digital IO pin8

A4 7/PB3 Site7: digital IO pin3 B4 GND Ground C4 7/PB9 Site7: digital IO pin9

A3 7/PB4 Site7: digital IO pin4 B3 GND Ground C3 7/PB10 Site7: digital IO pin10

A2 7/PB5 Site7: digital IO pin5 B2 GND Ground C2 7/PB11 Site7: digital IO pin11

A1 7/PB6 Site7: digital IO pin6 B1 GND Ground C1 7/PB12 Site7: digital IO pin12

Where:

· Site#/PAn and Site#/PBn (n=1...10) - logical signals formed by high-speed buffers that can output
target-specific logic 0 or 1, Vcc or GND levels, according to the chosen target device type. These
lines can output Vcc with levels from 1.2 to 5.5V @ up to 350mA. The buffers are bidirectional, also
serving as inputs when the programmer reads data.

Introduction 29

© 2021 Phyton, Inc. Microsystems and Development Tools

· Site#/PAm and Site#/PBm (m=11 & 12) – signals formed by high speed mixed-signal circuits that
can also output target-specific logic 0 or 1, Vcc or GND levels according to the type of the chosen
target device. These lines can output Vcc with levels from 1.2 to 5.5V @ up to 350mA. The mixed-
signal buffers are bidirectional, also serving as inputs when the CPI2-Gx programmer reads data. In
addition, these two signals can output Vpp voltage with levels from 1.5V to 15V @ up to 100mA.

The P1…P12 signals are target-specific. A CPI2-Gx user must ensure that the target device (DUT) is
properly connected, according to the target-specific wiring diagram. When programmer is controlled by
the GUI, this connection diagram can be open in the browser by clicking the Connection to the target
device link in the Device Information window.

To “cut off” the target in the stand-by mode or after completion of any programming operation, CPI2-Gx
programmer leaves the P1…P12 signals in high impedance state.

1.2.7 Connector CONTROL

CONTROL connector

A 48-pin DIN connector CONTROL is positioned on the front panel of the CPI2-Gx unit. This connector
is intended for connecting the programmer to Automated Test Equipment (ATE). All signals on this
connector are optically isolated. See below the connector pin assignment and description of the signals
in the matrix below.

Pin # Pin Name Description Pin # Pin Name Description Pin # Pin Name Description

A1 VISO Isolated 5V B1 GND_ISO Isolated Ground C1 GND_ISO Isolated Ground

A2 1/JOBSEL0 Site1: Job Sel0 B2 1/ST_GOO
D

Site 1: Status: 0 -
GOOD

C2 1/START Site 1: 0 - Start

A3 1/JOBSEL1 Site1: Job Sel1 B3 1/ST_ERR Site 1: Status: 0 -
Error

C3 1/BUSY Site 1: Status: 0 - Busy

A4 2/JOBSEL0 Site2: Job Sel0 B4 2/ST_GOO
D

Site 2: Status: 0 -
GOOD

C4 1/START Site 2: 0 - Start

A5 2/JOBSEL1 Site2: Job Sel1 B5 2/ST_ERR Site 2: Status: 0 -
Error

C5 2/BUSY Site 2: Status: 0 - Busy

A6 3/JOBSEL0 Site3: Job Sel0 B6 3/ST_GOO
D

Site 3: Status: 0 -
GOOD

C6 3/START Site 3: 0 - Start

CPI2-Gx Device Programmers - CPI2-Gx30

© 2021 Phyton, Inc. Microsystems and Development Tools

A7 3/JOBSEL1 Site3: Job Sel1 B7 3/ST_ERR Site 3: Status: 0 -
Error

C7 3/BUSY Site 3: Status: 0 - Busy

A8 4/JOBSEL0 Site4: Job Sel0 B8 4/ST_GOO
D

Site 4: Status: 0 -
GOOD

C8 4/START Site 4: 0 - Start

A9 4/JOBSEL1 Site4: Job Sel1 B9 4/ST_ERR Site 4: Status: 0 -
Error

C9 4/BUSY Site 4: Status: 0 - Busy

A10 5/JOBSEL0 Site5: Job Sel0 B10 5/ST_GOO
D

Site 5: Status: 0 -
GOOD

C10 5/START Site 5: 0 - Start

A11 5/JOBSEL1 Site5: Job Sel1 B11 5/ST_ERR Site 5: Status: 0 -
Error

C11 5/BUSY Site 5: Status: 0 - Busy

A12 6/JOBSEL0 Site6: Job Sel0 B12 6/ST_GOO
D

Site 6: Status: 0 -
GOOD

C12 6/START Site 6: 0 - Start

A13 6/JOBSEL1 Site6: Job Sel1 B13 6/ST_ERR Site 6: Status: 0 -
Error

C13 6/BUSY Site 6: Status: 0 - Busy

A14 7/JOBSEL0 Site7: Job Sel0 B14 7/ST_GOO
D

Site 7: Status: 0 -
GOOD

C14 7/START Site 7: 0 - Start

A15 7/JOBSEL1 Site7: Job Sel1 B15 7/ST_ERR Site 7: Status: 0 -
Error

C15 7/BUSY Site 7: Status: 0 - Busy

A16 MUX_B/A MUX: 1 -
channel B, 0 -
channel A

B16 SA_MODE Standalone mode
control

C16 ST_SAMOD
E

Standalone mode
status

· Site#/JOBSEL0 and Site#/JOBSEL1 – two-bit selector for choosing one of 4 preloaded standalone
jobs;

· Site#/ST_GOOD | ST_ERROR | ST_BUSY - programmer status lines; active status: log 0;

· MUX_B/A - External signal switching the channel demultiplexer ;

· VISO - 5V output optically isolated from the CPI2-Gx hardware;

· GND_ISO - Ground lines optically isolated off the CPI2-Gx hardware;

· SA_MODE - Input control signal - log. 1 on this input at the moment of powering the CPI2-Gx
programmer switches all its programming modules (sites) to standalone mode;

· ST_SAMODE - Standalone mode status - if either one of the CPI2-Gx programming sites works in
standalone mode the status is active (log 0 level).

NOTE: All the lines above are optically isolated off the CPI2-Gx hardware that provides reliable
galvanic isolation between automated test equipment (ATE) and target device (DUT).

1.2.8 Gang- and Single-site programming

ChipProg-02 software allows the user to drive CPI2-Gx device programmers in two different modes:

· Gang-programming mode for simultaneous programming of multiple devices by means of multiple
CPI2-GM1 modules installed in one or more CPI2-Gx programmers driven by a single instance of
the ChipProg-02 program. This programming mode, which is default for CPI2-Gx programmers, is
intended for mass production in test fixtures and other ATE.

· Single-programming mode for programming one target device at a time by means of one CPI2-Gx
CPI2-GM1 module, specified by its unique serial number or the site number.

The programming mode is set in the Startup dialog. For launching a CPI2-Gx gang programmer
check the Gang Mode box in this dialog. See the command line options.

Gang-programming mode differs from Single-programming mode in the following ways:

1. In the Gang-programming mode only same device type may be selected for all programming
modules controlled by one instance of the ChipProg-02 program.

23

42

Introduction 31

© 2021 Phyton, Inc. Microsystems and Development Tools

2. In the Gang-programming mode all programming modules controlled by one instance of the
ChipProg-02 program share the same data buffer;

3. Only the Auto Programming function can be performed by ChipProg-02 in the Gang-
programming mode. In order to execute one command only (for example, Erase, Read, Write,
etc.) it is necessary to modify a default set of Auto Programming commands by removing
unwanted commands and leaving the single command that is needed.

By running several instances of the ChipProg-02 software it is possible to control some modules in the
Gang-programming mode and others in Single-programming mode.

108

108

CPI2-Gx Device Programmers - CPI2-Gx32

© 2021 Phyton, Inc. Microsystems and Development Tools

2 Installation and Launching

This chapter covers the following topics.

How to install the CPI2-Gx hardware

How to install the ChipProg-02 software

How to launch the CPI2-Gx device programmer.

It is highly recommended that before you start using the tool you read all basic topics in the chapters
Graphical User Interface and Operating ChipProg programmers of this manual.

Experience using MS Windows and familiarity with basic Windows operation are required.

2.1 Getting Assistance

Context-Sensitive CPI2-Gx Online Help

The ChipProg-02 software comes with a comprehensive context-sensitive on-line Help. To access it press F1
key or use Help menu . Almost every ChipProg-02 dialog, message box, and menu has a help item
associated with it; for the active dialog or menu it can be viewed by pressing F1.

In most cases you can find the necessary topic by searching for a keyword. For example, if you type "Verify" in
the first box of the Find tab, the third box will list topics related to the programming verification. Choose
appropriate topic from this list and press Display.

A CPI2-Gx PDF manual is also available.

Technical Support

For the length of a product’s warranty period Phyton provides technical support free of charge. Although we do
our best to clean up and improve our software, ChipProg-02 software may contain minor bugs and some
programming algorithms may not be stable on some of recently supported devices. We kindly ask you to report
bugs when you get an error message or have a problem with programming a particular device or devices. We
are committed to promptly checking your information and fixing discovered bugs.

To minimize difficulties using ChipProg-02 it is highly recommended to get familiar with the manual before
using the programmer. The ChipProg-02 - user interface is quite friendly and intuitive; however, it includes
some specific functions and controls that a user should learn about.

Before Contacting Phyton

· Make sure you use the latest ChipProg-02 version which is always available as free download from the
http://phyton.com/support/updates.

· Make sure the detected error is reproducible under the same conditions and is not a casual glitch.

When Contacting Us

Please provide the following information to our technical support specialists.

· Your name, the name of your company, your contact phone, and your e-mail address.
· The CPI2-Gx serial number that can be found in the About information box or on a sticker on the CPI2-Gx

bottom shell.
· Software version number taken from the About information box.
· The target device or DUT's part number.
· Basic parameters of your computer and operating system.

33

35

48 195

89

48

90

90

http://phyton.com/support/updates

Installation and Launching 33

© 2021 Phyton, Inc. Microsystems and Development Tools

· Descriptions of detected errors, relevant bug reports and error screen shots.

Please send your requests or questions to support@phyton.com. This is the easiest way to get professional
help quickly.

Contact Information

Phyton Inc., Microsystems and Development Tools

6701 Bay Parkway, Ste 3M-2
Brooklyn, New York 11204
USA

Web address: www.phyton.com

E-mail contacts:

General inquiry: info@phyton.com

Sales: sales@phyton.com

Technical Support: support@phyton.com

Tel: 1-718-259-3191

Fax: 1-718-259-1539

2.2 Hardware installation

The power connector is situated in a center of the CPI2-Gx front panel (see the picture below).

A female power plug is included in the CPI2-Gx kit. A user of the programmer user must mount wires
for connecting a regulated 9V to 18V power adapter to the power plug on a front panel of the
programmer. The power adapter should be capable of generating at least 2.5A to provide enough
power for supplying the CPI2-Gx device programmer itself and to transmit power to 7 target devices
at a time.

Connect a CPI2-Gx device programmer to a USB 2.0 slot of your computer or USB hub by means of
the cable supplied with the programmer. Or, the user may connect the programmer to a LAN port on
your computer or router by means of a standard Ethernet cable.

mailto:support@phyton.com
http://www.phyton.com
mailto:info@phyton.com
mailto:sales@phyton.com
mailto:support@phyton.com

CPI2-Gx Device Programmers - CPI2-Gx34

© 2021 Phyton, Inc. Microsystems and Development Tools

To control your CPI2-Gx device programmer from your test fixture or other ATE use the CONTROL
port. The CPI2-Gx kit includes a 48-pin male DIN connector that is intended to be mounted on a
user's own custom transition board that interfaces the programmer to ATE. Refer to the
CONTROL connector pinout .

The channel A and B TARGET connectors are situated on side panels of the CPI2-Gx unit (see
the picture below). The CPI2-Gx kit includes two 150-pin male DIN connectors that are intended to be
mounted on a user's own custom transition boards that interfaces the programmer to ATE.

Connect the CPI2-Gx device programmer to the target device (board) or a test fixture in accordance to
the device-specific connection diagram published on the http://phyton.com/products/isp/chipprog-
isp2-family/cpi2-b1-connecting web page. After a device was selected in the programmer GUI, the
diagram is also accessible by clicking the Connection to the target device link in the Device
Information window.Refer to the TARGET connector pinout .

IMPORTANT NOTE! All 50 contacts in the middle B line of the TARGET connectors are assigned for
the ground (GND) signals. To ensure stable programming operations it is extremely important to
bring all these 50 ground lines from the programmer's TARGET connector to the GND points on the
target board. Do not join these GND wires in a single wire or fewer wires, as this may cause sporadic
crashes or malfunctioning of the programmer!

2.3 System Requirements

To run ChipProg-02 and control a CPI2-Gx device programmer, you need a personal computer (PC) with the
following components:

· Pentium-V or higher CPU.

· Microsoft Windows XP, 7, 8 or 10 operating system.

· A hard drive with at least 200MB of free space.

· In case of use the USB communication: at least one USB 2.0 port.

· In case of use the Ethernet communication: at least one LAN port or an Ethernet router with the
Dynamic Host Configuration Protocol (DHCP).

29 29

23

92 25 25

http://phyton.com/products/isp/chipprog-isp2-family/cpi2-b1-connecting
http://phyton.com/products/isp/chipprog-isp2-family/cpi2-b1-connecting

Installation and Launching 35

© 2021 Phyton, Inc. Microsystems and Development Tools

2.4 Software Installation

Since beginning of 2020 Phyton does not supply device programmer kits with CD ROMs with the ChipProg-02
software. Users should download the latest software version from the https://phyton.com/support/updates

webpage. To begin the software installation launch the cp-02.exe self-extracting executable file. Or, if you have a

CD ROM, insert it into a CD drive on your PC. When installer launches, click the Install ChipProg-02 button,
accept the license agreement, and follow the series of prompts that will guide you through the installation
process.

https://phyton.com/support/updates

CPI2-Gx Device Programmers - CPI2-Gx36

© 2021 Phyton, Inc. Microsystems and Development Tools

Installation and Launching 37

© 2021 Phyton, Inc. Microsystems and Development Tools

CPI2-Gx Device Programmers - CPI2-Gx38

© 2021 Phyton, Inc. Microsystems and Development Tools

Phyton ChipProg-02 folder

At the end of the software installation the installer creates a folder with ChipProg-02 shortcuts.

The first shortcut - Phyton ChipProg-02 opens the setup vizard ending with the startup dialog .
In this dialog you can create multiple shortcuts for launching the device programmer(s) with different
startup settings. All of them are accessible from the Phyton ChipProg-02 folder.

2.5 Launching device programmers

Launching a CPI2-Gx device programmer in the Gang-programming mode

CPI2-Gx device programmers are most often used in the Gang-Programming control mode. If
startup options are correctly specified in the Startup dialog ,then after clicking on the Start Device
Programmer button, the program tries to establish communication with the CPI2-Gx. This may take up
to 30-40 seconds. If the programmer is controlled via the GUI, the main window will appear on the

42 42

30

42

Installation and Launching 39

© 2021 Phyton, Inc. Microsystems and Development Tools

screen, and in the Program Manager window you will see as many site tabs as were specified in the
Startup dialog. The example below shows the Program Manager window after launching a CPI2-
06/12V1 device programmer with 6 programming modules.

Launching a CPI2-Gx device programmer in the Single-Programming control mode

Even though a CPI2-Gx device programmer may be equipped with more than one programming
modules, it is possible to to operate with one selected programming module in the Single-
Programming control mode. There are two command line options, which enable controlling a single
module specified by its unique serial number. These options (keys) are: -GANG and -N following by the
modules' serial numbers. In the GUI control mode, use of these key will cause Program Manager to
open windows with different appearances. See two examples below:

The -GANG#GM2-00029 in the command line opens the window similar to the above but with one site tab only:

The -NGM2-00029 in the command line opens the window that enables access to all basic programming functions:
Erase, Program, Verify, etc. Use of the -N option is intended for debugging programming projects on one site before
launching mass production in the Gang control mode.

30

105

CPI2-Gx Device Programmers - CPI2-Gx40

© 2021 Phyton, Inc. Microsystems and Development Tools

Launching daisy-chained CPI2-Gx device programmers

If it is desired to program 8 or more devices in parallel, then multiple CPI2-Gx programmers must be
daisy chained together, since the maximum number of devices that can be programmed in parallel by
one CPI2-Gx device programmer is 7. In this case, additional information is required in the Additional
Command Line Options field of the Startup Dialog box. The figure below shows the Startup Dialog
for launching two CPI2-Gx programmers with a total of 8 CPI2-GM1 programming modules installed in
two CPI2-Gx programmer motherboards.

Important Note. The CPI2-GM1 modules must be installed contiguously on the CPI2-Gx
motherboards. In other words, the placement of the modules must not skip motherboard slots.

Installation and Launching 41

© 2021 Phyton, Inc. Microsystems and Development Tools

Since there is nothing in the Additional Command Line Options text field, an attempt to start the
programmers the ChipProg-02 program generates the following message:

This message is saying that the controlling program does not know how the programming sites are
distributed between the two CPI2-Gx programmers. Each CPI2-GM1 module is a site, which will be
dedicated to the task of programming a particular device on the target board. In order to do this,
the /GANG key must be used with specification of the serial numbers of the CPI2-Gx programmers. In
the figure below, programmers with serial numbers GMV-100025 and GMV-100011 respectively are
specified.

In this case, Site#1 will start at the first occupied slot of the GMV-100025 programmer. Site#2,#3… will
be assigned successively until the number of programming modules in unit GMV-100025 is exhausted.
Then, Site#s will continue to be assigned to the modules in programmer GMV-100011 until those
modules are exhausted. For example, if there are six CPI2-GM1 modules installed in CPI2-06/12V1
device programmer with serial number GMV-100025 in slots 1-6, then they will be assigned to Site#1 to
Site#6. If the remaining two CPI2-GM1 modules are installed in the CPI2-02/04V1 programmer with
serial number GMV-100011 starting with slot 1, then they will be assigned Site#7 and Site#8
respectively.

With this configuration, clicking on the Start Device Programmer button, the Program Manager
window will display 8 programming sites - six sites, belonging to the CPI2-06/12V1 with the
motherboard GMV-100025, are shown below within a red frame, two others, belonging to the CPI2-
02/04V1 with the motherboard GMV-100011 - in a blue frame:

CPI2-Gx Device Programmers - CPI2-Gx42

© 2021 Phyton, Inc. Microsystems and Development Tools

2.6 Setup Wizard and Startup Dialog

If you launch the programmer first time, the program opens the ChipProg-ISP2 setup wizard welcome
page:

On the next step the wizard prompts you to select the device programmer model:

Installation and Launching 43

© 2021 Phyton, Inc. Microsystems and Development Tools

Then select the control interface in the next dialog:

The setup wizard ends with the following prompt:

CPI2-Gx Device Programmers - CPI2-Gx44

© 2021 Phyton, Inc. Microsystems and Development Tools

By clicking the Finish button above you open the Startup dialog that displays all the settings made in
the wizard. This dialog enables to enter some additional settings. The dialog window is divided in
several zones: Program Startup Options, Documentation, Contact Technical Support, For
Developers. The very bottom filed displays prompts for the dialog widget pointed to a mouse cursor. In
the picture below the cursor is placed over the Create a shortcut with this options link in the top right
corner. The picture below displays an example with some specified startup options.

Installation and Launching 45

© 2021 Phyton, Inc. Microsystems and Development Tools

The Program Startup Options zone concentrates major settings, including:

Connection: Select one of communication interfaces: either USB (default) or Ethernet or Local Area
Interface (LAN). Control of CPI2-Gx device programmer(s) via USB interface does not require any
special settings. Connecting via Ethernet requires appropriate setting in the Additional Command Line

Options . See a description of the -ETH key and associated parameters (IP addresses, etc.)

Gang Mode : Leave it unchecked to control either a single CPI2-B1 device programmer or a certain
one from a cluster of multiple CPI2-B1 programmers or a certain module number of a CPI2-Gx gang
device programmer. Check this box to control either multiple CPI2-B1 device programmers or a CPI2-
Gx gang device programmer connected to the computer.

Number of sites in gang : In this field you may optionally specify an actual number of programming
modules in the CPI2-Gx gang device programmer that you are launching.

Diagnostic Mode: This option enables/disables tracing programming operations - i.e. collecting the
trace to the UPROG.LOG file located in the folder where the the programmer software had been
installed. This UPROG.LOG file can be shared with Phyton Technical Support for remote

121

198

121

CPI2-Gx Device Programmers - CPI2-Gx46

© 2021 Phyton, Inc. Microsystems and Development Tools

troubleshooting. By default, the Diagnostic Mode box is checked and a running programmer
permanently updates the diagnostic information into the UPROG.LOG file. This slightly slows down a
target device programming. If the programming speed is extremely important, a user may uncheck this
box. In this case the UPROG.LOG remains empty.

Additional Command Line Parameters: Here you can type in command line options , which will be
added to the options specified in this zone above, i.e. the Gang Mode, Number of sites in gang,
Diagnostic Mode options. By default this field is blank.

Create a shortcut with this options: This link allows to store a shortcut for launching the device
programmer with the options specified in the Program Startup Options zone. You may create multiple
shortcuts for launching the programmers.

Open shortcut folder - Opens a folder that displays all the shortcuts launching the device
programmer with different options.

Demonstration Mode: Check this box if you want to evaluate the product's user interface without in
the absence of programmer hardware driven from a computer.

Start Device Programmer: click on this button launches the device programmer(s) connected to a
computer with the options set in the Program Startup Options zone of the dialog.

Start Standalone Mode Monitor: if the programmer works in the standalone mode, click on this
button launches the monitor .

The Documentation zone concentrates: links that invoke different types of user's guides for two device
programmer models: CPI2-B1 and CPI2-Gx.

Changelog link opens the Phyton ChipProg-02 Revision History file that lists most recent feature
changes, newly added devices and bug fixes

Phyton Homepage links opens the www.phyton.com website in your default web browser.

The Contact Tech Support zone includes Phyton contact information and enables users to open a
new support case by clicking the Create a ticket on the Phyton Site link.

If the programmer was launched in the Diagnostic mode (see above) then you can send a bug report to
the Phyton technical support by clicking the Submit Bug Report button.

The For Developers zone includes links to a set of tools for those who develop applications for
CPI2 device programmer control.

3 Control Interfaces

CPI2-Gx device programmers can be controlled by an operator in one of the Computer Controlled
modes or in the Standalone Mode mode controlled remotely by Automatic Test Equipment (ATE) .

Computer controls include the following:

· Full-capable Graphic User Interface (GUI),

· Simplified User Interface (SUI),

· Command Line , On-the-Fly control

121

133

159

133

48

113

120 126

http://www.phyton.com

Control Interfaces 47

© 2021 Phyton, Inc. Microsystems and Development Tools

· Application Control Interface (ACI)

First three methods above are described in this chapter, the ACI is described in a separate chapter.

The Standalone control mode is also described in a separate chapter.

3.1 Using Projects

Using device programmer involves many operations such as choosing target device, loading a file to be
programmed into the device, customizing programming algorithm, constructing a batch of commands
for Auto Programming procedure, configuring the CPI2-Gx user interface, etc. These actions require
working with tens of dialogs, menus and sub-menus in different ChipProg-02 windows. The ChipProg-
02 program allows you to store all such settings in a single file called project. You can create any
number of projects for programming a variety of devices and store them in the project repository .
When needed, these files can be loaded and used just by a mouse-click, or by including a project name
on command line . Use of projects saves time and simplifies programming process.

Projects are especially beneficial for production programming where a typical scenario includes
replication of a lot of chips programmed with the same data but different serial numbers. In such case it
is very convenient to create and lock a project that completely defines the programming session and
then assign programming operation to a worker who will simply replace the chips being programmed
while watching programming progress and results.

The table below lists major project options.

Option group Project options Where to set up...

Major properties

Project name; Description; Permissions

(password, selected locking options); Files to

be programmed into the device, File format,

Start and end address for file loading,

Destination buffers; Scripts to be preloaded;

Desktop.

Menu Project - Options - Dialog Project
Options

Device

Device type; Auto Detect; Insert test; Check

device ID; What to do when the device insertion

is detected; Device parameters (fuses, lock

bits, special function registers, etc.);

Programming algorithm (applicable chip

sectors, voltages, oscillator frequency, etc.)

Menu Configure - Dialog Select
Device ;
Window Program Manager - tab
Options
Windows Device and Algorithm
Parameters Editor

Buffers
Buffer name; Buffer size; Default fill value; Swap

file settings.

Menu Configure – sub menu
Buffers ;
Window Buffer – toolbar; Dialog Buffer
Configuration ;
Window Buffer – toolbar; Dialog Memory
Dump Windows Setup

Serialization,
Check sum, Log
files

Algorithm for programming serial numbers;

Custom signature patterns; Algorithm of the

check sum calculation; Check sum formats;
Menu Configure – tabs of the sub menu
Serialization, Check sum, Log files

159

133

108

53

56

120

53

57

58

108

93

57

61

97

98

57

63

CPI2-Gx Device Programmers - CPI2-Gx48

© 2021 Phyton, Inc. Microsystems and Development Tools

Option group Project options Where to set up...

Parameters and locations of log files to be

saved.

Actions on events

Actions triggered by certain events, issuing

error messages and sounds, logging results.
Menu Configure – sub menu
Preferences

Graphical User
Interface

Screen configuration, fonts and colors of

windows, key mappings, messages and

miscellaneous settings.

Menu Configure – sub menu
Environment

Statistics

Number of chips to be programmed and related

settings.
Window Program Manager - tab
Statistics

You can create, edit and save projects within the CPI2-Gx Graphical User Interface - read about the Project
Menu and related dialogs. The project files have the name extension .upp.

Note. ChipProg-02 software does not automatically save changes to project options on exit. You must
execute the Save or Save as command from the Project menu to save project changes made in
all GUI settings dialogs since this project was opened.

3.2 Graphical User Interface

The ChipProg-02 graphical user interface (GUI) contains the following elements:

· Windows .
· Menus - global and local.
· Toolbars - global and local.
· Dialogs.
· Hot Keys .
· Context-sensitive help prompts .

The GUI features several useful additions designed specifically for the CPI2-Gx operations.

To make your using ChipProg-02 program easier we highly recommend you read the Menus and
Windows chapters in full. You will be able to use the CPI2-Gx device programmers much more
effectively.

3.2.1 User Interface Overview

 ChipProg-02 features standard Windows interface with several useful additions.

1. Each window has its own local menu (the shortcut menu). To open this menu, click the right mouse button
within the window area or press Ctrl+Enter or Ctrl+F10. Each command in the menu has a hot key
shortcut assigned to a Ctrl+<letter> key. Pressing the hot key combination in the active window executes
the corresponding command.

2. Each window has its own local toolbar. The toolbar buttons access most of the local menu commands of

the window. A window toolbar buttons work only within that window. The main ChipProg-02 window has
several toolbars which can be turned on or off (in the Environment dialog, the Toolbar tab).

57

77

57

79

110

52

52

92

50

49

81

89

48

50

92

82

Control Interfaces 49

© 2021 Phyton, Inc. Microsystems and Development Tools

3. Toolbar buttons feature mouse-over help: when you place the mouse cursor over a toolbar button for two
seconds, a small yellow box appears nearby with a short description of the button’s function.

4. To save screen space, you can hide any window title bar. To do this, use the Properties command in the

local menu. You can identify the ChipProg-02 windows by their contents and position on the screen (and,
if you wish, by color and font). When the title bar is hidden, you can move the window as if the toolbar were
the title bar: place the cursor on a free space in the toolbar, press the left mouse button and drag the
window to a new position.

5. You can open any number of windows of the same type. For example, you can open several Buffer
windows.

6. Every input text field of any dialog box has a history list. ChipProg-02 saves them when you close
programming session. Then a previously entered string can be picked from the history list.

7. All input text boxes in the dialogs feature automatic name completion.

8. All check boxes and radio buttons in the dialogs work in the following way: a double-click on the check box
or radio button is equivalent to a single click on the box or button, followed by a click on the OK button.
This is convenient when you need to change only one option in the dialog and then close it.

3.2.2 Toolbars

The ChipProg-02 program shows several toolbars at the top of the main window (see below).

The topmost toolbar (right under the CPI2-Gx main window title) includes the Main menu bar with
drop-down submenus File, View, etc.. The second toolbar contains icons and buttons for the most
frequently used commands on files and target devices (Open project, Load file, Save file... Check,
Program, Verify, etc.). There is an indicator of the ChipProg-02 status (Ready, Wait, etc.). The third
toolbar displays a target device selector. The fourth toolbar, which is not displayed by default, includes
the built-in editor options and commands for scripts. The default toolbars can be customized. Refer
also to the topics The Configure Menu , The Environment dialog , Toolbar .

NOTE. Hereafter some toolbar elements can be displayed grayed out - it means that these elements
are unavailable for a particular target device or a mode of use. For example, since only one operation -
Auto Programming - is available for gang programmers , the Check, Program, Verify, Read,
Erase buttons are disabled and grayed out.

Besides the main window toolbars, windows of other types have their own local toolbars with buttons
assigned to the most frequently used commands related to the window. See for example the Buffer
window's toolbar below.

50

57 79 82

108 198

95

CPI2-Gx Device Programmers - CPI2-Gx50

© 2021 Phyton, Inc. Microsystems and Development Tools

3.2.3 Menus

The ChipProg-02 Main menu bar contains the following pull-down sub-menus:

· File menu

· View menu

· Project menu

· Configure menu

· Commands menu

· Scripts menu

· Window menu

· Help menu

To access these menus, use the mouse or press Alt+letter, where "letter" is the underlined character in the
name of the menu item.

· Context Menus

Each window has a context menu associated with it. To open context menu, either click the right mouse
button within the window or press Ctrl+Enter or Ctrl+F10.

Most, but not all, context menu commands are also available as toolbar buttons at the top of the window.

51

52

52

57

86

88

89

89

Control Interfaces 51

© 2021 Phyton, Inc. Microsystems and Development Tools

3.2.3.1 The File Menu

File menu commands invoke file operations. For those commands that have a corresponding toolbar button,
the button is shown in the first column of the table below. In case there is a shortcut key for a command, the
shortcut key will be displayed to the right of the command in the menu.

Button Command Description

Load ... Opens the Load file dialog that specifies all the parameters of
the file to be loaded and the file destination.

Reload Reloads the most recently loaded file.

Save... Saves the file from the currently active window to a disk. Opens the
Save file from buffer dialog.

Configuration
Files

Gives access to operations with configuration files .

Exit Closes ChipProg-02. Alternatively, use the standard ways to close
a Windows application (the Alt+F4 or Alt+X keys combination).

102

104

52

CPI2-Gx Device Programmers - CPI2-Gx52

© 2021 Phyton, Inc. Microsystems and Development Tools

3.2.3.1.1 Configuration Files

On exit ChipProg-02 automatically saves its configuration data in several configuration files named
UPROG.*. On start-up, configuration is restored from the most recently saved configuration files. In addition,
you can save and load any of these files at any time using the Configuration Files command of the File
menu . You can have several sets of configuration files for different purposes.

· The Desktop file stores display options and screen configuration as well as positions, dimensions, colors,

and fonts of all open windows. The extension of this file is .dsk. The default file name is UPROG.dsk.

· The Options file stores target device type, file options, etc. The extension of this file is .opt. The default
file name is UPROG.opt.

· The Session file stores session data and specifies the desktop and options; it can also be saved and

loaded by means of the Save session or Load session subcommand of the Configuration Files

command. The extension of this file is .ses. The default file name is UPROG.ses.

· The History file contains all settings entered in the text boxes of all the ChipProg-02 dialogs. This file is

hidden but the settings stored earlier are available for quick selection from the History lists. The extension

of this file is .hst. The default file name is UPROG.hst.

3.2.3.2 The View Menu

This menu provides a way to show various to ChipProg-02 windows.

Button
Command Description

Program Manager
 Opens the Program Manager dialog.

Device and Algorithm Parameters Opens the Device and Algorithm
Parameters dialog.

Buffer Dump
 Opens the Buffer dialog.

 Memory Card Window
 Opens the Memory Card window

Device Information
 Opens the Device Information dialog.

Console
 Opens the Console dialog.

3.2.3.3 The Project Menu

This menu contains commands for working with projects .

51

51

105

93

95

133

92

104

47

Control Interfaces 53

© 2021 Phyton, Inc. Microsystems and Development Tools

Button Command Description

New Opens the Project Options dialog.

Open Opens the Open Project dialog for loading an existing project
file.

Close Closes and saves current project.

Save Saves all settings of current project.

 Save As Opens the Save project dialog. Duplicating projects under different
names and/or in different folders is helpful for cloning similar projects.

Export Opens the Exporting Project dialog

Import Opens the Importing Project dialog

Repository Opens the Project Repository dialog for storing current project
in project data base for convenient handling.

Options Opens the Project Options dialog for editing project options.

Note. ChipProg-02 software does not automatically save changes to project options on exit. You
must execute the Save or Save as command from the Project menu to save project changes
made in all UI settings dialogs since this project was opened.

3.2.3.3.1 The Project Options Dialog

This dialog is used for setting initially and editing project options.

Control Description

Project File Name
Specifies the project file name and path. If extension is omitted. when you
close the dialog by clicking the OK button, the program saves the project file
with extension .upp.

Permissions...
Opens the Editing Permission Settings dialog. Here you can protect the
project file against unauthorized editing. By checking appropriate boxes in
this dialog you can lock major groups of project options.

Project Description
(optional)

Here you can enter your custom comments for the project.

Desktop
Two radio buttons which allow you to choose if current project will have its
own desktop, or all ChipProg-02 projects will use the same desktop
settings.

Files to Load to Buffers
One or more files to be loaded into the buffers upon opening the
project.

Add file
Opens the Load File dialog for adding this file to the Files to Load to

Buffers.

53

54

56

53

52

102

CPI2-Gx Device Programmers - CPI2-Gx54

© 2021 Phyton, Inc. Microsystems and Development Tools

Remove file Remove selected file from field Files to Load to Buffers.

Edit file options
Opens the Load File dialog for editing a file highlighted in the Files to
Load to Buffers list.

Script to execute before
loading files:

Here you can enter the name of a script to be executed before loading

the files to the project.

Script to execute after
loading files:

Here you can enter the name of a script to be executed after loading the

files to the project.

The dialog should be completed by clicking the OK button. Then a specified project file with the extension .upp
will appear in a specified folder.

3.2.3.3.2 The Open Project Dialog

This dialog is used to open a previously created project.

Control Description

Project File Name
Here you can enter full path of a project file name or browse project files. The
ChipProg-02 project files have file name extension .upp.

Project Open History
Shows a list of previously opened projects. Double-clicking on a line in the list
opens corresponding project.

Remove from list Deletes selected project from the Project Open History list.

3.2.3.3.3 Export and Import Project Dialogs

The ChipProg-02 allows exporting and importing projects created for the CPI2-Gx control.

The Export Project dialog allows moving an entire project along with the user's data to another
computer.

102

47

Control Interfaces 55

© 2021 Phyton, Inc. Microsystems and Development Tools

The program zips a specified the project file (for example, ABC.upp) with the data file(s) to be loaded by
opening the ABC.upp project to the CPI2-Gx programmer's buffer and stores the exported compressed
project into a specified folder (here C:\Work\Projects). Exported project files have the .upc extension -
in this case the ABC.upc file. The .upc files have a standard zip format.

Checking the Overwrite output file without prompt box prevents casual spoiling of a previously
stored compressed project.

Checking the Add timestamp postfix to the compressed file name enables to create a series of .upc
files with the same name but made at a different time.

For security you may encrypt the .upc file. Check the Encrypt file with password box and type in your
password in a field at right. Later, when you attempt opening or importing the project, you will be
prompted to enter this password.

These exported files can be moved or copied to another PC and then can be open by the Project >
Import command.

The Import Project dialog enables extracting a project exported from one computer to another.

CPI2-Gx Device Programmers - CPI2-Gx56

© 2021 Phyton, Inc. Microsystems and Development Tools

Specify an exported .upc file, a destination folder to unpack it and click OK. If the source .upc file was
encrypted with a password enter it into a popped up box.

For the example above, all parts of the RTX-028.upc compressed project will be extracted into the
folder UnpackedRTX, including the RTX-028.upp project file and all the data files associated with this
project.

Compressed .upc files can be loaded to ChipProg-02 by the Open Project command as well as
"simple" .upp project files. When you use the Open Project command from the Project menu
ChipProg-02 program extracts a .upc file to a temporary folder, loads the extracted project and then
deletes this temporary created folder. If the .upc file includes large data, opening the project may take
quite a long time. Use of the Import Project function vs Open Project saves time because an
imported project extracts to a specified folder and all extracted files remain in this folder.

Since opening a compressed .upc project completes with deleting a folder that temporary stores
extracted files they cannot be stored and modified.

3.2.3.3.4 Project Repository

The Project Repository command of the Project menu opens the Project Repository tree.

Project Repository is a small database that stores records with links to project files. Here you can
see the CPI2-Gx projects in a tree form similar to the Windows File Explorer, to logically organize
projects for convenient access. Operations with the repository do not change the projects
themselves - the repository works only with records about the projects (links to the project files). A
tree branch may show projects and other branches. Any branch may contain different projects with
the same names. Different branches may contain links to the same project.

Tree branches show each project file as a name (without a path) and a description in square
brackets. The ChipProg-02 remembers state of tree branch (expanded/collapsed) and restores it
next time you open the dialog.

When you install a new version of the ChipProg-02 software and copy the working environment
from the previously installed version, the new version will inherit the existing project repository (the
repos.ini file).

54

54 52

52

Control Interfaces 57

© 2021 Phyton, Inc. Microsystems and Development Tools

Dialog Control Description

Add New Branch Opens the Add New Branch dialog in which you can specify the name
of a new branch.

Add a Project to Branch Show the Open Project dialog to select a project to be added.
Clicking the Open button adds the selected project to the selected
branch.

Add Current Project to
Branch

Adds the currently opened project to the selected branch.

Remove Project/Branch Deletes the selected project or branch from the repository. All child
branches are also deleted.

When deleting a project from the repository, the ChipProg-02 deletes only
the repository record about the project, and does not delete the project
file from disk.

Edit Branch Name Opens the Edit Branch Name dialog for the selected branch.

Move Up Moves a selected project or branch up within the same level of hierarchy.
The branch moves together with all its child branches .

Move Down Moves the selected project or branch down within the same level of
hierarchy. The branch moves together with all its child branches .

Save Repository Writes or updates the repository to the disc file repos.ini in the CPI2-
Gx working folder.

Browse Project Folder Opens MS Windows Explorer with the opened folder of the selected
project.

Open Project Writes the repository to the disk file and opens a selected project.

Close Closes the dialog. If the repository is changed, ChipProg-02 will
prompt to save it.

3.2.3.4 The Configure Menu

This menu gives access to major ChipProg-02 configuration dialogs.

54

CPI2-Gx Device Programmers - CPI2-Gx58

© 2021 Phyton, Inc. Microsystems and Development Tools

 Button Command Hot
key

 Description

 Select device F3 Opens the Select Device dialog.

 Device selection history
 Alt+F

3
 Opens the list of previously selected
devices.

 Buffers F5 Opens the Buffers dialog.

 Serialization,
Checksum, Log file

 F6 Opens the Serialization, Checksum,
Log File dialog

 Data caching,
Standalone jobs...

 IP address settings...
 Opens the dialog for setting static IP
addresses of programming modules

 Preferences
 Ctrl+

F6
Opens the Preferences dialog.

 Simplified User
Interface editor

 Opens the Simplified User
Interface editor

 Environment

 Opens the Environment dialog with
tabs: the Fonts tab , the
Colors tab , the Key
Mappings tab , the Toolbar
tab and the Misc tab .

3.2.3.4.1 The Select Device Dialog

The dialog allows specification of the device to work with; it has several groups of controls.

58

61

63

77

113

80 80

80 80

81 81 82

82 82 82

Control Interfaces 59

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Description

CPI2-Gx Device Programmers - CPI2-Gx60

© 2021 Phyton, Inc. Microsystems and Development Tools

Devices to list:
In this field you can check one or more boxes to specify the target
device type. Devices are combined into three functional groups: a)
Serial memory devices; b) Programmable Logical Devices; c)
Microcontrollers. Speed up the search by specifying the device
properties if possible.

Manufacturer
The box lists the device manufacturers in alphabetic order.

Search mask:
Here you can enter a mask to speed up device search. The '*'
character (star) represents any number of any characters in
device part number. For example, the mask 'PIC18*64' will list all
PIC18 devices ending in '64'.

Devices
Displays all devices by the chosen manufacturer that satisfy
search criteria specified in Devices to list, Search mask, and
Packages/Adapters fields.

Sometimes you may see some devices listed in the Devices pane "greyout":

Support of "greyout" part numbers requires having appropriate CPI2-D-xxxx device library licenses.
After activation a certain CPI2-D-xxxx device library license all the part numbers of the devices covered
by this license become visible and can be selected.

Control Interfaces 61

© 2021 Phyton, Inc. Microsystems and Development Tools

3.2.3.4.2 The Buffers Dialog

Control Description

Buffer list:
Displays names, sizes and sub-layers of all open buffers

Add...
Opens Buffer Configuration dialog to create a new buffer

Delete
Deletes the buffer highlighted in the 'Buffer list' box.

Edit...
Opens Buffer Configuration dialog for editing.

View
Switches focus to the window displaying the buffer highlighted in
the 'Buffer list' box. If this window is hidden behind others it will be
brought to the foreground.

Memory Allocation
This drop-down menu allows limiting the amount of computer RAM
allocated for each buffer. The amount of free memory available for
allocation is shown here in this screen area.

Swap Files
If computer's RAM is limited, the ChipProg-02 can temporarily
store buffer images on PC hard drive to free some RAM. You can
select the hard drive or allow the program to swap files
automatically.

Use network drives
Checking this box enables swapping memory to the network drives
connected to your computer.

Amount of space to leave
free on each drive (GB):

Here you can reserve space on the hard drive that will never be
used for file swapping.

3.2.3.4.2.1 The Buffer Configuration Dialog

The Buffer Configuration dialog allows to setup sub-layers in buffers and to make their presentation
easier to work with. To open this dialog click the Buffer Configuration button in the toolbar of the
Buffer window .

The dialog has one tab for each sub-layer of a particular device. Every buffer has at least one
main Code layer, so the tab 'Code' is always displayed in the dialog foreground. If selected device
has other address spaces ('Data', 'User', 'ID location', etc.) the buffer will have additional sub-layers.
For example: Microchip PIC16LF18875-I/PT device has two sub-layers: ID location and Data (see the
picture below). Here the Buffer Configuration dialog has three tabs: one main for Code settings and
two for ID location and Data sub-layers.

The "Buffer name, Code settings" tab contains a dialog for configuring the main buffer layer - the
'Code' layer.

18

61

61

95

18

CPI2-Gx Device Programmers - CPI2-Gx62

© 2021 Phyton, Inc. Microsystems and Development Tools

Dialog Control Description

Buffer Name
Here you can type a name for the buffer or pick it from the history
list. By default the first opened buffer gets the name "Buffer #0",
the next one "Buffer #1", etc. Using this field you can give the
buffer any name you wish.

Size of sub-layer 'Code'
Here you can select the size of the 'Code' layer using drop-down
menu, from 128KB to 32MB.

Fill sub-layer 'Code' with
data:

The program fills the buffer sub-layers with default data pattern,
usually 'FF's or zeros. By checking these boxes you specify
when the 'Code' layer fills with default information - before
loading the file or right after device type has been chosen or
both.

Leaving the "Before loading file" box unchecked enables merging
multiple files in a single buffer with following programming a
merged file into a target device. This, for example, can be
convenient for merging code with configuration data for

Control Interfaces 63

© 2021 Phyton, Inc. Microsystems and Development Tools

programming microcontrollers if the configuration file exist
separately from the main code file.

Data to fill sub-layer
with:

These two radio buttons define whether the 'Code' sub-layer will
be filled with default information specific for the selected device,
or by a custom bit pattern or randomly.

Shrink buffer size when
device is selected

Initially, buffer size usually exceeds target device 'Code' size. By
checking this box you decrease buffer size to match target
device layer size and to free unused PC memory.

Other tabs open appropriate dialogs which control filling the sub-layer with data similarly to filling the
main (Code) layer.

3.2.3.4.3 The Serialization, Checksum, and Log Dialog

The dialog allows writing serial numbers, unique signatures, checksums and user-specified
information into target device memory. It also allows to configure writing log of the process of mass
production device programming.

Important!
All functions available with these dialogs: Serialization, writing in Checksums, Signatures,

etc.
work ONLY when you use the Auto Programming mode for mass production.

The tabs of the dialog shown below allow manual setting of the parameters and methods of their
calculation:

108

CPI2-Gx Device Programmers - CPI2-Gx64

© 2021 Phyton, Inc. Microsystems and Development Tools

General

Serial Number

Checksum

Signature String

Custom Shadow Areas

Log File

ChipProg-02 merges: a) the data loaded to buffers and b) special data set in the shadows areas and
then writes the merged data array into the target memory device. If some addresses of the merged
data overlap each other then the data taken from the shadow areas overwrite ones taken from the
memory buffer and the merged data physically move to the target device memory.

3.2.3.4.3.1 Shadow Areas

Concept of Shadow Memory Areas

68

69

69

70

71

72

64

Control Interfaces 65

© 2021 Phyton, Inc. Microsystems and Development Tools

Shadow memory areas are special parts of the computer RAM that the ChipProg-02 program
handles in a special way allowing to create unique data images for each single device to be
programmed. In most cases such a challenge is essential for Gang-Programming when a CPI2-
Gx gang programmer concurrently flashes identical devices on boards comprising a multi-PCB
panel. Then very often, besides the same code, it is necessary to write into each device a unique,
device-specific, information: such as a serial number, checksum, bar code scanned from the board,
device MAC address, etc.. The ChipProg-02 software is featured with a mechanism allowing to
create such unique, dynamically changing data and to merge these data with the code, writing these
merged images into specified part of the device memories. The ChipProg shadow memory
mechanism, implemented in the ChipProg-02 software and CPI2-Gx firmware, enable correct
merging of the common data with dynamically changeable portions of data into one data image,
unique for each target device. Shadow areas are special memory locations laying away from the
buffer , in the computer RAM. Hereafter in this chapter the "buffer" means a specified layer of
the device memory (Code, ID parameters, Data, EEPROM, etc.) that contains a common part of data
image to be written in the devices on boards.

CPI2-Gx operates with two types of shadow memory areas:
a) dedicated to certain, frequently used parameters;
b) custom shadow areas that can be used for programming custom parameters.

CPI2-Gx has three types of shadow memory areas dedicated to the parameters frequently
programmed into devices along with the code: Serial Number , Checksum , and Signature
String . The ChipProg-02 setting dialogs for each of these parameters are very specific and the
mechanisms of blending these parameters located in dedicated shadow memory areas with the
buffer content are built into the ChipProg-02 software and cannot be changed by the programmer
user.

For specifying other parameters, such, for example, as bar codes scanned from target boards,
device MAC addresses, parameters exceeding limitations of the dedicated shadow memory settings,
etc., ChipProg-02 enables creation virtually unlimited number of Custom Shadow Areas and
manipulation with them.

How does it work?
When a current programming site initiates a request for the device #N programming, the CPI2-Gx
fetches data from the source buffer layer, browses shadow areas predefined for the site #N and
replaces the layer data by contents of these area forming the merged data image to be written to the
device #N and physically writes this merged image to the device. Then the programmer repeats the
operations for the device #N+1 taking content of the shadow areas predefined for the device #N+1
and so on and so on. The addresses of each identical shadow memory areas and their sizes are the
same for all devices but the contents vary. The picture below shows how the programmer prepares a
data image to be written to a target device.

30

18 18

69 69

70

71

CPI2-Gx Device Programmers - CPI2-Gx66

© 2021 Phyton, Inc. Microsystems and Development Tools

The diagram below displays shaping data images for four board programming. Each unique data
image includes a common part fetched from the buffer layer merged with contents of three
dedicated and one custom shadow areas.

18

Control Interfaces 67

© 2021 Phyton, Inc. Microsystems and Development Tools

Overlapping of Shadow Areas and Buffer Data

If any addresses in the merged data overlap, the data read from shadow areas overwrite the data
read from memory buffer, in the order shown below.

Custom shadow area N ?
Custom shadow area N-1 ?
Custom shadow area N-2 ?
....
....
Custom shadow area 2 ?
Custom shadow area 1 ?

CPI2-Gx Device Programmers - CPI2-Gx68

© 2021 Phyton, Inc. Microsystems and Development Tools

Signature string ?

Checksum ?

Serial Number ?

Data in memory buffer

The ChipProg-02 software itself does not prevent of or warn about the shadow memory overlaps. The
user should carefully check correctness of the addresses set in the the Serial Number ,
Checksum , Signature String and Custom Shadow Areas setting dialogs to prevent data
image corruption as a result of accidental shadow areas overlapping.

3.2.3.4.3.2 General settings

The tab contains a dialog to handle serialization of the devices in case a device programming fails. The
two options are shown in the figure below.

69

69 70 71

Control Interfaces 69

© 2021 Phyton, Inc. Microsystems and Development Tools

3.2.3.4.3.3 Device Serialization

The Serial Number tab defines a procedure of assigning a unique number to each single device
from a series of devices to be programmed. By default serial number starts at 0, is incremented by 1,
and occupies one byte.

Element of dialog Description

Write S/N to address:
If this box is checked, the programmer will write a serial number
into the specified address of the specified memory layer of the
target device, as defined by the settings below.

Current serial number:
Use this field to specify the starting serial number. Default value is
0.

S/N size, in byte:
Specify the size of serial number in bytes; for example: 1, 2, 4, etc.
Default is one byte.

Byte Order
These radio buttons define the order of bytes in the serial number
(if it occupies more than one byte): either the least significant byte
(LSB) follows the most significant byte (MSB) or vise versa.

Display S/N as:
These radio buttons choose the serial number display format - decimal or
hexadecimal.

Increment serial number
by:

By selecting this radio button you set the serial number increment
as the fixed value specified here: 1, 2, 10, etc.

Use script to increment
serial number:

By checking this radio button you set the increment value to the
result of executing the specified script file.

3.2.3.4.3.4 Checksum

The Checksum tab controls automatic calculation of checksums of data in buffers and writing the
checksums into the target device memory. Checksums can be calculated using a commonly used
"standard" algorithm, or using a complex custom algorithm implemented in a script .

Element of dialog Description

Write checksum to

address:

If this box is checked, the programmer will write a checksum into
the specified address of the specified memory layer of the target
device, in accordance to the parameters below.

Address range for
checksum calculation:

Auto:

There are two options for setting the address range: Auto and
User-defined.

The address is defined as a full range of the selected device
memory layer. This is the default.

177

CPI2-Gx Device Programmers - CPI2-Gx70

© 2021 Phyton, Inc. Microsystems and Development Tools

User-defined:
Here you can specify the start and end addresses of the selected
device memory layer for which the program calculates the
checksum.

Use algorithm to calculate
checksum:

This drop-down menu allows to select one of several available
algorithms. The default is "Summation, discard overflow".

Use script to calculate
checksum:

By checking this radio button you specify a script that implements
custom checksum calculation.

Size of calculation result:
These radio buttons choose the size calculated checksum: one,
two or four bytes.

Size of data being
summed:

These radio buttons choose the size of data being summed up:
one, two or four bytes.

Operation on summation
result:

These radio buttons allow to perform no operation on the
calculated checksum, or to negate or complement it.

Byte Order:
These two radio buttons define an order of bytes that represent the
checksum - either the least significant byte (LSB) follows the most
significant byte (MSB) or vice versa.

Exclude the following
areas from checksum
calculation:

Checking off this box allows to specify one or more memory
ranges that will be skipped by the checksum calculation algorithm.
To specify a range, enter its start and end addresses and click the
'Add' button.

3.2.3.4.3.5 Signature string

The tab contains settings for writing user-defined signature string into the target device. The signature
may include generic data (such as the date when the device was programmed) and unique data
(such as project name, operator name, etc.).

Dialog Control Description

Write Signature String to

address:

in sub-layer:

When this box is checked, the programmer will write the specified
signature into the specified address of the specified memory layer
of the target device, according to parameters below.

Max. size signature string:
This field defines the maximum length of the signature string as a
number of characters.

Use Signature String
template:

One of two radio buttons. If checked, the string of parameters from
Template String Specifiers drop-down menu will be programmed into

the target device.

Control Interfaces 71

© 2021 Phyton, Inc. Microsystems and Development Tools

Use script to create
Signature String:

This radio button selects an alternative method of composing the
signature string by means of a custom script.

Template String
Specifiers:

This field lists available parameters (specifiers) for inserting into
the Use Signature String template field. Each parameter starts with
the '$' symbol.

3.2.3.4.3.6 Custom Shadow Areas

The tab opens the dialog allowing to set custom shadow areas and to watch content of these areas
for debugging of automated device programming.

CPI2-Gx Device Programmers - CPI2-Gx72

© 2021 Phyton, Inc. Microsystems and Development Tools

Click the +Add button opens a sub dialog prompting to specify the buffer layer , content of which
will be merged with the custom shadow memory area, the area's address and size. A user may
create as many custom shadow areas as needed to be blended to same or different buffer layers.
The picture above displays two custom shadow areas reserved for two buffer layers: Code and ID
parameters.

The pane Data displays current content of the highlighted shadow area. Right after creation it is
blank. Then the area can be filled by executing of an ACI function or by a script. To use a script check
the box below the Data pane and specify the script name and location. In the example above the area
#1 is going to be filled by the script CALC.CMD.

3.2.3.4.3.7 Log file

The tab allows set up of a log or logs of the device programming.

18

Control Interfaces 73

© 2021 Phyton, Inc. Microsystems and Development Tools

Dialog Control Description

Enable log file
Check this box to enable logging device programming sessions
and to set log parameters below.

Separate log file for each
device

Radio buttons to select whether separate logs will be written for
each manufacturer or target device type, or single log will be
written for all devices programmed.

File Name (Generated
Automatically)

Radio buttons to select what kind of specifier will be included in the
log file name: both manufacturer and device type (for example:
Atmel ATSAM3S1BB-AU, Microchip PIC18F2525, etc.) or device
type only (for example: ATSAM3S1BB-AU, PIC18F2525, etc.).

Folder for log file:
The field for entering the full path to the folder where log files will be
created. There is also a button for path browsing.

Single log file for all
device types

Check this radio button to write single log for all types of devices
programmed.

File Name
The field for entering the full path to the folder where the common
log file will be created. There is also a button for path browsing.

Log File Contents
Log file settings.

Gang mode: Socket #
If device is programmed in Gang (multiprogramming) mode when
this box is checked, the socket number will be logged.

Date/Time
Check this box to log date and time of device programming.

Events (device type
change, file names, etc.)

Check this box to log all events associated with device
programming, such as target device replacement, loaded file
names, etc.

Device operation
Check this box to log all events associated with device
manipulations.

Detailed Device operation
Check this box to enable more detailed logging of all events
associated with device manipulations.

Operation Result
Check this box to log results of programming operations.

Device #/Good devices/Bad
devices

Check this box to log the total number of the devices programmed,
the number of successfully programmed devices and the number
of failed ones.

Serial Number
Check this box to log serial number read from the device.

Signature string
Check this box to log signature string read from the device.

Checksum
Check this box to log checksum value read from the device.

CPI2-Gx Device Programmers - CPI2-Gx74

© 2021 Phyton, Inc. Microsystems and Development Tools

Buffer name
Check this box to log buffer name.

Programming address
Check this box to log ranges of device locations that have been
programmed.

Programming options
Check this box to log all programming options.

Log File Format
A Pair of adio buttons: one selects plain text format of the log file,
the other selects comma-separated text that can be imported into
Microsoft Excel.

Log File Overwrite Mode
A pair of radio buttons. Checking the top one selects the mode of
appending new records to a specified log file. Checking the other
selects overwriting the old log each time CPI2-Gx re-starts.

Warn if size exceeds
If this box is checked, ChipProg-02 will issue a warning every time
log size exceeds a user-specified value.

Immediately write log file
to disk, no buffering

If this box is checked, ChipProg-02 writes log directly to hard drive
without buffering it in computer RAM.

3.2.3.4.4 The Sata Caching, Standalone... Dialog

This topic refers to the settings of Standalone Operation Mode. Read the entire chapter .

3.2.3.4.5 IP Address Setting Dialog

If a CPI2-Gx programmer is controlled via Ethernet, a DHCP server assigns local IP addresses to each
CPI2-GM1 module connected to the Ethernet switch device installed on the programmer's
motherboard. The addresses are changed dynamically by the LAN router. However, it is possible to
set unique static IP addresses for each CPI2-GM1 module.

To set static IP addresses a CPI2-Gx programmer should be connected to a PC via USB. When then,
after setting static IP addresses, the programmer has been switch to the LAN control, these static IP
addresses assigned to CPI2-GM1 modules, can be always examined, but not changed!, within the
programmer GUI.

To set the IP addresses open the Configure > IP address settings... menu. This will open the dialog
below:

133

Control Interfaces 75

© 2021 Phyton, Inc. Microsystems and Development Tools

It lists serial numbers of the motherboard (MB:) and site order numbers in the Programmer column.
The column Serial# lists serial numbers of CPI2-GM1 programming modules installed on the
motherboard. A far right column lists MAC addresses of the modules. To assign static IP addresses
for selected CPI2-GM1 modules check appropriate boxes in a very left column and click the Edit
button.

If only one box is checked the Edit IP Address dialog will pop up.

Type in the address in the IP Address field and click OK. The example above specifies the IP
address 192.168.211.3 for the site #1.

If you check more than one site in the Device Programmer IP Addresses Settings dialog, as it is
shown below and click OK

CPI2-Gx Device Programmers - CPI2-Gx76

© 2021 Phyton, Inc. Microsystems and Development Tools

you will be prompted with the Edit IP Address dialog allowing to set static IP addresses for multiple
modules:

Check the Distribute IP addresses... box and enter the first IP address. Then click OK to complete
settings. This will assign the specified address to the most top module in the list; other selected
modules will be automatically assigned with IP addresses incremented by 1. See below the result of
setting static IP addresses for 3 of 4 modules installed in a CPI2-G04/08V1 gang device programmer;
the #2 site (GM-10053 remains getting IP address dynamically):

Control Interfaces 77

© 2021 Phyton, Inc. Microsystems and Development Tools

ChipProg-02 will set identical Subnet mask and Default gateway for all the programmer sites. After
setting static IP addresses you may copy these settings to the clipboard and then to a file.

Clicking the Reset to Auto button resets all the settings made in the Edit IP Address dialog.

Important Note.

to complete setting static IP addresses before restarting the programmer with LAN control
you must cycle the programmer power.

3.2.3.4.6 Simplified User Interface Editor

This topic refers to the settings of the Simplified User Interface (SUI). Read the entire chapter .

3.2.3.4.7 The Preferences Dialog

This dialog contains settings for miscellaneous options.

113

CPI2-Gx Device Programmers - CPI2-Gx78

© 2021 Phyton, Inc. Microsystems and Development Tools

Dialog Control Description

Options
Some (but not all) dialog options are described below.

Reload last file on start-
up

Check this box to reload the last loaded file into the open buffer(s) every
time you start CPI2-Gx.

Control Interfaces 79

© 2021 Phyton, Inc. Microsystems and Development Tools

Execute Power-On test on
start-up

This box is checked by default. Uncheck it to skip running self-test at
CPI2-Gx start-up.

Terminate device
operation...

Check this box to stop programmer operations operations on any error
and suppress error messages in the user interface.

Log operations in the
Console window

Check this box to enable dump of programming session trace to the
Console window.

Deny computer power
suspension

While the programmer is not communicating with the target device, the
computer may switch to the sleep mode. Check this box to prevent
Windows from entering the sleep mode. This does not prevent entering
sleep mode when an operator closes notebook lid or shuts down the
computer by selecting Start > Shut down. This option will not disable
screen saver nor prevent powering off the monitor.

In the process of CPI2-Gx executing any command on the target device,
entering sleep mode is disabled regardless of this check box status
because powering off USB port may cause damage to the target
device.

If this box is unchecked, PC wake-up will cause ChipProg-02 software
crashes. If a crash happens, it is necessary to cycle CPI2-Gx power
and re-launch the ChipProg-02 application.

Sounds
All programmable sounds can be picked from the preset ChipProg-02
sounds

Device operation error:
Select the sound for error operations.

Device operation
complete:

Select the sound for successful completion of the programming
operations in a single programming mode (i.e. when one CPI2-Gx is in
use).

Device operation
complete (Gang Mode):

Select the sound for successful completion of the programming
operations in a gang programming mode (either a few single-site
programmers are connected to one PC for multi-device programming
or the CPI2-Gx gang programmer is in use).

Programming start
(AutoDetect Mode):

Select the sound for indicating the start of the device programming
when the CPI2-Gx automatically detects insertion of a device into
programming socket.

3.2.3.4.8 The Environment Dialog

The Environment dialog includes the following tabs:

Fonts tab,

Colors tab,

Mapping Hot Keys tab,

Toolbar tab,

80

80

81

82

CPI2-Gx Device Programmers - CPI2-Gx80

© 2021 Phyton, Inc. Microsystems and Development Tools

Miscellaneous Settings tab.

3.2.3.4.8.1 Fonts

The Fonts tab of the Environment dialog provides settings for fonts and some UI elements in ChipProg-02
windows. Only monospaced (non-proportional) fonts are used to display information in windows (default is
Fixedsys). To change window appearance you can select a font to be used in all windows, or in any
particular window.

The Windows area lists the types of windows. Select a type to change its settings. The settings apply to all
windows of selected type, including the windows that are already open.

Control Description

Window Title Bar Toggles display of title bar for windows of the selected type. If the box is
checked it adds a toolbar at the position specified by the Windows Toolbar
Location option. To save screen space uncheck the box. Also, see notes
below.

Window Toolbar
Location

Sets the toolbar location for selected window.

Grid Toggles display of the vertical and horizontal grids in windows of certain types,
and enables adjustment of column width if the vertical grid is allowed.

Additional Line
Spacing

Provides additional line spacing to be added to the standard line spacing.
Specify a new value or choose from the list of most recently used values.

Define Font Opens the Font dialog. The selected font applies to all windows of the selected
type.

Use This Font for All
Windows

Applies the font of the selected window type to all ChipProg-02 windows.

 Notes

1. To move a window that does not have a title bar, place the cursor on its toolbar, where there are no buttons,
and then act as if the toolbar were the window title bar. Also, you can access the window control functions
via its system menu by pressing the Alt+<grey minus> keys.

2. Each window has Properties item in its context menu, which can be accessed by a right click. The Title
and Toolbar items of the Properties sub-menu toggle the title bar and toolbar on/off for the active window.

3.2.3.4.8.2 Colors

The Colors tab of the Environment dialog contains color settings for window elements such as background,
font, etc. By default most colors are inherited from MS Windows; here you can set your preferred colors.

Control Description

Color Scheme Name of the color scheme. Your can type a name or choose a recently used
one from the list.

Save button saves the current scheme to disk; later you can restore color
settings by just a mouse click. Remove button removes the current scheme.

82

Control Interfaces 81

© 2021 Phyton, Inc. Microsystems and Development Tools

Colors Lists the names of color groups. Each group consists of several elements.

Inherit Windows
Color

When this box is checked, the selected color is inherited from MS Windows
color scheme. If later you change the MS Windows colors through the Windows
Control Panel, this color will change accordingly. This option is available only for
background and text colors.

Use Inverted
Text/Background
Color

When this box is checked, the program inverts the selected window colors (for
text and background). For example, if the Watches window background is white
and the text is black, then the line with the selected variable will be highlighted
with black background and white text.

Edit Opens the Color dialog if the Inherit Windows Color and Use Inverted
Text/Background Color boxes are unchecked for this type of window.

The Color dialog also opens with a double-click on a color in the Colors list.

Spread Sets the selected color for all windows. This option is useful for text and
background colors. For example, if you set yellow text on blue background for
the Source window, and then click the Spread button, these colors will be set
as the text and background colors for all windows.

Font To highlight syntax in the Source window you can specify additional font
attributes - Bold and Italic.

In some cases when synthesizing bold fonts, MS Windows increases character
size so that the font becomes unusable, because the bold and regular
characters should be of the same size. In these cases, the Bold attribute is
ignored.

Sometimes this effect takes place with Fixedsys font. If you need to use Bold
fonts, choose the Courier New font.

3.2.3.4.8.3 Mapping Hot Keys

The Key Mapping tab of the Environment dialog is used to assign hot keys to all ChipProg-02 commands.
The Menu Commands Tree column displays a tree-like expandable diagram of all commands. The Key 1
(Key 2) columns contain hot key combinations corresponding to commands. The actions apply to the currently
selected command.

Control Description

Define Key 1
Define Key 2

Opens the Define Key dialog. In the dialog, press the key combination you
want to assign to the selected command, or press Cancel.
Alternatively, double-click the "cell" in the row of this command and the Key 1
(Key 2) column.

Erase Key 1
Erase Key 2

Deletes the assigned key combination for the selected command.
Alternatively, right click the "cell" in the row of this command and the Key 1
(Key 2) column.

CPI2-Gx Device Programmers - CPI2-Gx82

© 2021 Phyton, Inc. Microsystems and Development Tools

3.2.3.4.8.4 Toolbar

The Toolbar tab of the Environment dialog controls display and contents of window toolbars.

Control Description

Toolbar Bands Lists the ChipProg-02 toolbars. To enable/disable a toolbar check/uncheck its
box.

Buttons/Commands Lists the buttons available for the toolbar selected in the Toolbar Bands list. To
enable/disable a button on the toolbar check its box.

"Flat" Local
Window Toolbars

Toggles between "flat" and 3D appearance of toolbar buttons in specifyed
windows.

Toolbar Settings are
the Same for Each
Project/Desktop File

Applies current settings of this dialog to other projects or future opened files.

3.2.3.4.8.5 Messages

Check messages that program should display, uncheck messages that you do not want to be
displayed.

3.2.3.4.8.6 Miscellaneous Settings

The Miscellaneous tab of the Environment dialog contains settings for miscellaneous properties of

ChipProg-02 windows and messages.

Control Description

Main Window
Status Line

Sets visibility and location of the <%CM%> window status line.

Quick Watch
Enabled

Turns Quick Watch function on or off.

Highlight Active
Tabs

Toggles highlighting for the currently active tab (MS Windows-style) in windows
that have tabs.

Double Click on
Check Box or Radio
Button in Dialogs

Makes mouse double click equivalent to single click plus pressing OK button in
dialogs.

Show Hotkeys in
Pop-up Descriptions

Toggles display of hot keys in mouse-over help for toolbar buttons.

191

Control Interfaces 83

© 2021 Phyton, Inc. Microsystems and Development Tools

Do not Display Box
if Console Window
Opened

If Console window is open it will show messages. Otherwise messages will
be shown in message box.

Always Display
Message Box

All messages will be displayed in the message box. In addition, the Console
window will also display same messages.

Automatically Place
Cursor at OK Button

When this box is checked, the cursor will always be on the OK button whenever
message box opens.

You can also press Enter key instead of using the mouse to click OK.

Audible Notification
for Error Messages

If this is selected, error message will be accompanied with a beep. Information
(as opposed to error) messages never come with a beep.

Log Messages to
File

Specifies message log file name. All messages will be written to this file.
Writing method depends on the radio button with two options:

Overwrite Log File
After Each Start

For every session, erase previous log file if exists, and create a new one.

Append Messages
to Log File

Append messages to the existing log file. In this case log file can grow without
limit.

3.2.3.4.9 The Editor Otions Dialog

The ChipProg-02 software includes a built-in Scripts Files editor. The Editor Options dialog provides

access to editor settings and includes the following tabs.

 General Editor Settings tab,

 Key Mapping tab.

3.2.3.4.9.1 The General Tab

The General tab of the Editor Options dialog has settings for common options that apply to every
Source window.

Dialog Control Description

Backspace Unindents Toggles Backspace Unindent mode (see below).

Keep Trailing Spaces When this box is checked, the editor does not remove trailing spaces
in lines when copying text to a buffer or saving it to a disk. When the
box is unchecked such spaces are removed.

Vertical Blocks If checked, the Vertical Blocks mode is enabled for block
operations .

104

177

83

85

187

188

CPI2-Gx Device Programmers - CPI2-Gx84

© 2021 Phyton, Inc. Microsystems and Development Tools

Persistent Blocks If checked, the Persistent Blocks mode is enabled for block
operations.

Create Backup File If checked then each time a file in the Source window is saved
ChipProg-02 creates a back-up file (with file name extension *.BAK).

Horizontal Cursor If checked, the cursor will have the shape of a horizontal line, similar to
DOS command prompt.

CR/LF at End-of-file If checked, a carriage return/line feed sequence will be added to the
end of the file (if it does not have it already) when saving file to disk.

Syntax Highlighting If checked, forces syntax highlighting for language elements.

Highlight Multi-line
Comments

If checked, enables highlighting of multi-line comments. By default,
only single-line comments are highlighted.

Auto Word/AutoWatch Pane If checked, new Source windows will have Auto
Word/AutoWatch pane at their right, and the automatic word
completion function will be enabled.

Full Path in Window Title If checked, the Source window caption bars display full path to the
open file.

Empty Clipboard Before
Copying

If not checked, previously kept data remains retrievable after copying to
the clipboard.

Convert Keyboard Input to
OEM

If checked, the Source window converts input characters from MS
Windows character set to OEM (local) character set that corresponds
to your localized version of Windows operating system. Also, see
note below.

AutoSave Files Each … min If checked, ChipProg-02 will save the file being edited every ‘X’
minutes. The value of ‘X’ can be selected from a list.

Tab Size Sets the tabulation size for text display. Possible values are from 1 to
32. If the file being edited contains ASCII tabulation characters, they
will be replaced with the number of spaces equal to this tabulation
size.

Undo Count Sets the maximum number of available undo steps (512 by default).
Maximum allowed value is 10000 steps; however, larger values
increase the editor’s memory usage.

Automatic Word Completion If the Enable box is checked, it enables the automatic word
completion function. The Scan Range drop-down list sets the
number of text lines to be scanned by the automatic word completion
system.

Indenting Toggles automatic indentation of new lines created on pressing. Enter.

NOTE 1. Convert Keyboard Input to OEM box only needs to be checked when adding characters to a file
with OEM character encoding in the Source window. To only display such file correctly without modifying it,
select the Terminal font for use in Source windows. This can be done in the Fonts tab of the
Environment dialog: select Editor in Windows list and press the Define Font button.

NOTE 2. The Backspace Unindents mode establishes the editing result from pressing the Backspace key
in the following four cases, when the cursor is positioned at the first non-space character in the line (there are
several spaces between the first column of the window and the first non-space character):

190

187

190

80

Control Interfaces 85

© 2021 Phyton, Inc. Microsystems and Development Tools

Backspace Unindent enabled Backspace Unindent disabled

Insert mode Any preceding blank spaces in the line
are deleted. The rest of the line shifts
left until its first character is in the first
column of the window.

One space to the left of the cursor is
deleted. The cursor and the rest of the
line to the right of the cursor shift one
position left.

Overwrite mode The cursor moves to the first column of
the window. The text in the line
remains in place.

Only the cursor moves one position left.
The text in the line remains in place.

3.2.3.4.9.2 The Key Mappings Tab

You can manage the list of available editor commands in the Key Mappings tab of the Editor Options
dialog. You can add and delete editor commands, assign or reassign hot keys for new and built-in
commands.

In the list, the left column shows command descriptions, corresponding command types are in the right

column. The term Command refers to a built-in ChipProg-02 command; Script NNN refers to an added
user-defined command. Two columns on the right specify hot key combinations that invoke the command, if
they are defined.

Dialog Control Description

Add Opens the Edit Command dialog for adding a new command to the list and
setting up the command parameters.

Delete Removes a selected user-defined command from the list. Any attempt to
remove a built-in command is ignored.

Edit Opens the Edit Command dialog to change the command parameters. For
built-in commands, you can only reassign the hot keys (the Command
Description and Script Name boxes are not available).

Edit Script File Opens the script source file of this command in the Script Source window.

Creating new commands

To create a new command, you should develop a script for it. In fact, you add this script to the editor, not the
command. This means that your command is able to perform much more complex, multi-step actions than a
usual editor command. Moreover, you can tailor this action for your convenience, or for a specific work task or
other need. Your scripts may employ the capabilities of the script language with its entire set of built-in
functions and variables, text editor functions and existing script examples.

A script source file is an ASCII file. To execute your command, the editor compiles the script source file. Note
that before you can switch to using the script which you have been editing, you must first save it to the disk

so that ChipProg-02 can compile it.

Script source files for new commands will reside only in the KEYCMD subdirectory of the ChipProg-02
system folder. Several script example files are available in KEY CMD. For more information about developing
scripts, see Script Files .

86

185

251

177

CPI2-Gx Device Programmers - CPI2-Gx86

© 2021 Phyton, Inc. Microsystems and Development Tools

This Edit Command dialog defines parameters for a new or existing command.

Control Description

Command
Description

Enter the command description here (optional). Text entered in this box will be
displayed in the list of commands, to ease identification of the command.

Script Name Name of the script file that implements this command.

Define Key 1
Define Key 2

Opens a special dialog box where you can assign two hot key combinations.

Script source files for commands will reside only in the KEYCMD subdirectory of the ChipProg-02 system
folder. Enter the file name only, without the path or extension.

Notes

1. You should not specify any key combinations reserved for Windows (e.g. Alt+– or Alt+Tab).

2. We do not recommend assigning any combinations already used for commands in the Source window or

ChipProg-02, as you'll have fewer ways to access those commands. Some examples are Alt+F,
Shift+F1, Ctrl+F7 which open application menus; pthers are local menu hot keys of the editor window.

3. You can use more than one modifier key in the keystroke combinations. For example, you can use
Ctrl+Shift+F or Ctrl+Alt+Shift+F as well as Ctrl+F combination.

4. Hot keys for some built-in commands cannot be reassigned (e.g. cursor movement keys).

3.2.3.5 The Commands Menu

This menu items invoke main commands (a.k.a. functions) that control programming process - from
Blank Check to Auto Programming, mode switches as well as some utility commands. Most
commands of this menu can be launched by hot keys [F7] ...[F12].

Control Interfaces 87

© 2021 Phyton, Inc. Microsystems and Development Tools

Command Hot
key

Description

Blank Check
F8

Launches the procedure of checking the target device
before programming to make sure it is blank.
Programming of certain memory devices does not
require erasing them before re-programming. For such
devices the Blank Check command is disabled and
shown grayed out on the screen.

Program
F9 Launches the procedure of programming the target

device, i.e. writes the contents of the buffer into the target
device’s cells.

Verify
F10 Launches the procedure of comparing the information

taken from the target device with the corresponding
information in the buffer.

Read
F11 Launches the procedure of reading the content of target

device cells into the active buffer.

Erase
F7 Launches the procedure of erasing the target device.

Some memory devices cannot be electrically erased. In
this case the Erase command is disabled and shown
grayed out on the screen

Auto Programming
F12 Launches the Auto Programming .

Self-Tests
Launches testing the CPI2-Gx hardware. In case of
failure the diagnostic results screen will open.

Switch to Stand-Alone
mode

Switches the CPI2-Gx from the computer-controlled
mode to standalone operation mode .

Switch to Simplified
User Interface

Hides a standard GUI and replaces it with a preset
Simplified User Interface .

Local menu
Opens local menu of the active window.

Calculator
Opens Calculator dialog which performs calculator
functions.

3.2.3.5.1 Calculator

The primary purpose of the embedded calculator is to evaluate expressions and to convert values from
one radix to another. You can copy the calculated value to the clipboard.

Control Description

Expression The text field for entering an expression or a number.

Copy As Specifies format of the result to copy to clipboard.

Signed Values If checked the result of calculation will be interpreted and displayed as a signed
value (for decimal format only).

Display Leading
Zeroes

If checked, binary and hexadecimal values retain leading zeroes.

Copy Copies result to clipboard using format set by Copy As radio button.

Clr Clears the Expression text box.

Bs Deletes one character (digit) to the left of the insertion point (Backspace).

108

133

113

87

203

CPI2-Gx Device Programmers - CPI2-Gx88

© 2021 Phyton, Inc. Microsystems and Development Tools

0x Inserts "0x".

>> Shifts expression to the right by specified number of bits.

<< Shifts expression to the left by specified number of bits.

Mod Calculates the remainder of division by specified number.

While you are typing the expression in the Expression field, a drop-down list box ChipProg-02 tries to
evaluate the expression and immediately display the result in different formats in the Result area. States of
Copy As radio button and two check boxes in this area define format of the result.

You can assign values to program variables and SFRs by typing an expression that contains the assignment.
For example, you may type SP = 66h and the value of 66h will be assigned to SP.

Examples of expressions:

0x1234

-126

main + 33h

(float)(*ptr + R0)

101100b & 0xF

3.2.3.6 The Script Menu

The Script menu contains several commands related to script files.

The ChipProg-02 contains a script language interpreter. Its purpose is automation of programming operations by
mastering complex procedures involving both the device programmer and the programmer operator's actions.

The ChipProg-02 supports composing and executing script files (SF). Working with scripts is describe in
the Script files topics.

Commands in this menu are user-configurable, and the list can be expanded by adding new items (commands).

To add a new item to the menu, place a script file into current folder or into the ChipProg-02 installation folder.
The first non-empty line of any script file must contain three forward slashes followed by a title that will appear in
the Scripts menu:

///<Menu item title>

When ChipProg-02 builds the Scripts menu, it searches the current folder and its installation folder for *.CMD
files whose first line starts with '///' (please remember that '//' denotes beginning of a single-line comment) and
inserts the text following '///' into the Scripts menu.

When you select an item from the Scripts menu, click the Start button, ChipProg-02 launches the selected
script.

Button Command Description

Start... Opens the Script Files dialog from which you can

New Script Source Create a new Script File text.

Open Watches
window

Opens the Watches window.

Add watch... Adds watch to the Watches window .

177

179

194

Control Interfaces 89

© 2021 Phyton, Inc. Microsystems and Development Tools

Editor window Opens a list of the commands to Compose a new, Open, Save,

Save as, Print a script file. of the Editor window.

Text Edit Edit a list of the commands for editing a selected Script File

Example Scripts Invokes the

Help on this menu

Working with scripts is describe in the Script files topics.

3.2.3.7 The Window Menu

This menu lets you control how the windows are arranged within the computer screen. The list of open windows
is shown in the lower part of the menu. By choosing a window in from list you activate it and bring it to the
foreground.

Command Description

Tile Arranges all windows without overlap. Makes the window sizes
approximately equal.

Tile Horizontally Arranges all windows horizontally without overlap. Makes the window sizes
as close to each other as possible.

Cascade Cascades windows.

Arrange Icons Arranges icons of minimized windows.

Close All Closes all windows.

3.2.3.8 The Help Menu

This menu gives access to the help system. See also, How to Get On-line Help .

Command Description

Contents Opens the contents of the help file.

ChipProg-02 User's Guide
(PDF)

Opens complete User's Guide PDF file

ChipProg-02 Quick Start
Manual

Opens Quick Start Manual PDF file

Search for Help on Opens a dialog for searching the tool's help system for the content,
index and keywords.

License Management... Opens the dialog that displays a list of current licensed features and
device libraries available for this CPI2-Gx and enabling to upgrade them.

Visit Phyton WEB site Opens the www.phyton.com site in your default Internet browser.

187

187

187

177

32

http://www.phyton.com

CPI2-Gx Device Programmers - CPI2-Gx90

© 2021 Phyton, Inc. Microsystems and Development Tools

Create problem report If the CPI2-Gx crashs you can create a problem report and send a it to
Phyton technical support. ChipProg-02 generates problem reports only
when it was launched in the Diagnostic mode. In case the programmer
is running in a working mode click on this menu line causes restarting it
in the Diagnostic mode and then leads to sending a report to Phyton
technical support.

Check for updates Opens the Update Checking dialog that checks whether you are
running the most recent software version of ChipProg-02 and enables
automatic checking with different period of time.

Phyton HelpDesk Opens the HelpDesk web page where you can open a new ticket for
Phyton technical support, track your old tickets or send a question to
Phyton.

About CPI2-Gx Displays the ChipProg-02 and CPI2-Gx software versions, paths
selected target device type, and device type and manufacturer, the
CPI2-Gx serial number, memory card capacity and some other
parameters.

3.2.3.8.1 License Management Dialog

This dialog displays a list of current licensed features and device libraries available for this CPI2-Gx. It also
enables adding new features and licenses.

Control Interfaces 91

© 2021 Phyton, Inc. Microsystems and Development Tools

Clicking on the License options on Phyton WEB site link opens a page in the CPI2-Gx item catalog where
you can check a list of all currently available licenses - both Extended Features and Device Libraries

CPI2-Gx Device Programmers - CPI2-Gx92

© 2021 Phyton, Inc. Microsystems and Development Tools

licenses.

The Extended Features pane lists the licenses that go beyond the set of CPI2-Gx default features. For

example, the CPI2-ACI license enables use of the Phyton ChipProg-02 Software Development Kit
(SDK) , On-the-Fly Control utility and integration with NI LabVIEW software in addition to
the default capabilities.

The Device Libraries pane lists Device Library licenses available at the moment of building the ChipProg-02
distributive. The Status column indicates the licenses physically tied to the CPI2-Gx with a certain serial
number as "Enabled" in green color. The licenses which optionally may be added at a later time are marked
as "Not licensed" in grey color.

If you have purchased a new license or licenses Phyton sends you a binary file that enables specific
capabilities. To update the license list for a CPI2-Gx with a certain serial number, click the Apply license file...
button, browse for the file on your PC, select it, and click Open to update the license list.

3.2.4 Windows

The following types of ChipProg-02 windows can be open from the View menu :

· Program manager

· Device and Algorithm Parameters' Editor

· Buffer

· Device Information

· Console

In addition there are two types of windows associated with ChipProg-02 script files:

· Editor

· Watches

3.2.4.1 The Device Information Window

This window displays the type of selected target device and a link opening a connection diagram
between the TARGET connector of CPI2-Gx and a selected target device (DUT).

It is highly recommended to verify correctness of the CPI2-Gx - to - DUT connection before beginning
your programming session either by clicking the Connection to the target device link in this window
or on the http://phyton.com/products/isp/chipprog-isp2-family/cpi2-b1-connecting web page.

159 126 173

52

105

93

95

92

104

http://phyton.com/products/isp/chipprog-isp2-family/cpi2-b1-connecting

Control Interfaces 93

© 2021 Phyton, Inc. Microsystems and Development Tools

3.2.4.2 The Device and Algorithm Parameters Window

The Device and Algorithm Parameters Editor window displays and allows editing (where
appropriate) target device internal parameters and settings. The edited settings must be programmed
into target device by executing the Program command in the Program Manager window.

Parameters are displayed as two groups: Device Parameters and Algorithm Parameters. The
groups are separated by a light blue stripe.

Device
Parameters

This group includes parameters specific to each selected device, such as sectors
for flash memory devices, lock and fuse bits, configuration bits, boot blocks,
start addresses and other settings for microcontrollers. Usually these parameters
represent certain bits in a microcontroller Special Function Registers (SFRs). Some
of the SFRs can be set in the CPI2-Gx buffers in accordance with device
manufacturer data sheets. However, setting the parameters in the Device and
Algorithms Parameters window is more intuitive. It is impossible to specify all
features that may become available in future devices; therefore not all possible
parameters for new devices are described here.

Important! Changing device parameters
in the Device and Algorithm
Parameters Editor window does not
immediately result in corresponding
changes inside the target device. By
editing the changes you just prepare a
new configuration that is different from
the default for the device to be
programmed. The parameters will be
changed inside target device only when
you execute the Program function in
Device Parameters group in the
Function pane of the Program

86 105

CPI2-Gx Device Programmers - CPI2-Gx94

© 2021 Phyton, Inc. Microsystems and Development Tools

Manager window as shown in the
illustration.

Algorithm
Parameters

This group includes parameters of the programming algorithm for the selected
device – including the algorithm type and editable programming voltages.
.

The window has three columns: 1) parameter name, 2) parameter value or setting, 3) a short
description. Names of the editable parameters are shown in blue; other names are shown in black.
Default values in the Value column are shown in black; after changing a parameter the new value will
be shown in red. If the value is too long to display, it is shown as three dots (‘…’). The red color of
these dotst means that the parameter has been edited.

To edit a parameter double click its name. Some editable parameters are represented by a group of
check boxes, others have to be typed into text fields.

Local toolbar located at the top of Device and Algorithm Parameters Editor window contains the
following buttons:

Toolbar Button Description

Edit
Opens a dialog to modify highlighted parameter in the format most
convenient for the parameter. Double click on a highlighted
parameter also opens such dialog.

Min.Value
If the parameter being modified is restricted to values from a
certain range, clicking on the Min.Value button sets the highlighted
parameter to the minimum allowed value.

105

Control Interfaces 95

© 2021 Phyton, Inc. Microsystems and Development Tools

Max.Value
If the parameter being modified is restricted to values from a
certain range, clicking on the Max.Value button sets the highlighted
parameter to the maximum allowed value.

Default
Clickin on this button returns the highlighted parameter to the
default value.

All Default
Clicking on this button sets default values for all parameters in the
window.

Depending on the type of a parameter ChipProg-02 offers the most convenient format for editing the
parameter:

Method of Editing Description

Drop-down menu
When a parameter value may be picked from a few preset values,
the dialog shows a drop-down list of such values. Highlight a new
value in the list and click OK to complete editing. For example,
some microcontrollers can be programmed to work with different
types of clock generators, so the menu prompts to select one of
them.

Check Box dialog
When some options can be set or reset, the dialog appears in a
form of several boxes showing the default or recently set option
states. To toggle this behavior, check or uncheck the box. For
example, some microcontrollers allow locking of particular part of
memory by setting several lock bits, so the menu prompts to
select lock bits represented as a set of check boxes.

Customizing the
parameter

When a parameter value may be set to any value within allowed
range, the dialog offers a box for entering a new value and a history
list displaying a few recently set values. The dialog prompts with
the min and max values and restricts entry to values in the allowed
range. This type of editing is used for custom values of Vcc and
Vpp voltages.

3.2.4.3 The Buffer Dump Window

The Buffer Dump window is used to display contents of memory buffer.

 CPI2-Gx provides flexible buffer management:

· You can create an unlimited number of buffers. The number of buffers that can be created
is limited only by the available computer RAM.

· Every buffer has a certain number of sub-levels depending on the type of target device.
Each sub-level is associated with a specific section of the target device address space. For
example, for the Microchip PIC16F84 microcontroller, every buffer has three sub-levels: 1)
code memory; 2) EEPROM data memory; 3) user identification.

CPI2-Gx Device Programmers - CPI2-Gx96

© 2021 Phyton, Inc. Microsystems and Development Tools

This flexible structure facilitates manipulating with several data arrays mapped to different buffers.
To open a Buffer Dump window, select Main Menu > View > Buffer Dump..

The figure above shows three Buffer Dump windows representing three parts of the same buffer:

· Window #1 (the largest) shows buffer contents starting at address 0h.

· Window #2 shows the same buffer contents starting at the same address, displaying data in
decimal format.

· Window #3 shows the data starting at address 200h.

The leftmost column of the above windows shows absolute address of the first cell in each row.
The addresses always increment by one byte: 0, 1, 2…. Each address is followed by a colon (:).
When you resize a window, the addresses shown in the address column automatically change in
accordance with the number of data items in each line. Some windows may be split into two panes
– the left pane showing data in a selected format, and the right pane showing the same data in
ASCII format.

The window has a toolbar for invoking settings dialogs and commands. Full path to the loaded file
and checksum of the dump are displayed beneath the toolbar.

Local Menu and Toolbar

The context-sensitive menu brought up by a right mouse click is used to invoke context commands and
dialogs of the Buffer Dump window. Most, but not all, local menu entries are duplicated by local toolbar

buttons at the top of the window. Following are local menu and toolbar items:

Menu Item Toolbar
button

 Description

Control Interfaces 97

© 2021 Phyton, Inc. Microsystems and Development Tools

New address... Addr Opens the Display from Address dialog.

Load file to buffer... Load Opens the Load Window Dump dialog.

Save data to file... Save Opens the Save Window Dump dialog.

Configure buffer... Configure
buffer

 Opens the Configuration Window Dump dialog.

Window setup... Setup Opens the Window Dump Setup dialog.

View only, edit disabled View

Editing in the buffer dump windows is disabled by
default, so you can only view the data. If this box is
unchecked editing will be enabled and you will be able
to modify value under the cursor.

Modify data
Modify

Opens the Modify Data dialog. This is only enabled
when the View only, edit disabled is unchecked.

Operations with memory
blocks

Block Opens the Operations with Memory Blocks dialog.

Swap fields No button Moves the cursor between right and left window panes.

3.2.4.3.1 The 'Configuring a Buffer' dialog

The dialog allows to configure buffer dumps using the most convenient way, and name or rename
open buffers. By default, the first opened buffer is named ‘Buffer #0’, the next buffer is named ‘Buffer
#1’, and so on. You can, however, rename buffers to your liking.

100

102

104

97

98

100

100

CPI2-Gx Device Programmers - CPI2-Gx98

© 2021 Phyton, Inc. Microsystems and Development Tools

Initially each buffer is allocated a minimum of 128K of PC RAM and the ChipProg-02 program fills the
buffer with a predefined pattern (usually 0FFh). You can customize these buffer settings - check the
Custom radio button and type in the pattern to be used to fill the buffer..

By default ChipProg-02 program fills the buffer sub-layers with default data pattern, usually 'FF's or
zeros. By checking these boxes you specify when the 'Code' layer fills with default information -
before loading the file or right after device type has been chosen or both.

Leaving the "Before loading file" box unchecked enables merging multiple files in a single buffer with
following programming a merged file into a target device. This, for example, can be convenient for
merging code with configuration data for programming microcontrollers if the configuration file exist
separately from the main code file.

3.2.4.3.2 The 'Buffer Setup' dialog

The dialog allows controlling the data presentation in the Buffer Dump window. You can open the dialog
using the Windows Setup command of the local menu or by clicking the Setup button on the local toolbar.

95

Control Interfaces 99

© 2021 Phyton, Inc. Microsystems and Development Tools

Control Description

Buffer:
Displays a list of all open buffers. Programming functions will be
applied to the active one.

Display Format
Three radio buttons select the format for the data displaye: binary,
decimal or hexadecimal.

Display Data As:
Four radio buttons select the format of data presentation in the
buffer: 1, 2, 3 or 4 bytes.

Options
Options to customize display format.

ASCII pane
If checked, the right pane will display ASCII characters
corresponding to the data in the buffer dump.

Display checksum
If checked, calculated checksum will be displayed in the blue strip
over the data dump, beneath the local toolbar.

Limit dump to sub-layer
size

If checked, dump window will display part of the memory whose
size is equal to the size of the active sub-layer.

Signed decimal and hex
values

If checked, the most significant bit (MSB) of the data shown in
binary or hexadecimal formats will be treated as a sign. If MSB=1
the data is negative, if MSB=0 they are positive.

Always display '+' or '-'
This is a sub-setting for the Signed decimal and hex values option.
If both boxes are checked then the signs '+' and '-' will be
displayed.

Leading zeroes for decimal
numbers

If checked, data in decimal format will be shown with leading
zeros; for example, 256 will be shown as 00000256.

Reverse bytes in words
(LSB first)

If checked, the order of bytes in words will be reversed so that the
MSB follows the LSB.

Reverse words in dwords
If checked, the order of 16-bit words in 32-bit words will be
reversed.

Reverse dwords in qwords
If checked, the order of 32-bit words in 64-bit words will be
reversed.

Non-printable ASCII
characters

Characters in the range 0х00...0х20 and 0х80...0хFF are non-printable.

Following options customize display of non-printable ASCII
characters in the ASCII pane of the buffer dump window.

Replace characters
0х00...0х20

If checked, all characters in the range 0х00...0х20 will be replaced

with the dot ('.') or space (' '). Pair of radio buttons Replace with
selects the replacement character: dot ('.') or space (' ').

CPI2-Gx Device Programmers - CPI2-Gx100

© 2021 Phyton, Inc. Microsystems and Development Tools

Replace characters
0х80...0хFF

If checked, all characters in the range 0х80...0хFF will be replaced

with dot ('.') or space (' '). A pair of radio buttons Replace with
selects the replacement character: dot ('.') or space (' ').

3.2.4.3.3 The 'Display from address' dialog

The dialog allows to set a new starting address for the visible part of the Buffer Dump window.

Element of dialog Description

Type new address to
display from:

Here you may enter any address within valid range.

History Displays a list of previously entered addresses. You can pick one to set as
starting address for the buffer dump.

3.2.4.3.4 The 'Modify Data' dialog

The dialog allows to edit data in the Buffer Dump window. The dialog can be invoked only when the View

toolbar button if off, otherwise editing is disabled. To modify a data item in the buffer move cursor to its
location and click the Modify toolbar button. You will be able to enter a new data value in the pop-up box
or pick one from the history list. Alternatively, select a location by moving cursor to it and enter new
value using the PC keyboard.

3.2.4.3.5 The 'Memory Blocks' dialog

The ChipProg-02 program supports complex operations with memory blocks. This dialog controls operations with
blocks of data within a selected buffer or between different buffers.

95

95

Control Interfaces 101

© 2021 Phyton, Inc. Microsystems and Development Tools

The dialog has three columns. Source, the left column, describes the source memory area used in
operations described in the middle column. Operation result will be placed in the area described by
Destination, the right column. By default, destination is same as source. Two operations – Fill and Search –
do not require destination; if any of these two operations is chosen, Destination radio button will be
disabled.

Control Description

Start Address
(of the Source)

Starting address of the memory area in the selected Source buffer to
which the operation will be applied.

End Address
(of the Source)

Ending address of the memory area. Ending address can be entered for the
Source area only. Once the source address range is defined, program
automatically calculates destination area ending address.

Full Range
(of the Source)

Sets the starting and ending addresses to span entire address space of
selected target device.

Start Address
(of the Destination)

Starting address of the memory area in the Destination buffer where the
result of the selected Operation will be stored.

The following operations are available via this dialog. Operation starts when you click OK in the dialog box
(see notes below).

Operation Description

Fill with Value Fills the source buffer with a value (or a sequence of values) specified in the
text box at the right.

CPI2-Gx Device Programmers - CPI2-Gx102

© 2021 Phyton, Inc. Microsystems and Development Tools

Search for Data Searches the source memory area for a particular value (or a sequence of
values) specified in the text box at the right.

Copy Copies contents of the source area to the destination address. A block can
be copied within the same address space or to another one.

Compare Compares contents of source and destination memory areas. The sizes of
source and destination areas are equal. If there is a mismatch, a mismatch
message box will request permission to continue the comparison process.

Invert Inverts contents of the source area bit-wise and stores the result in the
destination area.

Calculate Checksum Calculates a 32-bit checksum for the source area. The calculation is done
by simple addition. See note below.

Negate Result If checked, the 32-bit checksum will be subtracted from zero (this is a
widely used method of checksum calculation).

Write Result to
Destination

If checked, the 32-bit checksum will be written to the destination sub-level
at destination Start Address. If this box is cleared, the checksum wil onlyl
be displayed in a message.

AND with Value Performs bit-wise AND operation on the contents of the source memory
area using operand specified in the text box on the right. The result is
stored in the destination area. See notes below.

OR with Value Performs bit-wise OR operation on the contents of the source memory area
using operand specified in the text box on the right. The result is stored in
the destination area.

XOR with Value Performs bit-wise XOR operation on the contents of the source memory
area using operand specified in the text box on the right. The result is
stored in the destination area.

Notes

1. Source and destination memory areas may overlap; since operations on memory blocks are carried out
using a temporary intermediate buffer, the overlap does not cause corruption of results.

2. The Copy and Compare commands use blocks specified in the Source address space and the
Destination address space.

3. The checksum is calculated as a 32-bit value by simple addition. If a memory space has byte organization,
then 8-bit values will be added. If it has word organization then 16-bit values will be added.

4. Logical operations (AND, OR, XOR) are performed on the contents of the Source address space, while the
operation result is written to the Destination address space. The program automatically converts the
operands to the word size of the selected type of memory (16-bit for Prog, Data16, Reg and Stack
memory, 8-bit for Data8 memory).

3.2.4.3.6 The 'Load File' dialog

The dialog defines how a file is loaded into the buffer.

Control Description

Control Interfaces 103

© 2021 Phyton, Inc. Microsystems and Development Tools

File Name: Enter a full path to the file in this box, pick the file name from a drop-down
menu list, or browse files on your computer or network.

File Format: Select format of the file to be loaded by checking one of the radio
buttons in the File Format field of the dialog.

Buffer to load file to: Select buffer to load the file into, by checking one of the Buffer# radio
buttons. There may be just one such button.

Layer to load file to:
The Buffer to load file to can have more than one memory layer. Select
the layer into which the file will be loaded by checking one of the radio
buttons. There may be just a single button available for selection.

Start address for binary
image:

Files in Binary format do not carry any address information. When
loading binary files you have to specify the starting address for
loading. In case the file to be loaded is a binary image enter starting
address in the box here.

Offset for loading
address:

Files in formats other than Binary may carry information about the
starting address for the loading. If the file to be loaded is not a binary
image, enter the offset for the file addresses in the box here. The
offset can be positive or negative.

3.2.4.3.6.1 File Formats

The ChipProg-02 program supports a variety of file formats that can be loaded to the CPI2-Gx
buffers.

File Format Description

Standard/Extended Intel
HEX (*.hex)

The Intel HEX file is a text file, each string of which includes the
starting address to load the data to the buffer, the data to load, line
checksums, and some additional information. The ChipProg-02
loader supports both Standard and Extended Intel HEX format.

Binary image (*.bin)
Binary image contains only data. These data will be loaded to the
buffer beginning with the specified starting address.

Motorola S-record
(*.hex, *.s, *.mot)

The Motorola S-record is a text file, each line of which includes
starting address to load the data into buffer, the data to load, line
checksums, and some additional information. The ChipProg-02
loader supports all kinds of the Motorola S-records with filename
extensions .hex, .s, .mot.

Altera POF (*.pof)
The Altera POF-file is a text file, each line of which includes
starting address to load the data into buffer, the data to load, line
checksums, and some additional information. The format is mostly
used for programming PALs and PLDs.

103

CPI2-Gx Device Programmers - CPI2-Gx104

© 2021 Phyton, Inc. Microsystems and Development Tools

JEDEC (*.jed)
This format is used for programming PALs and PLDs. A JEDEC-
file includes starting address to load the data into the buffer, the
data to load, test-vectors, and some additional information.

Xilinx PRG (*.prg)
The Xilinx PRG-file is a text file, each line of which includes starting
address to load the data into buffer, the data to load, line
checksums, and some additional information. The format is used
for programming the Xilinx PLDs.

Holtek OTR (*.otp)
This format is presented by Holtek company. An OTP-file includes
the starting address to load the data into the buffer, the data to
load, line checksums, and some additional information.

Angstrem SAV (*.sav)
This format is presented by Angstrem company. A SAV-file
includes the starting address to load the data into the buffer, the
data to load, line checksums, and some additional information.

ASCII Hex (*.txt)
The ASCII TXT-file includes the starting address to load the data
into the buffer, the data to load, line checksums, and some
additional information.

3.2.4.3.7 The 'Save File' dialog

The dialog defines how the buffer is to be saved to a file.

Control Description

File Name: Enter a full path to the file in this box, pick the file name from a drop-
down menu list, or browse files on your computer or network.

Addresses Start and End Addresses define buffer address range that will be written
to the File. To save entire buffer click the All button.

File Format: Selected format of the file to be written by checking one of the radio
buttons in the File Format field of the dialog.

Buffer to save file from: Select the source buffer to write into the file by checking one of the
Buffer# radio buttons. There may be just one such button available.

Sub-level to save file
from:

The Buffer to save file from can have more than one memory layer.
Select the source layer by checking one of the radio buttons. There may
be just one such button available.

3.2.4.4 The Console Window

The Console window displays messages generated by the ChipProg-02 program. These messages
fall into two categories: the CPI2-Gx error messages and what-to-do prompts. The window
accumulates messages even when it is closed. You can open it at any time to view the last 256
messages, and get help for any of them. Error messages are shown in red color, others in black.

103

Control Interfaces 105

© 2021 Phyton, Inc. Microsystems and Development Tools

The window should be large enough to see several messages. To save screen space you can close
the Console window and redirect all messages to pop-up message boxes. To do this, go to the
Configure menu > Environment > Misc tab and select the Always Display Message Box
option. Alternatively, you can select the Do not open box if Console window opened option,
redirecting all messages to Console window.

Click the Help button in the box to show the CPI2-Gx context-sensitive Help topic associated with the
error, or click the Close button and continue after correcting a parameter error.

Local Menu and Toolbar

The local menu contains Console window context commands and dialog calls. This menu can be opened

by a right mouse click in the window. Most, but not all, local menu commands are duplicated as local toolbar

buttons at the top of the window. Following are the local menu and toolbar commands:

Menu Command Toolbar
Button

 Description

Clear Window Clear Deletes all messages from the window

Help on message MHelp
Opens context-sensitive Help topic associated with
the error or information in the highlighted message

Help on window No button Opens the Console window Help topic

Help on word under
cursor

No button
 Opens the context-sensitive Help topic associated

with the word under cursor

3.2.4.5 The Program Manager Window

The Program Manager window is the primary screen object used by an operator to control the
CPI2-Gx in the GUI mode. While some windows can be closed during programming operation, the
Program Manager is supposed to be always open and visible. The window includes three tabs:

The Program Manager tab - by default this tab is open (see below)

The Options tab

The Statistics tab

.

In the Gang Programming control mode the window displays as many tabs as many sites are
united into the programming cluster of multiple CPI2-Gx programmers. See below an example of the
window for a CPI2-G06/12V1 gang device programmer with 6 programming modules. Each tab has a
pair of buttons: Execute and a small ? button at the right.

82

106

108

110

30

CPI2-Gx Device Programmers - CPI2-Gx106

© 2021 Phyton, Inc. Microsystems and Development Tools

The ? button allows you to specify the programming channels , on which a corresponded
Execute button will launch the Auto Programming command. If the the on-module demultiplexer
is enabled by the CPI2-DEMUX license, click on the ? button opens a drop down menu that list all
the DEMUX mode options which can be selected individually for each site: Channel A, Channel B,
Channel A first, then B, Channel B first, then A. By checking the Set this mode for all sites box
you can set the same DEMUX mode for all sites when you set it for any one site. Then click on the
Execute button will launch the Auto Programming command for a chosen site.

If the CPI2-DEMUX license is not installed on the CPI2-Gx, click on the ? button causes opening a
warning that the demultiplexer is disabled. In this case the site will always execute the Auto
Programming command on the channel A.

 CPI2-Gx device programmer operating in the Single Programming mode, when only one
programming module is in use ??????

3.2.4.5.1 The Program Manager tab

This tab serves for setting major programming parameters, carrying out programming operations and displaying

the CPI2-Gx status.

Control Description

Buffer:
Displays the active buffer to which the programming operations
(functions) will be applied. A full list of open buffers is available here
via the drop-down menu.

23

108

108

108

30

Control Interfaces 107

© 2021 Phyton, Inc. Microsystems and Development Tools

Functions
Shows a tree of functions available for the selected target device.
Some functions represent CPI2-Gx commands while others group
several sub-functions and can be expanded or collapsed. Double-
clicking on a function invokes the command and is equivalent to
single-clicking the Execute button (see below).

Blank check Checks if the target device is blank

Program Programs the target device (physically writes the information from active buffer
to the target device).

Read Reads contents of the target device into active buffer.

Verify Compares contents of the target device with contents of active buffer.

Auto Programming
Executes a preset sequence of operations (batch operations). The sequence

can be defined using the Auto Programming dialog. The Edit Auto
button opens this dialog.

Addresses Here you can set the addresses for the buffer and the target device to
which the programming functions will be applied.

Device start: Starting address of the target device physical memory which will be
programmed or read.

Device end: Ending address of the target device physical memory which will be
programmed or read.

Buffer start: Starting address of the buffer memory from which the data will be written to the
target device or to which the data will be read from the device.

Execute
There are three alternative ways to activate a highlighted function: a)
to click the Execute button; b) to double click on the function line; c) to
press Enter button on PC keyboard.

Repetitions:
Any function can be executed repeatedly. The number of repetitions
can be set here.

Edit Auto Clicking on this button opens the Auto Programming dialog.

Operation Progress
Displays progress bar and the status (OK, failed, etc.) of current
operation.

Besides generic functions such as Blank Check, Read, Verify, Program, Auto Programming, the Functions
window often includes collapsed submenu of functions specific to the selected target device. When expanded it

shows a list of commands for the parameters that can be set in the Device and Algorithm Parameters
editor window.

IMPORTANT NOTE!

Any changes made in the ‘Device and Algorithm Parameters’ window do not
immediately cause corresponding changes in the target device. Parameter settings
made within this window just prepare a configuration of the device to be programmed.
Physically, the programmer makes all these changes only upon executing an
appropriate command from the ‘Program Manager’ window.

108

108

93

CPI2-Gx Device Programmers - CPI2-Gx108

© 2021 Phyton, Inc. Microsystems and Development Tools

3.2.4.5.1.1 Auto Programming

Each device has its own typical set of programming operations that usually includes: Erasing, Blank Checking,
Programming, Verifying and often Protecting against unauthorized reading. The ChipProg-02 stores default
batches of these programming operations for each supported device type. A batch can be executed by a simple
mouse click or pressing the Start button on the programmer panel. A sequence of functions (operations) can be
customized via the Auto Programming dialog. To open this dialog click on the Edit Auto button.

A tree of all functions available for the selected device is shown in the right pane, Available
functions. To add a function to the batch highlight it in the right pane and click the Add button - the
function will appear in the left pane, Selected functions. The functions will be executed in the order in
which they are listed in the Selected functions pane, starting from the top. To edit a batch highlight
the command to be removed and click the Remove button.

3.2.4.5.2 The Options tab

This tab contains controls for setting additional programming parameters and options:

Control Description

Control Interfaces 109

© 2021 Phyton, Inc. Microsystems and Development Tools

Split data
Radio buttons in the Split data group control programming of 8-bit
memory devices to be used in microprocessor systems with 16-
and 32-bit address and data buses. In such cases buffer contents
have to be properly prepared in order to split single memory file
into several smaller files.

Options:

Check device ID This option is on by default, and the CPI2-Gx always verifies
target device identifier assigned by device manufacturer. If this
box is unchecked the program will not check device ID.

Reverse bytes order If checked, the ChipProg-02 will reverse byte order in 16-bit
words while it executes Read, Program, and Verify operations.
This option does not affect data in CPI2-Gx buffers.

Blank check before
program

If checked, the ChipProg-02 will make sure the target device is
blank before programming it.

Verify after program
If checked, the ChipProg-02 will verify the device content after it
has been programmed.

Verify after read
If checked, the ChipProg-02 will verify device content once it has
been read.

On Device Auto-Detect or
'Start' Button:

The checked radio button in this group defines what CPI2-Gx will
do upon when either 'Start' button has been pushed or when the
programmer detected the START signal applied to the pin #4 of the
CONTROL connector.

3.2.4.5.2.1 Split data

Radio buttons in the Split data group of the Option tab control programming of 8-bit memory
devices to be used in microprocessor systems with 16- and 32-bit address and data buses. In such
cases buffer contents have to be properly prepared in order to split single memory file into several
smaller files. Splitting the data allows to convert data read from 16- or 32-bit devices in a way
required to create file images for writing them to memory devices with byte organization.

Radio Button Description

No split
This is the default. The buffer is not split and is treated as an array
of single-byte data.

Even byte
The data in the buffer is treated as an array of 16-bit words. The
buffer-device operations are conducted using even bytes only.
For example, programmer reads one byte of device data at
address 0 and stores the byte in buffer location also at address 0.
The byte read from device address 1 will be stored in the buffer
location at address 2, etc.

109

108

CPI2-Gx Device Programmers - CPI2-Gx110

© 2021 Phyton, Inc. Microsystems and Development Tools

Odd byte
The data in the buffer is treated as an array of 16-bit words. The
buffer-device operations are conducted with odd bytes only. For
example, programmer reads one byte of device data at address 0
and stores the byte in buffer location also at address 1. The byte
read from device address 1 will be stored in the buffer location at
address 3, etc.

Byte 0 The data in the buffer is considered to be an array of 32-bit words.
The buffer-device operations are conducted with the byte #0 only.
For example, programmer reads one byte of device data at
address 0 and stores the byte in buffer location also at address 0.
The byte read from device address 1 will be stored in the buffer
location at address 4, etc.

Byte 1 The data in the buffer is considered to be an array of 32-bit words.
The buffer-device operations are conducted with the byte #1 only.
For example, programmer reads one byte of device data at
address 0 and stores the byte in buffer location also at address 1.
The byte read from device address 1 will be stored in the buffer
location at address 5, etc.

Byte 2 The data in the buffer is considered to be an array of 32-bit words.
The buffer-device operations are conducted with the byte #2 only.
For example, programmer reads one byte of device data at
address 0 and stores the byte in buffer location also at address 2.
The byte read from device address 1 will be stored in the buffer
location at address 6, etc.

Byte 3 The data in the buffer is considered to be an array of 32-bit words.
The buffer-device operations are conducted with the byte #3 only.
For example, programmer reads one byte of device data at
address 0 and stores the byte in buffer location also at address 3.
The byte read from device address 1 will be stored in the buffer
location at address 7, etc.

3.2.4.5.3 The Statistics tab

This tab displays statistics of programming session - Total number of devices programmed during
the session, what was the yield (Good) and how many devices have failed (Bad). These statistics
are helpful when you need to program a series of same type devices. It is important to remember that
statistic counters are affected by executing the Auto Programming only, execution of other
functions has no effect on statistics.

Control
Description

Clear statistics Resets the statistics.

Device Programming
Countdown

Normally the Total counter increments after each Auto
Programming ; the Good and Bad counters also count up. The
ChipProg-02 reverses the counters to decrement their content (to count
down).

108

108

Control Interfaces 111

© 2021 Phyton, Inc. Microsystems and Development Tools

Enable countdown

If checked the ChipProg-02 will count the number of the programmed
devices down.

Display message
when countdown
value reaches zero

If checked the ChipProg-02 will issue a warning when the Total counter
reaches zero.

Reset counters
when countdown
value reaches zero

If checked the ChipProg-02 will reset all counters when the Total
counter reaches zero.

Count only
successfully
programmed
devices

If checked the ChipProg-02 will count only successfully programmed
(Good) devices. All other statistics will be ignored.

Set initial
countdown value

Clicking on this button opens a field for entering a new Total number
that will then be decremented after each Auto Programming .

Below you can see an example of Statistic tab displays programming session statistics for each of
four programming sites. Total number of devices that were programmed during the session, what was
the yield (Good) and how many devices have failed (Bad).

108

CPI2-Gx Device Programmers - CPI2-Gx112

© 2021 Phyton, Inc. Microsystems and Development Tools

3.2.4.6 The Memory Card Window

The window displays information about projects stored on memory cards in programmers, about limit
counter, and about serialization record counter. The window can be brought up using menu "View"
-> "Memory Card Window."

52

Control Interfaces 113

© 2021 Phyton, Inc. Microsystems and Development Tools

Click the Erase button in the window toolbar deletes selected project from the card. This is useful when
the card is filled up to capacity.

3.2.4.7 Windows for Scripts

ChipProg-02 provides windows for working with scripts.

· (Script) Editor window

· Watches window

· User window

· I/O Stream window

These windows cannot be opened from the View menu . They may only be opened when you work
with scripts. Operations with these windows are described in the Scripts Files chapter.

3.3 Simplified User Interface

The CPI2-Gx default graphic user interface makes heavy use of menus, windows and controls that are

redundant in case of mass production. Furthermore, an unskilled operator is usually employed for such

production. Programming a lot of chips or boards of the same type with the same data is routine work

that consists of two operations: replacing target boards in a test fixture and executing a predefined

batch of programming operations (Auto Programming command). To prevent casual CPI2-Gx

mismanagement and to simplify routine operations, the ChipProg-02 enables switching the CPI2-Gx

graphical user interface from the default mode to the Simplified User Interface mode (SUI). In this

mode, operator can see a very simple PC screen with very limited information: a single Start button and

three virtual LEDs that indicate CPI2-Gx status: Good, Busy or Error.

The screen shots below displays SUI set for launching a CPI2-Gx device programmer equipped with
four programming modules running in the Gang Programming mode when each of two device

187

183

181

181

52

177

108

48

30

CPI2-Gx Device Programmers - CPI2-Gx114

© 2021 Phyton, Inc. Microsystems and Development Tools

programmers can be launched asynchronously and independently or synchronically. The settings
enable to start programming by clicking either multiple Start buttons - one for each site - or a common
Start button - one for all programming sites (see below).

Control Interfaces 115

© 2021 Phyton, Inc. Microsystems and Development Tools

NOTE. Two conditions should be preserved for use of SUI mode. A programming session:
- should be configured by making a project;
- can be started by executing Auto Programming command, only.

A typical use scenario consists of two steps: Preparation and Use .

1. Preparation . An engineer or a technician (hereafter a supervisor) configures the programming
session using the default CPI2-Gx graphical user interface and saves the session project . Project
file can be stored at any location on PC hard drive. To launch the CPI2-Gx with the SUI, a supervisor
can create a PC desktop icon and specify the project and configuration files. After that supervisor
switches the user interface to SUI mode for use of the CPI2-Gx by a less skilled operator.

2. Use . There are two methods launching the programming when it is controlled via SUI:
automatically by an ATE signal or manually by an operator. In case the ATE (test fixture) generates the
START signal on the CPI2-Gx CONTROL connector (for example, upon closing the fixture lid and
contacting test needles the target device) this launches preset programming session. An operator then

47

108

116 120

116

48 47

120

86

120

CPI2-Gx Device Programmers - CPI2-Gx116

© 2021 Phyton, Inc. Microsystems and Development Tools

keeps replacing target boards and close the fixture lid to continue programming boards. Alternatively
launching the programming can be initiated by either clicking the Start button in the CPI2-Gx Simplified
User Interface window or by pressing the Start button on a top of the CPI2-Gx unit.

Settings of Simplified User Interface

Operations with Simplified User Interface

3.3.1 Settings of Simplified User Interface

A session project contains information on device type, file name, serialization parameters, check
sum, list of the functions included in the Auto Programming batch and other options, including the
SUI windows and controls configurations . The SUI interface settings contain a list of pre-
configured projects, so that operator can pick a project from the list in the Use project pane unless the
Allow operator to select project from the list box is unchecked. This option can be set by a
supervisor.

To control programming sessions using SUI you first need to create a project. Start with the following
steps.

· Configuration menu - select target device.

· Configuration menu - set up a buffer .

· Configuration menu - set options for device serialization , writing check sum and
signatures , and log file controls.

· Device and Algorithm Parameters Editor window - specify the options different from default for a

chosen device.
· Program Manager window > Program Manager tab > Edit Auto dialog - configure Auto

Programming batch of functions.
· Program Manager window > Program Manager tab - set programming options.

· Program Manager window > Statistics tab - enter the number of chips to be programmed and
select other options. When using SUI, countdown of programmed chips is disabled, and the program
only displays the numbers of successfully programmed and failed chips. Other options set in this tab
remain in force.

Once the above settings are done, create the project. In the menu select Project > New. In the Project
Options dialog enter project name, file name, format, and other information. Click OK button to save
the project to disk.

NOTE. It is absolutely crucial that the project is stored on disk before use. The ChipProg-02 does not
protect the SUI project files and window configurations against unauthorized modifications by an
operator or any third party.

Once the project has been created and stored on the hard drive, set SUI options. In Configuration
menu select the Simplified Mode Editor command. This will bring up Simplified User Interface
Setup window docked to the SUI window at its left. The picture below displays the Setup pane only.
Any changes made in the Simplified User Interface Setup window immediately become visible in the
SUI window. Clicking the OK button in the Simplified User Interface Setup window completes the
SUI setup; the setup window is closed and Return to Editing button appears in the SUI window. This
allows quick switching back and forth between SUI session setup and actual device programming.

The Simplified User Interface Setup dialog has two tabs described below.

The General Settings Tab

116

120

63

108

52 116

57

57 97

57 69 69

70 72

93

105 106 108

108

105 106

105 110

53

57

Control Interfaces 117

© 2021 Phyton, Inc. Microsystems and Development Tools

The Current configuration field displays the name of currently active SUI configuration. SUI
configuration files with have name extension .smc and are stored in SMConfig sub-folder of ChipProg-
02 working folder.

The Save button writes current configuration to a file under the name shown in the Current
configuration field; the Save as... button allows saving configuration file under a different name. If the
Auto-save configuration on 'OK' button box is checked, clicking on OK button at the bottom
automatically saves current configuration before dismissing the dialog.

The Projects pane lists all projects associated with current configuration. When Simplified User
Interface Setup window is opened for the first time, the Projects list will be empty. To add a project
use the + Add button. Single configuration may include more than one project; this allows operator to

CPI2-Gx Device Programmers - CPI2-Gx118

© 2021 Phyton, Inc. Microsystems and Development Tools

change projects without restarting the programmer. If Allow operator to select project from the list
box is checked, the SUI window will list all projects associated with current configuration. Otherwise,
only one project selected from the Use project list will be displayed. To remove a project from the Use
project list, highlight it and click the x Remove from list button. Removing project from the list does
not remove it from disk. The Open project button loads selected project from disk; this will not close
editor window.

The Start Operation pane specifies a method of manual launching programming operation.

The only batch command that can be launched in SUI mode is Auto Programming . This command
is executed either by pressing the physical button on the CPI2-Gx unit or by clicking the 'Start' button in
the SUI window.

NOTE. These settings do not block or influence in any other way launching CPI2-Gx by an external
START signal generated by ATE on the CONTROL connector.

If Allow programming termination by operator box is checked, the operator will be able to interrupt

programming by clicking Exit button in the SUI window, otherwise the operator will only be able to

initiate device programming.

The Appearance Tab

Here you can choose the type, size and color of the Default Font for each element in the SUI window:
Project name, Device part number, Statistics, Device operation status, and "Start" button.
Checking boxes in Display elements list makes corresponding elements visible in the SUI window.
Clicking Move up and Move down adjusts position of selected element within the window.

108

Control Interfaces 119

© 2021 Phyton, Inc. Microsystems and Development Tools

If an element is set to be visible in the SUI window, you can modify its appearance to differ from the
default and from other elements. Checking the Frame box causes a thin blue frame to appear around
the element. The Font, Font color at left and Font color at right radio buttons modify appearance of
an element to make it distinct from other elements in the SUI window.

When the Statistics element is highlighted, Allow operator to reset statistics box will be displayed.

Check this box to allow operator clear displayed programming statistics.

When the Device operation status element is highlighted, two additional checkboxes, Serial number
and Checksum are displayed. Checking these boxes makes serial number and check sum
written into the last programmed device be displayed below the status line.

69 69

CPI2-Gx Device Programmers - CPI2-Gx120

© 2021 Phyton, Inc. Microsystems and Development Tools

3.3.2 Operations with Simplified User Interface

To launch programming operations controlled by a configured Simplified User Interface open the
Command menu, and double click the Switch to Simplified User Interface.. line.

To launch the ChipProg-02 with the Simplified User Interface (or in the Simplified Mode) use
the /Y<configuration name> option key in Command line mode (there must be no spaces
between /Y and <configuration name>). If <configuration name> includes spaces, it must be
quoted. For example, if the configuration name is STM32F429BGT [ISP SWD Mode] - Release, the
command line may look like this:

C:\Program Files\ChipProg-02\6_00_20\UprogNT2.exe /Y"STM32F429BGT [ISP SWD Mode] -
Release" ,

When launched in the Simplified Mode, the ChipProg-02 only displays the SUI window. The main
ChipProg-02 window remains invisible unless an error occurs. If a programming operation fails, the
programmer performs actions according to error handling settings. These settings are available via
Configure > Preferences menu. If the Terminate device operation on error and do not
display error message... box in the Preferences dialog is unchecked (default setting), the ChipProg-
02 issues an error message and prompts the user to either ignore the error and resume operation or
terminate it. If this box is checked, any error will cause the programming session to come to a halt; in
such case no error message will be issued.

3.4 Command Line Interface

The ChipProg-ISP2 device programmers (both CPI2-B1 and CPI2-Gx) can be controlled from Command Line
using the UProgNT2.EXE executable.

Command line has the following format:

UProgNT2.exe [option 1] [option 2] ... [Name of the project file] [option 3] [option 4]…

Elements in square brackets are optional and may follow in arbitrary order, separated by spaces. These
elements are called options, square bracket characters themselves are not part of the option. Options specify
certain CPI2-Gx functions and settings. Some options are called keys. Command line may also optionally
contain the name of a project file that will be used to control programmer operation.

Each option begins with either ‘/’ (slash) or ‘-‘ (hyphen) followed by an option name. The slash and hyphen
characters can be used interchangeably; for example: ‘/L’, is the same as ‘-L’. Valid names are listed in the
Command line options table.

Option names, project names, and the application executable name are NOT case sensitive, so there is no
difference between the ‘/A’ and ‘/a’ options. Names containing spaces must be quoted, for example: -L”Data file
5.hex”.

Some options listed in Command line options table require additional parameters; these are shown in the
table enclosed in angle brackets (< >). Parameters specify file names, devices, text strings, serial numbers, etc.
Parameters must follow options without space. For example: "/LData file 5.HEX" (load the Data file 5.HEX into
the buffer after launching the programmer) or ”/FH” (file format is hexadecimal).

Upon executing a command line the ChipProg-02 checks whether a project loaded before the program has been
closed at the previous programming session. If it has, the program automatically reloads this old project unless a
new project name is specified in the command line.

There is no difference between loading a project by executing a command line, or loading it manually by means of
the ChipProg-02 user interface menus.

113

86

113

120

57 77

47

121

121

Control Interfaces 121

© 2021 Phyton, Inc. Microsystems and Development Tools

 Some command line examples are:

1) UProgNT2.exe -C"Atmel^AT89C51ED2 [ISP BL Mode]" -L"C:\Work\Output Files\Bin\Serial.bin" -
FB0x2000 -A -I2

Launch the ChipProg-02 application, then:

-C"Atmel^AT89C51ED2 [ISP BL Mode]" - select the Atmel AT89C51ED2 [ISP BL Mode] device;
-L"C:\Work\Output Files\Bin\Serial.bin" - then load the file C:\Work\Output Files\Bin\Serial.bin into the buffer #0;
-FB0x2000 - specify the binary format for the Serial.bin file with the start address 0x2000 in the buffer;
-A - then begin the Auto Programming session using the default set of commands programmed in the Auto
Programming menu;
-I2 - make the ChipProg-02 main window invisible, when the Auto Programming session completes. If an error
occurs, copy error message to clipboard and close the ChipProg-02 application.

2) UProgNT2.exe "C:\Work\Programmer Projects\Nexus.upp" /A1

Launch the ChipProg-02 application, then load project file "Nexus.upp" from folder "C:\Work\Programmer
Projects" and launch the Auto Programming session from buffer #1. If programming was successful close the
ChipProg-02 application. The CPI2-Gx main window remains visible.

3) UProgNT2.exe

Launch the ChipProg-02 with no options.

3.4.1 Command Line Options

Option name starts with either ‘/’ (slash) or ‘-‘ (hyphen), followed by one of the reserved names listed
below. The slash and hyphen characters have the same effect and can be used interchangeably, for
example: ‘/C’, ’-C’.

 Option Description

-N<serial number> The -N key enables control one CPI2-GM1 programming module installed in a
CPI2-Gx programmer by specifying a serial number of this module. The CPI2-
GM1 programming modules' serial numbers in by using the Help > About...
menu command.

For example, the option -NGM2-00029 specifies that all other command line
options apply to the programmer with the serial number -GM2-00029, only.

-GANG This option should be always specified when you control a CPI2-Gx
programmer with multiple CPI2-GM1 modules inside, unless you want to
control one selected module only. In this case use the -N option instead. The -
GANG key cannot be used in a combination with the -N key.

The -GANG option can be used either alone, without any specifiers, or with one
of two following: <number of sites> or #<list of serial numbers>. Each
specifier requires use of its own -GANG key. For example: -GANG:4, -
GANG#GM2-00029;GM2-00030. You cannot set both of these specifiers by a
single -GANG key. Below see detail descriptions of use the -GANG option with
the <number of sites> and #<list of serial numbers> descriptors:

89

CPI2-Gx Device Programmers - CPI2-Gx122

© 2021 Phyton, Inc. Microsystems and Development Tools

 Option Description

-GANG:<number of

sites>

If the :<number of sites> parameter follows the -GANG key then after
launching the ChipProg-02 application it is waiting until the program detects a
specified number of CPI2-GM1 programming modules or for 16 sec, whatever is
longer. For example, the -GANG:2 key stops attempts to establish
communication after the first two CPI2-Gx device programmers have been
detected. The :<number of sites> parameter can be omitted.

For example: -GANG:10 allows operating with 10 CPI2-GM1 modules. Since
CPI2-Gx may allows installing maximum 7 modules the example above refers
to the case of use two cascaded CPI2-Gx programmers.

-GANG#<list of serial

numbers>

If the -GANG key is followed by '#' sign with a list of unique serial numbers
separated by semicolons, the application waits until the number of CPI2-GM1
programming modules matches the number of serial numbers in the list, then
automatically assigns sequence numbers according to the serial numbers in
the list. The CPI2-GM1 modules, specified in this options, can be physically
installed in one CPI2-Gx gang programmers or two or more different, controlled
from one PC. Examples of use:

1. Launch a CPI2-Gx as a two-channel gang programmer operating with two
programming modules having serial numbers GM2-00029 and GM2-00030. The
options to run: -GANG#GM2-00029;GM2-00030.

2. If you have a CPI2-Gx gang programmer equipped with four modules with

serial numbers: GM2-00032, GM2-00044, GM2-00045, and GM2-00047
and wish to operate with it as with two separate 2-channel gang
programmers concurrently programming two pair of different devices,
then launch one copy of the ChipProg-02 program with the option: -

GANG#GM2-00032;GM2-00044 and a second copy - with the option: -
GANG#GM2-00045;GM2-00047. In this example it does not matter if the
modules are physically installed on one CPI2-Gx gang programmer or two
different controlled for the same PC.

3. If you have two CPI2-Gx gang programmers - one with seven and another
with two CPI2-GM1 programming modules with serial numbers of motherboards
VM2-00036 and VM2-00089, respectfully, then the option -GANG#VM2-
00089;VM2-00036 distributes the site (channel) numbers in a 9-channel gang
programmer as following:

Site# 1: VM2-00089, module# 1
Site# 2: VM2-00089, module# 2
Site# 3: VM2-00036, module# 1
Site# 4: VM2-00036, module# 2
Site# 5: VM2-00036, module# 3
Site# 6: VM2-00036, module# 4
Site# 7: VM2-00036, module# 5
Site# 8: VM2-00036, module# 6
Site# 9: VM2-00036, module# 7

Each CPI2-Gx gang programmer's motherboard has its own unique serial
number. An alternative command line option allows to specify a serial numbers
in the of #Module order number in the programmer@Motherboard serial
number format. For example: the
-GANG#1@VM2-00012;2@VM2-00012 option specifies that all other command
line options apply to the CPI2-GM1 modules #1 and #2 installed on a CPI2-Gx
motherboard with the serial number -VM2-00012.

Control Interfaces 123

© 2021 Phyton, Inc. Microsystems and Development Tools

 Option Description

-ETH
This option initiates control one or more CPI2-Gx device programmers
connected to a local network (LAN) via Ethernet (USB is a default option that
does not require use of any keys). The -ETH option can be used either without
any specifiers or with one of two following: <number of sites> or #<IP
addresses list>. Each specifier requires use of its own -ETH key. For example:
-ETH:4, -ETH#192.168.1.{2-128}. You cannot set both of these specifiers by a
single -ETH key. Below see detail descriptions of use the -ETH option with the
<number of sites> and #<IP address list> descriptors:

-ETH:<number of sites>
If no parameters follow the -ETH key the program pings IP-addresses of LAN
adapters in a range automatically detected by a computer. This process may
take up to 16 seconds. To speed up connecting all the programmers it is
recommended to specify a <number of sites> parameter. For example, if your
CPI2-Gx programmer has four CPI2-GM1 programming modules and you wish
to use all these modules include the -ETH:4 option in the command line. This
will shorten establishing communications with the programmer.

-ETH#<IP addresses
list>

This option specifies an individual IP address or a range of multiple IP
addresses to be pinged by a computer while it tries connect programming
modules of one or more CPI2-Gx device programmer(s). Normally, in a local
network (LAN), IP addresses are assigned by a DHCP server automatically.
The DHCP server dynamically distributes IP addresses used by the CPI2-Gx
programming modules.

However, it is possible to specify static IP address if it is assigned to a
particular programming modules unit or a list of IP addresses or a range of IP
addresses assigned to multiple modules. See the examples below:

-ETH#192.168.1.32 - connect a programming module with the 192.168.1.32 static
IP address.

-ETH#192.168.1.32;192.168.1.38 - connect either a programming module with
the 192.168.1.32 or 192.168.1.38 IP address. After launching the program you
will be prompted to select one of two IP addresses above.

-ETH#192.168.1.{16-128} - scan the programming modules IP addresses in a
range of 192.168.1.16 to 192.168.1.128.

-ETH#192.168.1.* - scan IP addresses in a full range of 192.168.1.1 to
192.168.1.254.

-ETH#192.168.1.{12-33,127,164-254} - scan IP addresses in a range of
192.168.1.12 to 192.168.1.33, then ping a single IP address 192.168.1.127 and
then scan a range of 192.168.1.164 to 192.168.1.254 IP addresses.

-ETH#192.168.1.* -ETH:1 - scan IP addresses in a full range of 192.168.1.1 to
192.168.1.254 and stop scanning upon connecting to the first detected
programming module.

-

C"<manufacturer

^device>"

This option tells the ChipProg-02 program to use the device specified as
manufacturer name followed by a ^ character followed by device part number
specified here exactly as it presents in the CPI2-Gx device list. The device

CPI2-Gx Device Programmers - CPI2-Gx124

© 2021 Phyton, Inc. Microsystems and Development Tools

 Option Description

specified in a previously loaded project will be replaced by a device specified by
the -C"<manufacturer^device>" key.

For example: -C"NXP^MC9S08DV32MLF [ISP Mode]".

Note. The use of the -C option is less beneficial than using projects .
Projects provide much more flexible and effective control of device
programming. It is highly recommended, especially for mass production, to
create, configure, and save as many projects as needed and use them with
command line.

 -L<file name> This option loads the <file name> file into the CPI2-Gx buffer upon launching
the ChipProg-02 program. If other files were previously loaded using some
project, then a new one will be loaded in accordance to the file format and start
address. The loader determines file format from the file name extension. If
actual file format differs from the one listed in the file format list use the -F
option to explicitly specify file format (see below).

 -F<file format> This option sets format of the file specified by the -L<file name> option. The

<file format> must be one of the following letters:

 H - standard or extended Intel HEX format
 B - binary format
 M - Motorola S record format
 P - POF (Portable Object Format)
 J - JEDEC format
 G - PRG format
 O - Holtek OTP format
 V - Angsrem SAV format

For example, -FH option loads file in the HEX format, which contains starting
address in CPI2-Gx buffer.

If binary format (B) is specified by the -F option, it should be followed by a
destination starting address in the format used in C language. For example: the
option -FB0xFF04 loads binary file and places data starting at the address
0xFF04 in the buffer.

In the absence of -L<file name> the -F<file format> option is ignored.

-A[buffer number]
This option initiates the Auto Programming session upon launching the

ChipProg-02 application. Upon successful completion the application terminates.

In case of error the ChipProg-02 application remains open until it is manually

closed by operator. If the [buffer number] is omitted, the data for Auto

Programming are taken from buffer #0; otherwise the data are taken from the

buffer with the number that follows -A. For example: the option -A2 specifies that

data for the Auto Programming session will be taken from the buffer number 2.

The -A option is only meaningful if a project name or an -L<file name> option is

also specified on the same command line.

-I This key hides the ChipProg-02 main window. If an error occurs during
programming process, the window is displayed on the PC screen along with the

47

103

103

108

Control Interfaces 125

© 2021 Phyton, Inc. Microsystems and Development Tools

 Option Description

error message. This option is only meaningful if an -A (Auto Programming)
options is specified on the same command line; otherwise the -I option is be
ignored.

 -I1 This key is similar to the -I key except the -I1 keeps the ChipProg-02 main

window hidden even if a programming error occurs. The first occurrence of a

programming error terminates the ChipProg-02 program and returns the error

code 1. (Successful Auto Programming session ends with return code 0.) Return

codes can be used by external applications that control the CPI2-Gx remotely,

such as LabVIEW, similar programs, or batch files.

 -I2 This key is similar to the -I key; however, -I2 keeps the ChipProg-02 main

window hidden at all times, suppresses error messages display, but copies the

error message to Windows clipboard.

-M This key starts the ChipProg-02 software in the demo mode, without use of the

CPI2-Gx hardware and without real data exchange between computer and

programmer hardware. This mode is convenient for evaluating the product without

use of CPI2-Gx hardware.

-S<file> This key replaces the default session configuration file UPROG.ses with a
new one named <file> (with the extension .ses). Session configuration file
stores major CPI2-Gx settings, and includes the name of the most recently
used project; it resides in the ChipProg-02 folder. The new session settings will
be used by the ChipProg-02 when invoked from command line.

-O<file> This key replaces the default option configuration file UPROG.opt with a
new one named <file> with the extension .opt. Option configuration file stores
target device type, file options, etc.; it resides in the ChipProg-02 folder. The
new options will be used by the ChipProg-02 when invoked from command line.

-D<file> This key replaces the default desktop configuration file UPROG.dsk with a

new one with name <file> and extension .dsk. Desktop configuration file stores

computer screen configuration, i.e., positions, dimensions, colors and fonts for all

open windows; it resides in the ChipProg-02 folder. The new desktop

configuration will be in force when ChipProg-02 is invoked from command line.

-ES<file> This key executes a script whose file name follows the -ES key, immediately

after starting the ChipProg-02 application. If the command line does not include

the -ES key, the ChipProg-02 application searches for the script file named

‘Start.cmd’ in the working folder and, if such script exists, executes it.

3.4.2 Command Line Option Files

Command line options can be specified directly or by command line option files - response files.
Instead of specifying a command line option it is possible to put a character @ following by a name of
the file that includes the command line options. This character @ following by a file name can be
inserted in the command line anywhere. The ChipProg-02 reads the option file and inserts its content
into the command line. For example, specifying the command line as:

52

52

52

CPI2-Gx Device Programmers - CPI2-Gx126

© 2021 Phyton, Inc. Microsystems and Development Tools

UProgNT2.exe -G1 @C:\Files\Programmer.txt

where the C:\Files\Programmer.txt file includes the following lines:

-LF:\ARM\IARCPP\Debug\Exe\Test.hex
-FHEX
-A
-I2

is equivalent to specifying the command line:

UProgNT2.exe -G1 -LF:\ARM\IARCPP\Debug\Exe\Test.hex -FHEX -A -I2

Each line in a response file may include one or more options. Blank lines, lines beginning with the a
semicolon (;) or double slash (//) characters are treated as comments and ignored them. For example,
see the C:\Files\Programmer.txt file with added comments:

; ----- Load file to buffer F:\ARM\IARCPP\Debug\Exe\Test.hex
-LF:\ARM\IARCPP\Debug\Exe\Test.hex

; ----- Specify the HEX file format
-FHEX

; ----- Conduct Auto Programming
-A

; ----- Hide GUI. Copy error messages to clipboard.
-I2

A command line may include several response files. For example:

UProgNT2.exe @F:\Config1 @C:\Files\Programmer.txt

It is also allowed to include one response file into another - then a command line interpreter will extract
all the options of both response files.

3.5 On-the-Fly Control Interface

The On-the-Fly Control interface is very similar to command line control interface. However, it can
control a CPI2-Gx programmer that has already been started and is running, without restarting it. On-
the-Fly Control interface can be used to start any operation available for target device, such as Read,
Program, load project , execute script , etc. On-the-Fly Control utility can be used to control a
running CPI2-Gx programmer by Windows batch files coming with third-party graphical packages such
as National Instruments LabVIEW.

The On-the-Fly Control utility is an alternative to a more advanced Application Control Interface
(DLL control); using the latter requires some programming skills.

The OFControl.exe executable resides in the ChipProg-02 installation folder. We suggest you keep it
in that folder and start it from there. Once started, the utility does not modify its working directory..

120

47 177

173

159

159

Control Interfaces 127

© 2021 Phyton, Inc. Microsystems and Development Tools

After completion, On-the-Fly Control utility issues return codes . The code is 0 (zero) in case of

success. Error codes are listed in the UPControl return codes section. The program writes error
messages to the Console window and, optionally, to log file and/or Windows clipboard.

After the On-the-Fly Control process has exited, CPI2-Gx keeps running unless On-the-Fly Control
utility had been started with the -X key. You may re-launch the On-the-Fly Control utility to control the
same device programmer. However, please keep in mind that only one On-the-Fly Control utility can
control a running device programmer at the same time. In case you launch a second instance of the
On-the-Fly Control while the CPI2-Gx device programmer is being controlled by previously launched
instance, the second instance will not "find" the programmer.

The On-the-Fly Control command line format is as follows.

OFControl.exe [Options] [@<Option File>] [Options]

Each option starts with either ‘/’ (slash) or ‘-‘ (hyphen) character, followed by a name. Valid names are
listed below. The ‘/’ (slash) and ‘-‘ (hyphen) can be used interchangeably. For example, ‘/L’, ’-P’.

The order of options in the command line is not important. Operations specified by options are
performed in logical order. For example, operations on target device will be performed after loading a
project and executing a script, regardless of the order in which options appeared on command line.
However, the -F<device operation list> and -A options are exceptions. These options define an
order of operations on target device, therefore they are always performed according in the order they
are appear on the command line.

Note. Brackets [] in option descriptions denote optional parameters; brackets should not be used when
specifying actual parameters. Angle brackets <> are used to denote entities and are not part of the
option notation. For example, replace -G[+] with -G+; replace -G[+][<C:\Temp\UPC.log] with -G+C:
\Temp\UPC.log.

If a file name used in an option includes spaces, full name with the path should be used. Any additional
part of an option should not be separated by spaces. For example, -L"H:\Program Files\ChipProg-
02\6_00_20\UprogNT2.exe /g". Here the file name and path is enclosed in quotation marks ("") and
there are no spaces between the /L and the rest of the option

The @<Option File> construction specifies a text file containing additional options for On-the-Fly
Control utility. Each option in such file must be listed on a separate string. For example: :

UPControl.exe -D @response.txt -WK

In the option file, lines starting with semicolon (;) are treated as comments and are ignored. A
commented example file response.txt is shown in the Option File example .

3.5.1 On-the-Fly Command Line Options

On-the-Fly Control command line has the following format:

OFControl.exe [Options] [@<Option File>] [Options]

The following table provides detailed descriptions of available options.

131

104 72

127

132

CPI2-Gx Device Programmers - CPI2-Gx128

© 2021 Phyton, Inc. Microsystems and Development Tools

Option Description

-D Debug mode: include additional information in console log and in log file.
This option is helpful for debugging On-the-Fly Control program.

-G[+][<log file name and
path>]

Send the ChipProg-02 Console window output also to a log file. If -
G is followed by a + sign output will be appended to the log file if it
exists. If the + sign is omitted a new log file is created. By default the
log file is called OFControl.log and resides in the ChipProg-02
 working folder; you can specify a new file name and location if desired.

Examples:
 -G - create a new log file, named OFControl.log, in the
OFControl.exe working folder.
 -G+ - append records to OFControl.log file if it exists; otherwise
create the file.
 -G+C:\Temp\OFC.log - append records to C:\Temp\OFC.log file if it
exists; otherwise create it.

-WK Keep On-the-Fly Control program running until a key is pressed on the
keyboard. This allows perusing messages in the Console window
before it terminates.

-L< ChipProg-02 executable

file name and command line

options>

Launch the CPI2-Gx device programmer if it is not running. If it has
been already launched the option is ignored. The On-the-Fly Control
program executes the -L option before all other options on command
line, that is before loading a project, executing scripts, or performing any
operations with the device. The -L cannot be used together with -R
option (see below).

Example: -L"UProgNT2.exe /g1"

-R<device programmer's
serial number>

If more than one CPI2-Gx device programmer is controlled by the PC in
the gang mode, connect to the unit whose serial number is given by this
option. -R cannot be used in a combination with -L option. If more than
one programmer is controlled by the PC and On-the-Fly Control
command line does not contain an -R option, the program terminates
with error code #14.

-C Copy error message to the Windows clipboard. Whenever On-the-Fly
Control program terminates with a return code other than 0 (except
when -T option is used, see below), it means that an error has
occurred. If the the -C option is given, the error message will be copied
to the clipboard; otherwise the clipboard contents remain unchanged.

If more than one operation specified on On-the-Fly Control command
line results in an error, error messages of all operations will be copied
to Windows clipboard if the command line also contains the -I option
(ignore errors).

-M[=<timeout in seconds>] Specifies timeout in seconds when waiting for device programmer to
become ready before performing certain operations. The operations
include loading a project, running a script, programming target device,

104

104

Control Interfaces 129

© 2021 Phyton, Inc. Microsystems and Development Tools

Option Description

and terminating execution triggered by the -X option. If -M option is not
specified, On-the-Fly Control program does not check whether
ChipProg-02 is ready to perform the next operation. In case it is not, an
attempt to perform a programming operation will result in program
terminating with an error.

If the -M option is not accompanied by a [=<timeout in seconds>]
parameter, On-the-Fly Control program will wait for the programmer
ready state indefinitely. In this case you can interrupt program execution
and make it quit by pressing Ctrl+C on the keyboard.

-B Stop an operation with the device. If CPI2-Gx performs a programming
function (Read, Program, Verify, etc.) on target device, it will be
interrupted. This action takes place prior to performing all actions
specified by the options -P, -S, -F, -X options. It is possible, however,
that the -B option does not interrupt operation on target device. This
happens when the program displays an error dialog that requires
operator response. In this case On-the-Fly Control program exits with
an error code.

-P<project file> Load the specified project file. Project files with .UPP extensions
contain all information and settings defining a programming session
(device type, file(s) to be written to the device, customized device and
algorithm parameters, interface settings, device serialization options,
scripts, etc.).

Before loading the project file, On-the-Fly Control program waits for
the programmer to stop operations on device (see the -M option). If the
-P option is specified on On-the-Fly Control command line along with
-S and/or -F options, the project file will be loaded before running scripts
or performing any operations on target device.

Example: -P"C:\Prog\Projects\Antenna-01 Test.upp"

-S<script file> Run the specified script . Before running the script On-the-Fly
Control program waits for the programmer to stop operations on
device (see the -M option). By default On-the-Fly Control program
waits for the script to complete. To allow On-the-Fly Control program
to continue operations while the script is still running, add the -NWS
option to the option list.

Example: -S"D:\Prog Scripts\Checksum.cmd"

-NWS Do not wait for completion of the script specified by the -S option.

-F<function list> Execute listed operations (functions) on the target device. Names of the
functions in the list must be separated by semicolons (;). In order to
execute the Auto Programming function the -F option should be
followed by an asterisk character (*).

47

177

177

CPI2-Gx Device Programmers - CPI2-Gx130

© 2021 Phyton, Inc. Microsystems and Development Tools

Option Description

If command line has more than one -F option, functions will be executed
in the order in which they are specified on the command line.

If one or more -F options is specified in the command line along with -P
(load project) and/or -S (launch script) options, all functions specified by
-F option(s) will be performed after loading the project file and/or running
the script.

By default On-the-Fly Control program waits for function to complete
before proceeding. To enable the program to proceed while function
specified by the -F option is still executing, add the -NWF option to
command line. In this case you may specify only one -F option on the
command line.

If an -F option specifies a sub-function displayed in the drop-down
menus of the Program Manager function tree, use both menu name
and function name separated by the caret '^' character. For example: -
FProgram (for the Code Memory chip layer) but -FData
Memory P̂rogram (for the Data Memory) .

Examples:

 -F* - launch the Auto Programming function.
 -FErase;Blank Check;Program;Verify - erase the device, check if it is
blank, write the file from the programmer buffer and compare the buffer
and device memory contents.
 "-F*;Verify;Device Parameters P̂rogram HSB and XAF" - execute the
Auto Programming function, then compare the buffer and device
memory contents, then launch the function Program HSB & XAF from
the Device Parameters sub-menu.

-NWF Do not wait for completion of the function specified by -F option. This
option is incompatible with -X.

-I Ignore errors during programming operations. By default On-the-Fly
Control program stops operations on target device in case of any error.
 The -I option enables the operations to continue regardless of error
conditions; this allows logging of all errors that occurred.

-T[+][W=<delay in
milliseconds>]

Wait for programmer status ["Ready" or "Busy"]. On-the-Fly Control
 program returns code 0 (zero) when CPI2-Gx stops and becomes
ready to perform a programming operation ("Ready"), or 1 if an
operation on target device is underway ("Busy").

In addition, if '+' sign follows the -T and the programmer status is busy,
current function name (Read, Program, etc.) will be output to the
console window along with the completion percentage of the function
being executed. For example: Program, 87%.

Optional [W=<delay in milliseconds>] parameter sets a delay before
getting the programmer status. Delays allow checking programmer
status within a settable period of time.

Control Interfaces 131

© 2021 Phyton, Inc. Microsystems and Development Tools

Option Description

Examples:

 -T - get the programmer status "Ready" or "Busy"
 -TW=1000 - wait for 1 sec, then get the programmer status "Ready" or
"Busy"
 -T+ - get the programmer status "Ready" or "Busy" then output to the
Console window the name of currently executed function and
percentage of its completion. An example of the function status string:
Read 56%.

-V=[0 | 1] Hide (-V=0) or make visible (-V=1) the ChipProg-02 main window.

If ChipProg-02 main window is hidden, the program will not be present
among other open applications in the Applications tab of the Windows
Task Manager. In order to stop a running ChipProg-02 program you
will have to go to the Process tab of the Task Manager, then locate and
highlight the programmer executable name (UprogNT2.exe) and click
the End Process button.

-X Stop the programmer and quit the program. To quit the ChipProg-02
program, the programmer must complete all current operations on the
device. The On-the-Fly Control program waits for completion of the
current programming operation for the period of time specified by -M
option. If this option is omitted or the timeout period has expired, On-
the-Fly Control returns an error.

-? or -H Show a brief description of the On-the-Fly Control program options
and exit.

3.5.2 On-the-Fly utility return codes

Upon completion On-the-Fly Control program returns code 0 (zero) in case of success. Otherwise it
returns one of the error codes listed below. There is one exception related to the use of option –T. If -T
option is specified On-the-Fly Control returns 0 if the programmer is stopped and 1 if an operation on
the target device is underway.

Error messages are set to the Console and, optionally, to a log file and/or Windows clipboard.

Return codes:

0 Successful completion.

1 The –T option was specified and the programmer is busy performing an operation on taget
device.

2 Invalid option or parameter on command line .

104

120

CPI2-Gx Device Programmers - CPI2-Gx132

© 2021 Phyton, Inc. Microsystems and Development Tools

3 Error calling a Windows API function; it could be caused by an abnormal exit of the programmer
software.

4 The programmer application was closed while the On-the-Fly Control utility has been waiting
for response. Possibly the operator has forced closing of the program.

5 Timeout set by an -M option occurred.

6 The programmer was launched in the gang mode but an option in the On-the-Fly Control utility
tried performing a function not applicable to multiple CPI2-Gx running in the gang mode.

7 Failure to perform requested action because programmer is busy performing anoter operation
on the target device.

8 Failure to load project file specified by -P option.

9 Failure to run script specified by -S option.

10 General error.

11 Programming function specified by the -F option is not applicable to current target device.

12 An error occurred while programmer performed operation on the target device.

13 Programmer could not complete an operation and closed the program after receiving the -X
option request.

14 More than one device programmer is running. -R option must be used.

3.5.3 On-the-Fly Control Examples

; Launch programmer in diagnostic mode unless it is already in use
-L"C:\Phyton\ChipProg-02\6_00_21\UProgNT2.exe /g1"

; Append records to the log
-G+

; If programmer is busy, wait for 30 seconds max
-M=30

; Load project file. The FuelPump-08.upp project file is in D:\Projects folder
-PD:\Projects\FuelPump-08.upp

; Execute csm-16.cmd script located in the D:\Scripts folder
-SD:\Scripts\csm-16.cmd

; Execute auto programming using parameters defined by the FuelPump-08.upp project
-F*

Standalone Operation Mode 133

© 2021 Phyton, Inc. Microsystems and Development Tools

4 Standalone Operation Mode

CPI2-Gx device programmers can be operated in the standalone mode that does not require a
computer for driving device programmers. The major difference between the computer and standalone
control modes is a physical location of the memory which stores the data to be programmed into target
devices. These data includes:

· Target device type;

· Static data - usually the same code, which should be replicated inside of a series devices belonging
to the same type;

· Dynamically changing data, unique for each device in the series: serial numbers , signatures ,
date stamps, etc.

· User-specified Device and Algorithm Parameters .

· Factory programmed serial number of the programming module inside of the CPI2-Gx units.

While the programmer is under computer control, all the data above form an image (or several images)
physically located in the computer RAM. In case of the standalone control mode, these images are
physically stored on an SD card inside of programming modules installed in a CPI2-Gx gang
programmer.

An SD card is a kind of flash memory media that connects directly to master MCU inside the
programmer. Storing data on this media inside of device programmer enables much faster
streaming the data into a target device. Moreover, even if the programmer is controlled by a PC, utilizing
the benefits of faster streaming images from SD cards to target devices allows to speeding up the
mass programming. To store the data image on the SD card for both standalone and faster PC control
modes, the data should be first configured in the GUI mode and then cashed onto SD cards.
Capacity of SD card used in the CPI2-Gx device programmer may vary from 8 to 64 GB - Phyton has
the rights to use the cards of any capacity without prior notice.

Preparing the data above for the standalone control unavoidably requires use of projects . A user
should conduct the following steps:

1. In the GUI mode create a project and store it on a computer as a file with the .UPP extension.
The project should include all the data and parameters above - target device type, static and
dynamically changing data, etc.

2. Connect the device specified in the project to a device programmer;
3. Enable data caching .
4. Program one device using the Auto Programming command.
5. Assign a number for the created Standalone Job .

Upon completion of the steps above the programmer creates a replica of the project above on the SD
card. A project replicated on the SD card is hereafter called as a Standalone Job , The programmer
enables to create and to store as many as 256 independent standalone jobs, which can be launched in
the GUI by the job number. Only 4 of them can be assigned for launching by applying a 2-bit code to the
JOB_SEL0...JOB_SEL1 inputs on the connector CONTROL. After the job is selected by the JOB_SEL
code, it launches by applying the START signal to the CONTROL connector .

63 70

93

48 134

47

48

134

108

136

136

29

CPI2-Gx Device Programmers - CPI2-Gx134

© 2021 Phyton, Inc. Microsystems and Development Tools

4.1 Preparing Standalone Mode Jobs

Preparing of use a CPI2-Gx device programmers in the Standalone Mode (SA) includes the following
steps:

· Enabling data caching;

· Creating projects to be run in standalone mode;

· Converting these projects into standalone jobs by caching data on the embedded SD card;

· Assigning numbers to prepared standalone jobs, so they can be called by a certain number by the
Start signal or from the GUI;

 Open the Configure > Data caching, Standalone jobs... menu:

This will open the Standalone Mode and Data caching Settings dialog. Open the Settings tab and
check the Enable caching check box.

This is the first step. The green text in this dialog indicates a real data caching status. This status is
also indicated by the icon

located in the top right corner of the main window, at the right of the button Auto on main toolbar.

4.1.1 Data Caching

Data Caching is a process of copying data to be programmed into the target device onto the SD card
inside of the programming module of the CPI2-Gx device programmer. Then the programmer streams

57

Standalone Operation Mode 135

© 2021 Phyton, Inc. Microsystems and Development Tools

the data stored on the SD card to the target device instead of streaming them from the computer RAM
that greatly speeds up all the programming operations.

This mechanism of fast programming can be used in two ways: a) in trues standalone mode when the
programmer is disconnected from a PC and is controlled by electrical signals from a fixture or ATE and
b) when it is driven from the ChipProg-02 GUI. Taking data for device programming from the SD card
allows to speed up device programming in the computer control mode as well as in the true standalone
mode.

If you plan to control the programmer by electrical signals from your fixture or ATE in the true
standalone mode, caching data to the SD card is a mandatory. But, if you plan to control the
programmer from the ChipProg-02 GUI, data caching makes sense in case of programming devices
with relatively large flash memory, only. Otherwise, the time spent of the data caching procedure will
not be paid off by saving time on the faster device flashing.

Data Caching function is off by default. The Data caching status is displayed in a very right position of
the ChipProg-02 main window toolbar:

The following Data Caching statuses can be observed when you operate in the standalone mode:

The SD card was not found by the programmer's hardware or it
malfunctions. Data caching is not possible.

Data caching is turned off by an operator.

The programmer is ready to cash data. To perform caching, start Auto
Programming operation on the target device.

Data caching was completed. Since then the programmer will take data
cashed on the SD card, not from the buffer.

Data caching was completed. Project was assigned to standalone job with
a specified number (#2 here) and is ready for launching.

To bring up settings for caching, standalone jobs, and serialization, click on the image of caching status
(Awaiting AutoProg), or use the Configure > Data caching, Standalone jobs... menu command.

First, create a project that can be then convert to a standalone job. Use a universal mechanism of
creating a project described in the Project Options Dialog . What is important is to name each
project to simplify assigning a number for each standalone job and to easily navigate in the line of jobs
in the Stand-Alone Jobs tab.

After storing your first project under a certain name (for example, RTX-12 (2016-11-21)) connect target
devices specified in this project to the CPI2-Gx device programmer and click the Auto button on the
main toolbar or click twice on the Auto Programming line in the Project Manager window. If the data
caching was enabled , the first run of the Auto Programming macro command ends with issuing a

108

57

53

134

CPI2-Gx Device Programmers - CPI2-Gx136

© 2021 Phyton, Inc. Microsystems and Development Tools

short warning "Accessing memory card(s)" and the icon

will appear in the right position in the main toolbar. Similarly, you can create and store on one SD
card(s) as many standalone jobs as you need - up to 256. ChipProg-02 application automatically
assigns numbers to each job from the #0 up to #255.

The ChipProg-02 program uses the following rules of assigning job numbers stored on the SD card:

· If there is an open project in the ChipProg-02 GUI, the program searches a standalone job with the
same name on the SD card. If it finds such an SA job, the program updates it with the data and
parameters stored in the project in the GUI. If the program cannot find the SA job with the same
name, then the program assigns to this job the lowest number, not taken yet by an unnamed project.
If there is no such an unnamed project, the ChipProg-02 application assigns the lowest available
number. If there are no free numbers ssues an error message.

· If there is no open project in the ChipProg-02 GUI, then the cashed data are considered as a
"unnamed job". Then the program checks whether the SD card already stores another job with the
same parameters, the caching procedure completes. Otherwise, the program assigns the "oldest"
number earlier assigned an unnamed job. If there is no an available jobs to be assigned, the program
issues an error message.

All created SA jobs are visible in the Stand-Alone Jobs tab of the dialog. First four SA jobs addressed
by the 2-bit JOB_SEL0...JOB_SEL1 selector can be launched by applying the START signal to the
CONTROL connector .

4.1.2 Standalone Jobs

All SA jobs, created by caching data to SD card(s), are visible in the Stand-Alone Jobs tab of the
Standalone Mode and Data caching Settings dialog. Any SA job can be launched either by electrical
signals applied to the CONTROL connector (below displayed as "Selected by
Control.Job_Sel[x...0]") or from the ChipProg-02 GUI (displayed in the tab as "Defined
programmatically".

First four SA jobs addressed by the 2-bit JOB_SEL0...JOB_SEL1 selector can be launched by applying
the START signal to the CONTROL connector .

In the Stand-Alone Jobs tab picture below you can see how to assign SA job numbers. The jobs are

displayed here in the ascending numerical order: from 0 to 255. Click the arrow down) sign at the
job line to open the list of cashed SA jobs, pick the project name to assign the job number. Only a
named project can be associated with an autonomous job. Each project can only be associated with a
single job.

29

29

Standalone Operation Mode 137

© 2021 Phyton, Inc. Microsystems and Development Tools

Two radio buttons "Selected by Control.Job_Sel[x...0]") and "Defined programmatically" enables
to choose a method of the standalone launching. Clicking the OK button at the bottom of the dialog
window fixes the method of launching standalone jobs: by ATE signals or from the GUI.

After assigning a number in the Stand-Alone Jobs tab a project becomes a standalone job. This job
physically locates on the SD card, it has a unique number and can be launched by this number either
by the ATE signals or by a mouse click from the GUI. However, any SA job can be updated by adding
dynamically changing data (Serialization) and a limitation of the devices to be programmed that
is described in the following chapters.

4.1.3 Standalone mode settings

To setup the standalone mode options open the Configure > Data caching, Standalone jobs...
dialog:

The dialog enables to set all possible standalone mode options:

139 141

CPI2-Gx Device Programmers - CPI2-Gx138

© 2021 Phyton, Inc. Microsystems and Development Tools

If you operate with the CPI2-Gx device programmer in the Standalone mode the Enable caching box
must be checked. When it is unchecked, the programmer can be operated from the GUI , only. The
Demultiplexer Mode pane at the bottom of the dialog window enables to chose one of five options:

 Option Description

Channel A Any launch of Auto Programming initiates ISP on the channel A, only. The B
channel remains disabled.

48

Standalone Operation Mode 139

© 2021 Phyton, Inc. Microsystems and Development Tools

Channel B Any launch of Auto Programming initiates ISP on the channel B, only. The A
channel remains disabled.

Channel A, then
B

Any launch of Auto Programming initiates ISP on the channel A. Then, upon
completion of ISP on the channel A, the programmer immediately begins
programming on the channel B. Upon completion of this operation the
programmer waits for a new launch.

Channel B,
then A

Any launch of Auto Programming initiates ISP on the channel B. Then, upon
completion of ISP on the channel B, the programmer immediately begins
programming on the channel A. Upon completion of this operation the
programmer waits for a new launch.

Channel is
selected with
Control MUX
signal (on the
connector
CONTROL)

This option allows to control A and B channels by applying a signal to the contact
MUX_B/A (#A16) on the connector CONTROL.This signal, generated by ATE or
the test fixture, enables programming either on the A or B channel. After
launching the Auto Programming command the programmer checks the
MUX_B/A input status. Log 0 on this input enables in-system programming on
the A channel, log 1 - on the B one.

4.1.4 Device serialization

Very often the image to be written into the target device is comprised of the static data, common for all
the devices to be programmed in one session, and the data unique for each device in this series.
Usually such data represent unique serial numbers , checksums , signatures and custom data
stored in the custom shadow memory areas. Such dynamically changed data blend with static data
before physical writing the image into the target device. The ChipProg-02 enables to program complex
images in the standalone mode as well in the computer controlled mode.

Dynamically changed data mentioned above should be prepared in the project by means of the serial
numbers , checksums , signatures and custom shadow memory dialogs below.

In context of the standalone programming, preparing all dynamically changes data is defined here in
one term: "Serialization". Each SA job has its own serialization settings. These settings must be done
before generating serialization information for standalone mode. See the picture below.

69 69 70

71

69 69 70 71

CPI2-Gx Device Programmers - CPI2-Gx140

© 2021 Phyton, Inc. Microsystems and Development Tools

Serialization information for a project must be generated beforehand. Settings that control generation
can be done in a dialog brought up by clicking on the image of serialization status, or by menu
command "Configuration" -> "Data Caching, Standalone Jobs..." as it is shown below.

Serialization information is stored in a fixed part of the SD card memory. The maximum number of
target devices is the project specific. For example, in the picture above the maximal number of the
devices to be programmed is 182781.

When operating in standalone mode, the programmer fetches serialization records one by one, and
programs them into target devices. The number of the next record to be fetched is preserved even if the
programmer is powered off. Once all records have been written into devices, the ChipProg-02
terminates the programming process and issues an error message. To continue programming
process, additional serialization information should be generated.

The dialog above enables two alternative options of how to handle unused records if they remain in the
programmer - either to discard them and replace with new ones or to add new records to remaining
unused. In the last case, the added serial number will continue to carry out the number of numbers.

Since it is impossible to predict a capacity of free memory on the SD card that can be assigned for the
serialization information, the Serialization records can be generated by a new data caching, only.

Note! To perform a new generation click the "Start Generation" button in the
dialog. Clicking the "OK" button at the bottom of the dialog does not start
generation of the device serialization in the standalone mode.

 In the CPI2-Gx device programmers the same serialization information will be written in SD cards of
all programming modules..

Current serialization information can be viewed in the Memory cards window (see an example
below). In this window serialization records are called "shadow areas" (which they actually are).

143

Standalone Operation Mode 141

© 2021 Phyton, Inc. Microsystems and Development Tools

Limitations of Serialization in Standalone Mode

Besides a necessity to remember to add in serialization records in time, the following limitations should
be kept in mind:

· If programming of a target device causes an error, serialization record is still used up, in spite of the
application program settings. In such case, serial numbers of target devices will not remain
consecutive, they will include gaps.

· If you use scripts for generating serial numbers, checksums, and other dynamically changing data
take in account the difference of launching the scripts in ChipProg-02 application. in the GUI control
mode scripts launch immediately before programming of a next target device. However, when
generating records for standalone mode, scripts launch immediately after generation of a next record.
If the script includes some real-time related parameters, such script will not work correctly. If the
scripts modify the data to be written into target device, that is not going to work either.

4.1.5 Permissions and setting limits

A CPI2-Gx user is able to set the number of target devices to be programmed in standalone mode.
Before setting the limit this function should be permitted through the Project Option dialog. Open
the dialog, browse the project file (.UPP file) and click the button Permissions .

177

53

77

CPI2-Gx Device Programmers - CPI2-Gx142

© 2021 Phyton, Inc. Microsystems and Development Tools

This brings up the Project Permission Settings dialog, in which you can specify the number of
devices to be programmed. To enable this setting, you must check the Protect the project with
password box and specify a password.

Standalone Operation Mode 143

© 2021 Phyton, Inc. Microsystems and Development Tools

A current state of the device counter can be monitored in the Memory cards window. See an
example below.

Once the limit was achieved, ChipProg-02 issues an error warning and the programming stops. To
continue programming, it is required to confirm or remove limitation using Project Permission
Settings dialog.

4.1.6 SD card window

Memory cards (or SD cards) window can be used to examine information stored on the card, as
shown on the figure below. Use the View menu to open this window.

143

52

CPI2-Gx Device Programmers - CPI2-Gx144

© 2021 Phyton, Inc. Microsystems and Development Tools

During subsequent programming operations, the programmer uses buffer layers data from SD card.
The ChipProg-02 application tracks changes in the settings that may cause modification of data stored
in the SD card. If necessary the program launches data re-caching. This may be triggered by the
following changes:

· Writing data into the memory buffer - manually or by reading a file or by a script or communication via
the ACI ;

· Modification of the target device settings;

· Modification of serialization settings;

· Modification of the Auto Programming parameters.

4.2 Switching to Standalone Mode

After powering-up, a CPI2-Gx device programmer keeps staying in the idle mode until it will be launched
either in the computer controlled mode from the CPI2-Gx startup dialog or in the standalone
mode. In turn, launching the programmer in the standalone mode can be done either programmatically,
or by applying electrical signals to appropriate pins on the connector CONTROL .

Launching the CPI2-Gx in the SA mode programmatically can be done in two ways:

· From the ChipProg-02 GUI menu Commands -> Standalone Mode. This will open the Switch to
Standalone Mode dialog below. In this dialog you can specify a method of selecting SA jobs - by the
signals applied to the connector CONTROL or programmatically from the drop down Job menu in
this dialog.

159

139

108

38 133

29

29

Standalone Operation Mode 145

© 2021 Phyton, Inc. Microsystems and Development Tools

· By clicking the Start Standalone Mode Monitor button in the CPI2-Gx startup dialog. Or just by
calling the SAMonitor.EXE executable that locates in the same folder where the ChipProg-02 was
installed. This will open the Standalone Mode Monitor window (read the next chapter).

Launching the CPI2-Gx in the SA mode by applying electrical signals from ATE can be done by one
the way below

· By applying a logical 1 signal to the SAMODE pin of the connector CONTROL right after
powering the CPI2-Gx unit, while it remains in the idle mode.

· By applying and holding for at least 2 sec logical 0 signal to the START pin of connector
CONTROL .

· .

Once CPI2-Gx switches to standalone (SA) mode, the green (GOOD) and red (ERROR) LEDs start
blinking. These LEDs will keep blinking until the programmer is switched back to computer controlled
mode. When the CPI2-Gx remains running in the SA mode, a SA job can be launched by either one of
the signals above.

ChipProg-02 software allows real-time monitoring of activity device programmers driven by this
software by a special utility - the Standalone Mode Monitor . This monitor window displays status(es)
of the device programmer(s) along with a current Standalone Job number, device counters, statistics of
failures, and other useful information.

To interact with ATE or test fixture CPI2-Gx device programmers running in the standalone mode output
three status signals onto appropriate pins of the connector CONTROL : BUSY, GOOD and
ERROR. These signals - log. 0 means active - indicate statuses of the device programming
operations:

· BUSY=log.0 while the operation lasts, then returns to the log.1 state,

· GOOD=log.0 in case the device was programmed and successfully verified and stays low until a
new programming cycle starts;

· ERROR= log.0 in case of failure.

These signals, outputted to the connector CONTROL, are duplicated by, respectfully, yellow, green and
red LEDs on the top panel of the CPI2-Gx units.

38

146

29

29

146

29

CPI2-Gx Device Programmers - CPI2-Gx146

© 2021 Phyton, Inc. Microsystems and Development Tools

If the programming session involves programming of different data into two or more devices of different
types, by means of the same CPI2-Gx programmer, standalone jobs must be switched by external ATE
or other equipment, not programmatically. For this purpose,.the CONTROL connector contains two
pins (Job_Sel [2..0]) per each site which can be used for choosing a standalone job. For example, if
Job_Sel code = 01B the programmer will run the Job #1, if the the code = 11B -- Job #4. When no
electrical signals are applied to these pins, the Job #0 will be automatically selected.

 The ChipProg-02 program takes care of synchronizing Standalone Mode Jobs on all programming
modules installed inside of the CPI2-Gx device programmer.

4.3 Standalone Mode Monitor

Standalone Mode Monitor is an application program for watching the states of programmers
operating in standalone mode. This application can also perform certain operations with the
programmers.

The application can be launched in the following two ways:

· By clicking the Start Standalone Mode Monitor button in the in the CPI2-Gx startup dialog below.
Or just by calling the SAMonitor.EXE executable that locates in the same folder where the
ChipProg-02 was installed.

· From the menu "Commands" -> "Switch to standalone mode in the GUI mode.

Being launched in one way or another, the Standalone Mode Monitor switches all the programmers,
which it is able to communicate with to,into the standalone mode (SA mode) unless these units
are already running in the SA mode. The Monitor can "see" only those programmers which are not
being used at the moment by the ChipProg-02 application; this is because at any given time a
programmer cannot be be under control under more than one application. On the other hand, the
ChipProg-02 application does not "see" the programmers already running in the SA mode.

The Standalone Mode Monitor does not disturb running the launched programmers; it does not slow
them down. The monitor displays their current state, only. See below an example of the Standalone
Mode Monitor window for a gang cluster comprised of three CPI2-B1 device programmers with serial
numbers SI2-10002, SI2-10003 and SI2-10004.

29

38

133

Standalone Operation Mode 147

© 2021 Phyton, Inc. Microsystems and Development Tools

Where:

The programmer number in the list.

S/N Serial number of the device programmer.

Job Order number of the active SA job.

Project Name of the project associated with the SA job (it specifies the data being written into
the target device).

Good Counter of successfully programmed devices. This counter resets to zero when the
programmer is powered off or when a new job is selected.

Bad Counter of devices programmed with errors.

Limit Number of devices remaining before achieving the limit defined in the project settings.
Limit counters are preserved upon powering off the programmer.

Function Name of the currently performed programming function.

Progress Indicator of the function execution process.

% Percent completeness of the function.

LEDs LEDs that indicate the programmer status.

Device S/N Current target device serial number, if it was defined in the standalone mode
serialization settings.

Error Error codes following the error counts. Programmer keeps up up to 8 types of errors.

Device Target device as it was selected in the project.

All buttons in the dialog above are exclusively applicable to the CPI2-Gx device programmers marked in
the check boxes in the very left column of the Monitor window.

Select Active Job button: For selected device programmers, set active SA job number in the field at
the right of the button. Setting the SA job number by itself does not activate the job - only clicking this
button does activate it. If the selected job was not associated with any project, then an attempt to start
programming aborts with an error SD_EmptyJob. The Select Active Job button is accessible if all
selected device programmers are stopped, only.

Start Programming button: Start device programming on selected CPI2-Gx device programmers that
are currently in the stopped state.

CPI2-Gx Device Programmers - CPI2-Gx148

© 2021 Phyton, Inc. Microsystems and Development Tools

Terminate Programming button: Abort target device operations on all currently selected CPI2-Gx
device programmers. Completing of this command can be delayed for a while.

Switch to Online Mode button: Here Online mode means the computer controlled mode. Clicking this
button immediately switches selected device programmers from the SA mode into the GUI computer-
controlled mode. This could be used for restarting the Standalone Mode Monitor and to make the
programmers running in the SA mode visible for the GUI. The problem is that the ChipProg-02 GUI does
not "see" the programmers running in the SA mode. Once the programmers are switched into the
online (computer controlled) mode, the Monitor is no longer able to communicate with them. For
refreshing communications between the GUI and the Standalone Mode Monitor it should be
restarted. Then the monitor re-establish communications with the device programmers.

Show Errors button: Show table of errors for all selected device programmers. Error counters are
reset to zero when the programmer is powered off. At switching an active SA job, the error counters are
not reset.

If a project name is displayed in red characters, this indicates that the project data were written by an
older version of the ChipProg-02 software and must be refreshed. In many cases this is crucial
because updating the ChipProg-02 version automatically causes updating the CPI2-Gx firmware that
include device programming drivers. If you see the project name displayed by red characters you must
cycle the power, launch the ChipProg-02 in the GUI mode, open the project, make sure the data
caching is enabled, connect a board with a target device selected in the project to the programmer
and launch the Auto Programming command once to re-cash the project data on the programmer's
SD card.

4.4 Example of Setting Up Standalone Mode

This example lists all operations necessary for setting up a standalone mode. The example refers to a
single-site CPI2-B1 device programmer but with some minor correction it can be applicable to use of
the CPI2-Gx gang device programmer.

· Target device: Microchip/Atmel AT89LS51 [ISP Mode].

· File C:\Work\Monitors\RTX-028.hex (in standard hex format) has to be loaded into the ChipProg-02
memory buffer.

· A 32-bit serial number has to be written into each target device at address 0x200. Serial numbers are
increased by 1 for each device.

Connect a CPI2-B1 device programmer to a computer via a USB cable, launch the ChipProg-02
software and launch the programmer in the GUI mode.

Click on "Select device" button:

Select device type Atmel AT89LS51 [ISP Mode]:

134

108

Standalone Operation Mode 149

© 2021 Phyton, Inc. Microsystems and Development Tools

Open the menu Project -> Create New:

This brings up project creation dialog. In the field "Project file name" enter the name of the project file.
Alternatively, click on Browse button and select folder and file using standard Windows dialog:

CPI2-Gx Device Programmers - CPI2-Gx150

© 2021 Phyton, Inc. Microsystems and Development Tools

Select file C:\Work\Monitors\RTX-028.hex to be loaded:

Standalone Operation Mode 151

© 2021 Phyton, Inc. Microsystems and Development Tools

In file selection dialog enter C:\Work\Monitors\RTX-028.hex, or use Browse button. Select
"Standard/Extended Intel HEX":

CPI2-Gx Device Programmers - CPI2-Gx152

© 2021 Phyton, Inc. Microsystems and Development Tools

Confirm file selection by clicking OK, and the settings dialog will show the name of selected file.
Confirm project settings by clicking OK; the project will be saved as the file C:\Work\Projects\RTX-
028.upp. If the folder :\Work\Projects does not exist, the program will prompt you to create it.

Standalone Operation Mode 153

© 2021 Phyton, Inc. Microsystems and Development Tools

Now we are working with a project, as shown in the window title:

Now we need to set parameters of serial numbers written to each target device. To do this, open
serialization settings:

or

In the appeared dialog select the "Serial Number" tab:

CPI2-Gx Device Programmers - CPI2-Gx154

© 2021 Phyton, Inc. Microsystems and Development Tools

Check off the "Write S/N address" box and enter 0x200 into the address field. Set serial number size
equal to 4 bytes, set increment to 1, then click OK:

We are almost done setting project options but now we need to turn on the data caching; to do this, run
menu command Configure -> Data Caching...:

Standalone Operation Mode 155

© 2021 Phyton, Inc. Microsystems and Development Tools

This brings up a dialog for serialization parameters. Check off the Enable Caching box, then click OK:

Data caching status now looks like this:

Since projects are not saved automatically in the ChipProg-02
application, you not must save the project by clicking the Save project
icon on the main toolbar:

Preserving the connection diagram for the chosen AT89LS51 device connect it to the connector
TARGET on your CPI2-B1 device programmer and launch the Auto Programming command in the
Program Manager window:

CPI2-Gx Device Programmers - CPI2-Gx156

© 2021 Phyton, Inc. Microsystems and Development Tools

If the Auto Programming operation has completed successfully, the history field will display a line saying
"Caching data to the programmer SD card enabled"; caching status will read "Cached."

Now we need to generate the serial number information for writing serial numbers into target devices.
To do this, either click on the caching status field or select menu Configure -> Data Caching...:

или

This brings up standalone mode options dialog. Select the Serialization tab and specify amount of
10000 devices to generate serial numbers for. Then click Start Generation button:

Standalone Operation Mode 157

© 2021 Phyton, Inc. Microsystems and Development Tools

Assign our project to a standalone job #0 by selecting "Standalone Jobs" tab and selecting project
RTX-08 for job #0:

The dialog now looks like this:

CPI2-Gx Device Programmers - CPI2-Gx158

© 2021 Phyton, Inc. Microsystems and Development Tools

Confirm settings by clicking "ОК" at the bottom.

This completes preparation of the standalone job associated with the project RTX-028. Contents of the
memory buffer and all settings have been stored as a project on programmer internal SD card,
information for 10000 serial numbers has been generated, the project has been associated with
standalone job #0.

The simplest way to switch the programmer into standalone mode is to call the menu command
Commands -> Switch to Standalone Mode:

This brings up the dialog below allowing you to to select the job #0 to be activated for execution from the
GUI:

Standalone Operation Mode 159

© 2021 Phyton, Inc. Microsystems and Development Tools

5 Software Development Kit (SDK)

This section describes Phyton ChipProg-02 Software Development Kit (SDK) called ChipProg-02
Application Control Interface (or Application Control Interface).

Developers can use Application Control Interface to control CPI2-Gx programmers by means of their
own software.

Application Control Interface provides a comprehensive set of features to control the programming
process, including selection of device type, accessing data buffers, loading files, launching
programming procedures (also in gang mode), and more.

5.1 ACI Components

Application Control Interface Files

The CPI2-Gx SDK includes the following components:

1. ACI.DLL dynamic-link library which implements Application Control Interface functions.

2. ACI.lib export library.

3. Header file aciprog.h to be included in user software written in C/C++ programming language.
The header contains declarations of all ACI functions , structures and constants. The
windows.h file must be included in user program before the aciprog.h.

4. A set of example files illustrating the use of Application Control Interface.

Platform Requirements

1. Phyton Application Control Interface requires Windows 7, 8 or 10 operating system.

2. ChipProg-02 software must be installed on the computer that controls the CPI2-Gx hardware.
The latest ChipProg-02 software version is available for free download from the
http://www.phyton.com/htdocs/support/update.shtml webpage.

161

http://www.phyton.com/htdocs/support/update.shtml

CPI2-Gx Device Programmers - CPI2-Gx160

© 2021 Phyton, Inc. Microsystems and Development Tools

Usage with 32- and 64-bit Applications

· 32-bit applications must use the ACI.DLL dll and the ACI.lib export library.

· 64-bit applications must use ACI64.DLL and ACI64.lib.

· Otherwise, there's no difference between 32- and 64-bit applications.

· There's no need to develop 64-bit applications for use with 64-bit operating system: both 32- or 64-bit
applications can be used in such case.

Programming Languages

Developers can use any programming language of his choice when working with Application Control
Interface; ACI.DLL exports its functions according to the standard rules for Windows operating system.

5.2 Using ACI

To control a CPI2-Gx programmer, user program calls functions in the ACI.DLL. When user program
calls the ACI_Launch() function, ACI.DLL launches ChipProg-02 executable UProgNT2.exe and
then controls its operations.

ChipProg-02 GUI can be made hidden or visible. In most cases there is no need to display GUI
windows or daialogs; however, this may be used for debugging purposes. User program can also use
ChipProg-02 partially, for example to bring up dialogs that show settings, target device selection, file
loading and others. Once the programming environment has been set up, the ChipProg-02 GUI can be
hidden to free more screen space for the controlling application.

When launching a programmer by means of the ACI_Launch() function, ACI creates internal object
called connection that identifies a launched programmer or multiple programmers working in the
Gang-programming mode.

ChipProg-02 enables launching multiple CPI2-Gx device programmers and control each of them
individually. The ACI_SetConnection function is used to select a particular connection to work with.
Once a connection is selected, all further calls to ACI functions will be applicable to this connection
use that connection (i.e. they all will affect only the selected device programmer). If there is only one
programmer, the connection is selected automatically.

 If, for example a CPI2-Gx has 6 programming modules inside but the ACI_SetConnection function
has specified only one particular module inside of this gang programmer, then this connection will
control one module, not a whole gang programmer with 6 modules.

All ACI functions, when called, take either no parameters or one parameter which is a pointer to a
structure. Each such structure has its first field set to the structure size; this ensures compatibility of
different ACI.DLL versions. The only exception is the ACI_IDECommand() function; this sacrifices
uniformity in favor of simpler pseudo-function declaration. The aciprog.h header file provides
declarations of the parameter-carrying structures.

Names of all the ACI objects (functions and structures) conform to the same naming convention. All
names begin with ACI_ prefix. Names of the parameter structure patterns end with _Params suffix.

Numeration of all memory buffers and layers of memory buffers startins with zero. All addresses are
64-bit long and consist of two 32-bit parts (lower and upper), to make them compiler-independent. For

373

373

198

377

377

Software Development Kit (SDK) 161

© 2021 Phyton, Inc. Microsystems and Development Tools

example, if the compiler recognizes the uint64 type, then the structure ACI_Memory_Params can be
initialized as follows:

ACI_Memory_Params mparams;
*((uint64 *)mparams.AddressLow) = 0x123456789ABC;

Note. All addresses in the structures are shown in the format specified by the device manufacturer, i.e.
in Bytes, Words, etc. For example, for any 16-bit microcontroller the address format is always a word
not a byte.

ChipProg-02 automatically allocates buffer number 0 so that it always exists and does not have to be
explicitly created.

All ACI functions provide return code to the calling application. The return code constants -
ACI_ERR_xxx - are defined in the aciprog.h file included into the ACI software set.

5.3 ACI Functions

This section provides an overview of Application Control Interface functions. Detailed description of
each function can be found in the ACI Fuctions reference section.

Calling some functions requires filling in and passing structures that specify memory locations, pointers
and other objects associated with the called function, while other functions do not take any parameters.

Table below shows ACI functions grouped by functionality. Most functions are grouped in "bidirectional
couples" (In-Out or Get-Set).

366

CPI2-Gx Device Programmers - CPI2-Gx162

© 2021 Phyton, Inc. Microsystems and Development Tools

Application Control
Interface function name

Brief description Associated
windows and

dialogs

Associated Application
Control Interface

structures

1. ACI functions that start and stop programming sessions and control connections
with device programmer(s)

ACI_Launch

Starts the ChipProg-02 program. This
function must always be the very first in the
chain of other Application Control Interface
functions that form the programming
session.

NA ACI_Launch_Params

ACI_Exit

Closes the ChipProg-02 program. This
function must always be the last one in the
chain of other Application Control Interface
functions. It completes the control session

via ACI.

NA NA

ACI_SetConnection

Specifies a current device programmer(s)
connection. Use this function when you
control a number of device programmers by
means of multiple calls of the
ACI_Launch function.

NA ACI_Connection_Params

ACI_GetConnection
Allows getting the identifier of a current
device programmer connection.

NA ACI_Connection_Params

ACI_ConnectionStatus
Checks and returns a current connection
status.

NA NA

2. ACI functions that configure the programmer or get its current configuration

ACI_LoadConfigFile

Loads the programmer configuration

parameters from the host computer to the

programmer.
NA ACI_Config_Params

ACI_SaveConfigFile

Saves the programmer's current
configuration parameters to the host
computer.

NA ACI_Config_Params

ACI_SetMUXmode
Applicable to CPI2-Gx gang programmers
only. Enables built-in demultiplexers in all
CPI2-Gx programming modules.

ACI_GetMUXmode
Applicable to CPI2-Gx gang programmers
only. Gets status of demultiplexers built into
CPI2-Gx programming modules.

3. ACI functions that get the target device properties or set them

ACI_GetDevice

Gets the manufacturer's name (brand) and

the part number of the device currently

being programmed from the programmer to

the host computer.

Select
Device

ACI_Device_Params

ACI_SetDevice

Sets the manufacturer's name and the part

number of the device to be programmed in

the programmer.

Select
Device

ACI_Device_Params

373 386

368

377

373

382

370
382

367

373 382

375 382

377

371

370
58

382

377
58

382

Software Development Kit (SDK) 163

© 2021 Phyton, Inc. Microsystems and Development Tools

Application Control
Interface function name

Brief description Associated
windows and

dialogs

Associated Application
Control Interface

structures

4. ACI functions that get current parameters of the buffers and layers or configure
them

ACI_GetLayer
Gets the parameters of a specified memory
buffer and layer from the programmer to the
host computer.

Buffer
Dump

ACI_Layer_Params

ACI_CreateBuffer
Creates a memory buffer with specified
parameters in the programmer.

Buffer
Dump

ACI_Buffer_Params

ACI_ReallocBuffer
Changes a size of the layer #0 in a specified
memory buffer in the programmer.

Buffer
Dump

ACI_Buffer_Params

5. ACI functions that read the content of the buffer layer or write into it

ACI_ReadLayer

Reads data from a specified memory buffer

in the programmer to the host computer.
Buffer

Dump
ACI_Memory_Params

ACI_WriteLayer

Writes data into a specified memory buffer of

the host computer to the programmer

memory buffer.

Buffer
Dump

ACI_Memory_Params

ACI_FillLayer

Fills a whole selected layer of a specified

memory buffer with a specified data pattern.
Buffer

Dump
ACI_Memory_Params

6. ACI functions that get programming parameters from the programmer or set them
in the programmer

ACI_GetProgrammingParam
s

Gets current programming parameters from
the programmer to the host computer.

Program
Manager >
Options

ACI_Programming_Para
ms

ACI_SetProgrammingParam
s

Sets programming parameters from the host
computer to the programmer.

Program
Manager >
Options

ACI_Programming_Para
ms

7. ACI functions that get device-specific programming options from the programmer
or set them in the programmer

ACI_GetProgOption

Gets current programming options from the

programmer to the host computer.

Device and
Algorithm

Parameters
ACI_ProgOption_Params

ACI_SetProgOption

Sets programming options from the host

computer to the programmer.

Device and
Algorithm

Parameters
ACI_ProgOption_Params

ACI_AllProgOptionsDefault
Sets default programming options and
programming algorithms in the
programmer.

Device and
Algorithm

Parameters
ACI_ProgOption_Params

8. ACI functions that control programming operations

371
95

387

368
95

380

375
95

380

375
95

389

380
95

389

369
95

389

372
108

395

379
108

395

371

93

390

378

93

390

366

93

390

CPI2-Gx Device Programmers - CPI2-Gx164

© 2021 Phyton, Inc. Microsystems and Development Tools

Application Control
Interface function name

Brief description Associated
windows and

dialogs

Associated Application
Control Interface

structures

ACI_ExecFunction

Initiates a specified programming operation,

keeping under control its successful

completion or failure. It controls a single

programmer.

Program
Manager

ACI_Function_Params

ACI_StartFunction

Initiates a specified programming operation

and then does not check the operation

result. It controls a single programmer.

Program
Manager

ACI_Function_Params

ACI_GangStart

Used to control multiple device
programmers. Initiates auto programming in
the gang (gang-programming) mode.

Program
Manager

ACI_GangStart_Params

ACI_GetStatus
Gets a current programmer status
information.

Program
Manager

ACI_PStatus_Params

ACI_SerializationDialog
This macro sends a command that opens
Serialization dialog.

Serialization,
Checksum,

and Log
Dialog .

NA

ACI_TerminateFunction
Terminates a current programming
operation.

Program
Manager

NA

ACI_GangTerminateFunction
Terminates a current programming
operation on a specified site of the gang
programmer.

Program
Manager

ACI_GangTerminate_Par
ams

ACI_ErrorString
Get the string describ ing the result of the last
ACI function call

Program
Manager

NA

9. ACI functions that save files from the programmer and load projects or files to the
programmer

ACI_LoadProject
Loads a specified project that must be
previously prepared and saved manually in
the programmer GUI.

Select
Device ,

Buffer
Dump ,
Device and
Algorithm

Parameters

ACI_Project_Params

ACI_FileSave
Saves a specified file from a specified
buffer's layer of the programmer into the
instrumental computer.

Buffer
Dump

ACI_File_Params

ACI_FileLoad
Loads a specified file from the instrumental
computer to a specified buffer's layer in the
programmer.

Buffer
Dump

ACI_File_Params

10. ACI functions that display programmer's windows and dialogs for setting up and
debugging external programming sessions

ACI_SettingsDialog
Displays the programmer Preferences
dialog.

Configure >
Preferences NA

368
106 384

379
106 384

370
198 106 385

372
106

397

377

63

379
106

370 106 386

368
106

374

58

95

93

397

369
95

383

369
95

383

379

77

Software Development Kit (SDK) 165

© 2021 Phyton, Inc. Microsystems and Development Tools

Application Control
Interface function name

Brief description Associated
windows and

dialogs

Associated Application
Control Interface

structures

ACI_SelectDeviceDialog Displays the Select Device dialog.
Select

Device
NA

ACI_BuffersDialog Displays the memory buffers setting dialog.
Buffer

Dump
NA

ACI_LoadFileDialog Displays the file loading dialog.
Buffer

Dump
NA

ACI_SaveFileDialog Displays the file saving dialog.
Buffer

Dump
NA

5.4 ACI Structures

This section provides an overview of the structures used in calls to ACI functions . Detailed
description of each structure can be found in the ACI Structures reference section.

Structure The ACI function that uses the structure

ACI_Launch_Params ACI_Launch

ACI_Config_Params ACI_LoadConfigFile , ACI_SaveConfigFile

ACI_Device_Params ACI_GetDevice , ACI_SetDevice ,

ACI_Layer_Params ACI_GetLayer

ACI_Buffer_Params ACI_CreateBuffer , ACI_ReallocBuffer

ACI_Memory_Params
ACI_ReadLayer , ACI_WriteLayer ,
ACI_FillLayer

ACI_Programming_Params
ACI_SetProgrammingParams ,
ACI_GetProgrammingParams

ACI_ProgOption_Params ACI_GetProgOption , ACI_SetProgOption

ACI_Function_Params ACI_ExecFunction , ACI_StartFunction

ACI_PStatus_Params ACI_GetStatus

ACI_File_Params ACI_FileLoad , ACI_FileSave

ACI_GangStart_Params ACI_GangStart , ACI_GetStatus

ACI_GangTerminate_Params ACI_GangTerminateFunction

Here is an example of the structure syntax:

typedef struct tagACI_Buffer_Params
{
 UINT Size; // (in) Size of structure, in bytes
 DWORD Layer0SizeLow; // (in || out) Low 32 bits of layer 0 size, in bytes
 DWORD Layer0SizeHigh; // (in || out) High 32 bits of layer 0 size, in bytes
 // Layer size is rounded up to a nearest value
supported by programmer.
 LPCSTR BufferName; // (in) Buffer name
 UINT BufferNumber; // For ACI_CreateBuffer(): out: Created buffer number

376
58

366
95

373
95

375
95

161

380

386 373

382 373 375

382 370 377

387 371

380 368 375

389
375 380

369

395
379

372

390 371 378

384 368 379

397 372

383 369 369

385 370 372

386 370

CPI2-Gx Device Programmers - CPI2-Gx166

© 2021 Phyton, Inc. Microsystems and Development Tools

 // For ACI_ReallocBuffer(): in: Buffer number to realloc
 UINT NumBuffers; // (out) Total number of currently allocated buffers
 UINT NumLayers; // (out) Total number of layers in a buffer
} ACI_Buffer_Params;

Each structure includes a number of parameters (here Size, Layer0SizeLow, NumBuffers, etc.). The
parameter's name follows its format (UINT, DWORD, LPCSTR, CHAR, BOOL, etc.). The comment to
the parameter begins with a symbol in parentheses showing the direction in which the parameter is
passed, as follows:

· (in) - the parameter is sent from the instrumental computer to the programmer;

· (out) - the parameter is sent from the programmer to the instrumental computer;

· (in || out) - the parameter can be sent in either direction, depending on the ACI function

context.

5.5 Examples

Phyton ChipProg-02 SDK comes with several usage examples of Application Control Interface
functions and structures. Examples reside in the ACI\Programmer ACI Examples subdirectory of
CPI2-Gx installation directory.

Examples are written in the C language and are projects that can be built using Microsoft Visual
Studio® 2008. Project sources can also be compiled using other C/C++ compilers, sometimes with
minor adjustments. Building a project creates a Windows console application executable.

To adjust an example project (or a part of it) for use in your application, in the main() function adjust
paths to the ACI functions. This includes paths to the CPI2-Gx executable file, to file loaded into
programmer memory buffer or saved from buffer to disk. You also have to specify real target device
type. Sample main() function fragment is shown below.

/*+ main ° 01.07.09 17:37:24*/
......

 // Launch the programmer executable
 if (!Attach("C:\\Program Files\\ChipProg-02\\6_00_01\\UPrognt2.exe", "", FALSE)) return -1;

 // Select device to operate on
 if (!SetDevice("Microchip", "PIC16C505 [ISP HV Mode]")) return -1;

 // Load .hex file to buffer 0, layer 0
 if (!LoadHexFile("C:\\Program\\test.hex", 0, 0)) return -1;

All examples use the ACI.DLL file, therefore that file must be located in the same folder where the
example executable file resides, or in a folder listed in the PATH environment variable. For provided
examples, ACI.DLL file has already been copied to the folder in which Microsoft Visual Studio creates
executable files.

Description of the Examples

Each example has an opening comment briefly describing the program purposes; more comments are
added to the code. All examples start with calling the ACI_Launch() function that launches the373

Software Development Kit (SDK) 167

© 2021 Phyton, Inc. Microsystems and Development Tools

programmer.You will have to adjust the path the CPI2-Gx executable that is passed as parameter to the
Attach() function. After that, target device type is selected; you will need to modify that accordingly.

AutoProgramming.c

This is the simplest and most frequently used example of the CPI2-Gx control by an external program.
User program launches the programmer, selects the PIC18F242 target device, loads the test.hex file
into programmer buffer, sets default programming options, and then executes a preset Auto
Programming batch of functions: Erase, Blank Check, Program, Verify.

SaveMemory.c

This example shows how to save a binary image of a device to a file on disk. First, the user program
makes sure a device is insertion into the programmer socket by calling the ACI_GetStatus(&Status)
function. After detecting correct and reliable insertion, the program reads data from the specified
address range of SST89V564RD device's memory and saves it to the file test.bin on disk.

Checksum.c

This example shows how to calculate a checksum of data read from a device. First, user program
verifies device insertion into programmer socket by calling the ACI_GetStatus(&Status) function.
After detecting correct and reliable placement, the program calculates the real size of the
SST89V564RD device flash memory by executing the ACI_ExecFunction function. It then allocates
the buffer 'buf' in the host computer memory for holding data read from the device, reads the data into
this buffer, and calculates buffer content checksum.

LongProgramming.c

This example shows how to monitor the AutoProgramming procedure that takes a long time.
Programming is launched by calling the ACI_StartFunction . Completion percentage of the operation
is then checked by calling the ACI_GetStatus function. If the operation fails, the programmer issues
an error message; otherwise operation is continued.

ProgrammingOptions.c

This example shows how to read, display, and change options set in the Device and Algorithm
Parameters Editor window. First, the program checks device insertion in the programmer's socket
by calling the ACI_GetStatus() function. After detecting correct and reliable insertion of the device,
the program reads current set of options by calling the ACI_GetProgOption() function, and prints
them the options. Then the program changes the Vpp from default value to 10.5V and disables device
Brown-out Reset feature.

5.6 API Explorer

API Explorer is a GUI application program that allows experimentation with ACI functions without writing
custom code. You can vary ACI function call parameters, study return codes, and see code in C
programming language recommended for performing function calls. API Explorer is shipped as part of
Phyton ChipProg-02 package. Figure below shows API Explorer window.

372

372

368

379

372

93

372

371

CPI2-Gx Device Programmers - CPI2-Gx168

© 2021 Phyton, Inc. Microsystems and Development Tools

The name of ACI function to call is shown In the upper left corner of the window. In the figure the
function is ACI_Launch. The drop down list contains names of other functions. Help button brings up
description of the selected function.

Below function name is the title of the structure used to pass parameters to the function. in the figure
this is ACI_Launch_Params structure. Structure body follows its name and contains field names and
types. Each field can have its value set for the function call. Input parameters are shown in bold type; on
the figure these are Size, ProgrammerExe, CommandLine и Debug.

To the right of the list of structure fields is sample code in C programming language that performs the
call with parameter passing. This code can be copied to clipboard to be pasted into user program.

To call the function, press the Call button. Results pane will show the return code, a string describing
the result, and structure field values. Output parameters that are results of the function call are shown
in black, input parameters that the function does not change are gray. To get the string description of
the result, the program automatically calls ACI_ErrorString function once the selected function returns
control.

How to set values for structure fields.

The first field of each structure is Size which is the size of the structure itself. When a function is
selected, API Explorer sets this value to the 'sizeof' of the structure; in the figure it is
sizeof(ACI_Launch_Params). This field should be left as is; while experimenting, a number can be
entered here.

If a field type is string, the text in the field can be quoted. The program missing quotation marks
automatically. The special string NULL is treated literally, as a null pointer.

Software Development Kit (SDK) 169

© 2021 Phyton, Inc. Microsystems and Development Tools

If a field type is int or Boolean, you can enter 1 or TRUE, and 0 or FALSE which will be placed as is into
generated code. In the figure TRUE value is entered in the DebugMode field.

Numeric values may be entered in decimal or hexadecimal format according to C language
conventions. An example of hexadecimal number is 0xFFF0.

Fields left blank will be set to zero. This is true also for fields of type string; for example, LPCSTR
pointers will be set to NULL, and function call will result in error.

Generated Code Fragment

As shown in the figure, the parameter structure initially is filled in with zeros:

memset(&ln_params, 0, sizeof(ln_params));

Then follows the code to set values of structure field for which values are non-empty. All other fields will
contain zeros because the structure has already been zero-filled.

Specifics of ACI_ReadLayer, ACI_WriteLayer functions

When calling ACI_ReadLayer the program allocates its own data buffer. If data size specified in
ACI_Memory_Params.DataSize field exceeds 128, the program will impose size limit if 127 cells.

To define data to be written by ACI_WriteLayer call, ACI_Memory_Params.Data must contain
hexadecimal numbers without the 0x prefix, for example: C0 03 FF. Value of the
ACI_Memory_Params.DataSize field must be equal to the count of specified numbers.

Using API Explorer

All function call are carried out and not simulated. API Explorer allocates and fills in structures and
actually calls functions in the ACI.DLL library.

When API Explorer is started, the ACI_Launch function is automatically selected because without
calling it first other functions cannot be activated. Filename of the CPI2-Gx executable is specified
without full path since it resides in the same directory as API Explorer executable. The CommandLine
field contains option /1 which launches programmer in demo mode. If you would like to use one or more
real programmers connected to the computer, option /1 must be removed.

When developing custom programs that controls programmers using ACI, please be sure to update the
library ACI.DLL and aciprog.h header file in the directories where you executables reside. The ACI.DLL
may be updated in future CPI2-Gx releases.

6 Integration with NI LabVIEW

The National Instruments LabVIEW™ (hereafter LabVIEW) is a popular graphical development
environment that makes possible integration of a variety of design, production, and testing tools. CPI2-
Gx programmers can be controlled by LabVIEW using two methods:

· ChipProg-02 Command line table;

· Application Control Interface (ACI).

375

121

159

CPI2-Gx Device Programmers - CPI2-Gx170

© 2021 Phyton, Inc. Microsystems and Development Tools

Each method is described in an appropriate section below.

The ChipProg-02 software includes a few examples of the Virtual Instrument (.VI) files.

6.1 LabVIEW Integration Using Command Line

This is the most simple way to integrate ChipProg-02 with LabVIEW that involves two steps.
· Set up a programming session using ChipProg-02 user interface.

· Operate device programmer using LabVIEW user interface.

Here is an example:

1) Create a folder for controlling ChipProg-02 software from LabVIEW user interface, for example C:
\LabView\1.

2) On Windows desktop make a copy of ChipProg-02 icon. Rename it for use exclusively with
LabVIEW. The path to the program referred to by this icon is usually "C:\Program Files\ChipProg-
02\x_xx_xx\UprogNT2.exe", where the 'x_xx_xx' is the version of ChipProg-02 software. Right-click
on the icon, select Properties, Shortcut tab, and in the Start in field change path to C:\LabView\1 as
in the following figure:

3) Power on CPI2-Gx device programmer, connect it to a USB port on your PC, and launch the
ChipProg-02 program by clicking the icon in C:\LabView\1 folder. When programmer user interface
opens, start setting programming session options by choosing the target device (for example by
pressing the F3 hot key). After choosing the device set up programming options and parameters using
ChipProg-02 windows, menus, and dialogs if these options differ from default ones. The following
options can be set within the ChipProg-02 GUI:

- Settings in the Program Manager window, such as selecting functions to be included into the
Auto Programming batch (button Edit Auto...); these include Split data, Insert test, Auto Detect, and

174

106

Integration with NI LabVIEW 171

© 2021 Phyton, Inc. Microsystems and Development Tools

other settings in the Options tab; the number of chips to be programmed during a programming
session and other options in the Statistics tab.
- Settings in the Device and Algorithm Parameters Editor window that are device-specific, such
as boot vectors, fuses, lock bits, Vcc voltage, oscillator frequencies, etc.
- Settings in the dialogs accessible via Serialization, Checksum, Log file... menu, such as
algorithms for writing serial numbers and custom signatures into the devices being programmed, buffer
checksum calculation, custom shadow areas, dumping data to log files, etc.
- Miscellaneous settings in the dialogs accessible via Preferences and Environment menus,
such as color, fonts, sounds, etc.

Complete the definition of programming session by including appropriate Command line options .

- Specifying method of control through the programming session (key /S);
- Choosing target device (key /C<manufacturer>^<device>);
- Loading the file to be programmed and its format (key /L<file name> /F<file format>);
- Specifying the Auto Programming mode (key /A);
- Launching programmer in hidden mode, when the ChipProg-02 GUI is hidden (key /I2).

Notes:
- Device specified by the /C key on command line must be the same as chosen in the ChipProg-02
user interface.
- Specifying /I2 key on command line hides ChipProg-02 application main window, suppresses display
of error messages but copies them to the Windows clipboard. If the session terminates successfully
ChipProg-02 application returns exit code 0; in case of errors exit code 1 is returned.

For example, if you want to program a HEX file myfw1020.hex located in the Program Files (x86)
\ChipProg-02\6_00_21 folder into the flash memory of a number of NXP MK20N64VFT7 [ISP EzPort
Mode] devices, then the command line should have the following format:

"C:\Program Files (x86)\ChipProg-02\6_00_21\UprogNT2.exe" /L"Program Files (x86)\ChipProg-
02\6_00_21\myfw1020.hex" /FH /C"NXP^MK20N64VFT7 [ISP EzPort Mode]" /A /I2

4) To start CPI2-Gx in command line mode use the standard LabVIEW module SystemExec.

The figure below shows a screen shot of LabVIEW GUI front panel with the cp48_01.vi module loaded.

108

110

93

63

77 79

121

108

CPI2-Gx Device Programmers - CPI2-Gx172

© 2021 Phyton, Inc. Microsystems and Development Tools

And below is the same module block diagram:

Integration with NI LabVIEW 173

© 2021 Phyton, Inc. Microsystems and Development Tools

The <CPI2-Gx starts in hidden mode, its GUI remains invisible during the programming session. If no
errors occur, the ChipProg Exit box returns exit code 0, otherwise exit code 1 is returned. The error is
displayed in the ChipProg Error box report.

6.2 LabVIEW Integration Using ACI

The ChipProg-02 software package includes the Virtual Instruments (VI) library developed in the
National Instruments' LabVIEW™ graphical development environment. It also includes a few usage
examples of these virtual instruments. The library files reside in the LabVIEW folder located in the
ChipProg-02 installation directory. The library is created using the 2013 SP1 version of LabVIEW.

The DLL control is based on use of the Application Control Interface. Each VI is a wrapper over the
appropriate function exported by the ACI.DLL library. You should be quite familiar with the Application
Control Interface in order to use the Virtual Instruments library.

Because of limitations imposed by LabVIEW on passing parameters to functions exported from DLLs,
the virtual instruments do not call the ACI.DLL functions directly. Instead, they call functions exported

174

CPI2-Gx Device Programmers - CPI2-Gx174

© 2021 Phyton, Inc. Microsystems and Development Tools

from the intermediate DLL - the ACI_LV.DLL. This DLL packs parameters into structures required by
ACI.DLL and then calls its functions. The declarations of functions exported by ACI_LV.DLL are placed
in the C/C++ header file named ACIProgLabVIEW.h.

Each virtual instrument has its own front panel. It allows calling an appropriate Application Control
Interface function. In order to do this, before launching this function, you should launch the CPI2-Gx by
means of the VI with the name ACI Launch. Each virtual instrument has input and output terminals for
inputting and outputting parameters of the ACI function served by the virtual instrument.

See the VI file examples here .

6.2.1 LabVIEW Integration Examples

The ChipProg-02 software includes a few examples of the Virtual Instrument files (VI files) that illustrate
control of the CPI2-Gx programmers by the NI LabVIEW software. These examples are located in the
folders:

- For the 32-bit LabVIEW version - C:\Phyton\ChipProg-02\x_xx_xx\LabVIEW\x86\Examples\
- For the 64-bit LabVIEW version - C:\Phyton\ChipProg-02\x_xx_xx\LabVIEW\x64\Examples\

Currently, these folders contain three Virtual Instrument examples below but Phyton may add new
examples further:

- Device Programming Example.vi
- Programming Params Control Example.vi
- Gang_serial.vi

 The Device Programming Example.vi demonstrates use of all major ACI functions, namely:

· launch a device programmer;

· load a project;

· display the device programmer buffer content in the GUI;

· display a chosen device in the GUI;

· display the device programmer socket's status (if a chosen programmer type supports this feature);

· write a serial number and increment it automatically in the device programmer buffer;

· perform programming functions on target device and display the results in the GUI;

· count numbers of successfully programmed and failed devices, and display them in the GUI;

To evaluate the example, start the CPI2-Gx and launch Device Programming Example by clicking
Run continuously button in the LabVIEW GUI. Then click the Launch Programmer button on the VI
front panel. This will open front panel of the virtual instrument ACI Launch. Enter full path to the
ChipProg-02 executable file, for example: "C:\Program Files\ChipProgUSB\6_00_00\UprogNT2.exe"
and (optionally) specify the command line parameters. To avoid prompts to restart programmer you
can specify the path to the UprogNT2.exe in a constant string in the virtual instrument diagram and un-
check the Prompt for programmer name, switches, etc... box on the front panel (see the diagram
below).

174

174

176

Integration with NI LabVIEW 175

© 2021 Phyton, Inc. Microsystems and Development Tools

After launching the programmer its current status becomes visible in the virtual instrument's front panel.
Clicking the Start button launches the operation with the name that you can enter into the Function
Name field, for example: Blank Check. If the Function Name field is left blank, the programmer will
execute Auto Programming function. This process is illustrated in figures below.108

CPI2-Gx Device Programmers - CPI2-Gx176

© 2021 Phyton, Inc. Microsystems and Development Tools

 The Gang_serial.vi example is a modification of the Device Programming Example described
above and illustrates of how to operate with multiple CPI2-Gx device programmers running in the gang
programming mode (or gang mode). The structure of the Gang_serial example is identical to the
structure of the Device Programming Example.

To add a new site:

1. Copy all the contents of the last "case" structure containing the "Get status" function to a free space.
Create a new "case" inside the structure and paste the copied data into it. Attach the data outputs in the
same manner as in the previous "case" (it is necessary to copy and paste instead of duplicating the
"case" entirely because copy/paste creates new variables required for the program to work. Duplicating
the "case" will use old variables.

2. Create local variables from the newly created 'Total', 'good', 'bad' (Right Mouse Button (hereafter
RMB) - > Create - > Local variable. Add them to
the event structure of the "Clear all" event. Connect these variables just like others.

3. Create a local variable from the new 'Executing' element in the 'Read' mode. Include it into the
iteration block via the logical 'OR' just like the other 'Executing' variables are.

4. Copy and paste the last (by number) 'Program Site' button. Duplicate the last (by number) "case" of
the "Program site value change" in the event structure. As a condition set a change of the newly
created button value.

When adding new ACI Functions make sure to set the correct site number in the appropriate
variables. (Steps 1, 4 in particular).

The last thing to do is to arrange all new indicators on the front panel.
Adding "site online" light is optional.

198

366

Scripting 177

© 2021 Phyton, Inc. Microsystems and Development Tools

7 Scripting

7.1 Scripting Overview

ChipProg-02 application can execute commands contained in script files. Scripting is a convenient
way to automate programming process when using CPI2-Gx programmers.

Scripts can be used to perform various operations, such as automatically load data into memory buffers,

calculate checksums, initiate device programming, pause programming in case of an error, manipulate
windows, and others.

For the purpose of customizing CPI2-Gx user interface (and for debugging purposes) scripts can create additional

windows of two types: the User window and the I/O Stream window . Scripts can also create
custom menus.

Scripts can send messages to Console window or to User window created from within the
scripts. User windows can display text and graphical data.

ChipProg-02 scripting language is similar to C programming language; most C language features are
supported, except structures and pointers. However, there are some differences . The scripting
subsystem supports many built-in functions, such as printf(), sin() and strcpy().

Scripts are stored in files with filename extension .CMD.

The scrips controls and associated dialogs and windows are concentrated under the Script menu .
The major dialog that controls scripts is the Script Files dialog .

How to write a script file

Script is similar to a in C language program. You can use the ChipProg-02 built-in editor or any other text
editor to create or edit scripts. You can store script files in your working directory or in the ChipProg-02
installation directory.

Note that you must not use special characters (braces, dash, etc.) in the script file names.

How to run a script file

To start, stop, restart, and debug a script file use the Script Files dialog .

The Reference section contains detailed information about scripting.

7.1.1 Simple example

This sample script loads a file, performs automatic programming, and displays the result.

 #include <system.h>
 #include <mprog.h>

 void main()
 {

 LoadProgram("test.hex", F_HEX, SubLevel(0, 0)); // load file "test.hex" that is an Intel
HEX file
 // to buffer 0, sub-level 0

181 181

104 181

206

88

179

185

179 179

CPI2-Gx Device Programmers - CPI2-Gx178

© 2021 Phyton, Inc. Microsystems and Development Tools

 InsertTest = TRUE; // set testing of chip presence
to "on"
 if (ExecFunction("Auto Programming") == EF_OK) // perform an automatic programming
 {
 if (ExecFunction("Verify", SubLevel(0, 0), 10) != EF_OK) // verify 10 times
 {
 printf("Verify failed: %s", LastErrorMessage); // display error message if verify failed
 return; // terminate script
 }
 printf("Verify ok."); // display Ok result
 }
 else
 printf("Programming failed: %s", LastErrorMessage); // display error message
 }

7.2 The Startup Script

When the ChipProg-02 application starts, it automatically runs the start.CMD script if it exists. This is similar to
execution of the autoexec.bat file in Windows. ChipProg-02 first looks for start.CMD file in the current directory; if
it is not found, ChipProg-02 then looks for start.CMD in its installation directory. If the START.CMD is not found, the
default CPI2-Gx GUI shell will open.

7.3 Running Scripts

Scripts can be started and restarted in several ways. The easiest one uses the commands of the Script
Files dialog. A script can be also be started by calling the StartCommandFile() function from another
script.

179

Scripting 179

© 2021 Phyton, Inc. Microsystems and Development Tools

7.3.1 The Script Files Dialog

This dialog is used to start, stop, and debug scripts.

In the top pane of this dialog you see the list of loaded script files along with the state of each script. A script
can be in one of the following states:

State of Script Description

Stopped Execution of the script file is temporarily stopped.

Running The script file is being executed.

Waiting The script is waiting for an event. This state is initiated by calling certain wait
functions in the script file text (for example, Wait).

Cancelled The script execution is terminated, but the script file is not yet unloaded from
the memory.

To select a script highlight its name in the window. The four buttons on the right of the list affect the highlighted
script:

CPI2-Gx Device Programmers - CPI2-Gx180

© 2021 Phyton, Inc. Microsystems and Development Tools

Button Description

Terminate Unloads the selected script file if it can be unloaded. Otherwise, it sets up the
Unload Request flag for the selected script that then goes to the Canceled
state.

Terminate All Unloads all script files visible in the window.

Restart Restarts the highlighted script.

Debug Switches to the Debug mode for the highlighted script. This command stops
execution of the script and opens it in the Script Window for debugging. If
the script is in the wait state, execution will be stopped immediately after the
script returns from the Waiting state.

When you use several script files simultaneously and unload or restart some of them, remember that script files
can share global data and functions. If one script accesses data or functions belonging to a script that is
already unloaded, the script interpreter will issue error messages and the active script will also be unloaded
(terminated).

The buttons and fields in the lower part of the dialog box determine how scripts are run:

Dialog Control Description

Script File Name Specifies the filename of the script for loading. You may type in file name with
full path, or select it from the drop-down history list, or browse files on disk.

Browse Opens the Load/Execute Script File dialog for locating and loading script
files into the Script File Name box.

Defines Defines preprocessor variables. For more information, see Preprocessor
Variables below.

#include-file
Directories

Specifies directories to search for files specified in the #include <file_name>
directive(s). To specify more than one directory separate them by semicolons.
The current directory is searched as well.

Debug (open Script
Source window)

If this box is unchecked, a script file automatically start execution upon the
file loading. If the box is checked, then upon loading script file a window for
debugging is opened. See also How to Debug a Script File .

Auto-save Script File
Sources

If this box is checked, clicking the Start button automatically saves the source
texts of all script files visible in the Script Source windows.

Start Starts the script file specified in the Script File Name box.

Preprocessor Variables

The content of the Defines text box is equivalent to the #define directive in C language. For example, if you type
DEBUG in this text box, the result will be as if the #define DEBUG directive is placed in the first line of the
script source.

You can use Defines to specify values for variables. For example, DEBUG=3 is equivalent to #define DEBUG 3.

You can list several variables in a line, separated by semicolons. For example:

DEBUG;Passes=3;Abort=No

Also, see Predefined Symbols at the Script File Compilation .

182

181

232

Scripting 181

© 2021 Phyton, Inc. Microsystems and Development Tools

7.3.2 The User Window

User window is a window created by calling built-in OpenUserWindow function from within a script. User
window provides the following functionality:

· displaying text;
· displaying graphics (indicators, LEDs, buttons, arrows, etc. by calling built-in graphic functions);
· responding to events (see WaitWindowEvent).

These capabilities allow write scripts working in interactive mode.

All functions working with windows (including User windows) take window identifier (handle) as a parameter.
Because of this you can have several windows of the same type open at the same time.

User window does not have context menu. However, it provides a toolbar with 16 buttons (0...F), and each
button can be programmed to perform a certain function. Pressing a button generates the
WE_TOOLBARBUTTON event.

7.3.3 The I/O Stream Window

 I/O Stream window is created by calling built-in OpenUserWindow function from a script. Script use
windows of this type to display text I/O streams. The most common examples of I/O streams are the
characters input from PC keyboard and text messages output by the script. Also, you can assign I/O streams
to files and input data from those files.

Functions that operate on windows (including the I/O Stream window), receive window identifier (handle) as a
parameter. Therefore, several windows of the same type can be open simultaneously.

When a function sends some text to this window, the text is appended at the current cursor position. To start
the next line the function outputs '\n' (line feed character).

 I/O Stream window features two text display modes, with or without automatic line advance (wrap). In
automatic line feed mode, text that does not fit into current line is wrapped to the next line. If auto wrapping
mode is off, then a line that does not fit in the window it is truncated. The Wrap button in the toolbar toggles the
this modes. The Clear button clears the window contents.

Windows of this type do not have context menu.

7.4 Debugging a Script

A script can be started in Debug mode. This is usually necessary while you test the script to see if it works
properly, and make necessary corrections. To start a script in debug mode, highlight its name in the Script Files
dialog and click the Debug button. This brings up the Script Window .

The ChipProg-02 application is designed for source-level debugging. Scripts are debugged in the same way the
programs are debugged, executing script step-by-step or up to cursor, setting breakpoints, watching variable
values, etc. Debugging process uses Script Source and Watches windows. If the Debug option is set in the
Script Files dialog , the Script Source window opens automatically when starting the script.

When the StartCommandFile() function in a script is called to start another script, you can specify parameter
instructing it to start the new script in debug mode and open the Process window.

To view the value of a script variable in the Watches window , use the Add Watch command in the Script
window menu or the Add Watch toolbar button. This can also be done manually in the Watches window. For
example, if you need to view the value of the addr variable, which is used in a script named TEST, place the
#TEST#addr construct in the Watches window. If addr is declared public, that is, outside the function, then it
should be written as ##addr.

179 182

182

179 179 182

183 183

CPI2-Gx Device Programmers - CPI2-Gx182

© 2021 Phyton, Inc. Microsystems and Development Tools

7.4.1 The Script Window

The Script window is divided into two panes; the left pane displays the script source, while the right pane is the
AutoWatches pane .

Syntax constructions and the lines that correspond to the current Program Counter (PC) value (blue strip) and the
breakpoints (red strips), are highlighted in the script file text (for more information, see Syntax Highlighting).

Note. To get help on a function or a variable, click mouse button on the function or variable name in the script
source.

7.4.1.1 Menu and Toolbar

The context menu contains the following commands, most of which are duplicated by the toolbar.

Menu Command Toolbar Button Description

Step Step Executes one operator of the script.

Run Run Starts continuous execution of the script in the window.
The script execution can be stopped either by reaching
a breakpoint or by the executing Stop command.

Run to Cursor Executes the script up to the line containing cursor.
Alternatively, you can double-click the line to carry out
this command.

Stop Stops the running script.

Origin Origin Shows script source from the line whose address
corresponds to the script file Program Counter. This
operation is not available when source lines do not exist
for the program addresses.

183

190

Scripting 183

© 2021 Phyton, Inc. Microsystems and Development Tools

New PC New PC Sets the script’s Program Counter to the address
corresponding to the line containing cursor.

Toggle Breakpoint Break Sets or clears breakpoint at the address corresponding
to the line containing cursor. When you execute the
Run or Run to cursor command, the program execution
will be stopped at the breakpoint.

Add to Watches
Window

+Watch Opens the Watches window (if not already open)
and places the name at the cursor into it.

Restart Restart Restarts execution of the highlighted script.

7.4.1.2 The AutoWatches Pane

The ChipProg-02 application displays the visible portion of the script in the Script window. The names of
variables, called AutoWatches, which belong to the visible script lines, are listed along with their values in the
right pane of the window. When you scroll through the Script window, contents of the AutoWatches pane
refreshes automatically.

The AutoWatches can be displayed in binary, hexadecimal, decimal or ASCII format. To select a format, click on

the Setup toolbar button or right click anywhere in the pane to open context menu.

7.4.2 The Watches Window

AutoWatches pane of the Script window displays values of currently visible script variables. In addition, you
may want to monitor other explicitly specified script variables and expressions . To do so, ChipProg-02
provides the Watches window. For each variable, the window displays its name, value, type and address, if any.

A newly opened Watches window has one Main tab. You can add custom tabs (using Display Options
command in context menu) or rename any existing tabs. The tabs operate independently of each other, each tab
being functionally equivalent to a separate Watches window. However, if desired, you can open several Watches
windows.

Each Watches window has the +Watch toolbar button. Clicking on this button opens a dialog for adding a
selected object to the Watches window.

Grids in the Watches Window

For better readability, the Watches window can be divided into cells by vertical and horizontal grid lines. Enable
the grid by checking the corresponding boxes in the Configure menu > Environment > Fonts tab.

Context Menu

The window context menu contains the following commands, most of which are duplicated by toolbar buttons.

Command Description

Add Watch Adds one or more objects to the window. Opens the Add Watch dialog to
choose an object by name. Also, you can enter an expression as a name.

183 183

183

203

185

203

CPI2-Gx Device Programmers - CPI2-Gx184

© 2021 Phyton, Inc. Microsystems and Development Tools

Delete Watch Deletes a selected object from the Watches window.

Delete All Watches Deletes all watches from the window.

Modify Opens the Modify dialog to set a new value for a selected variable. Alternatively,
just enter the new value.

Move Watch Up Moves selected watch up the list.

Move Watch Down Moves selected watch down the list.

Display Options Opens the Display Options dialog to change the display settings for selected
object and also to add/delete tabs to/from the window.

7.4.2.1 The Display Watches Options Dialog

Use this dialog to set the display options for the selected variable or expression in the Watches window.

Dialog Control Description

Watch Expression Contains selected expression. The drop–down list contains the previously
used expressions.

Display Format Specifies the format for displaying selected expression (binary,
hexadecimal, decimal, or ASCII).

Pop-up Description Contains check boxes that choose format for displaying pop-up SFR
descriptions.

Display Bit Layout If this box is checked the SFR bits will be displayed in the pop-up layout
descriptions.

Display Bit Descriptions Checking this box enables displaying the pop-up descriptions for the SFR
bits, if any.

Auto-size Name Field When this box is checked and when vertical grid is visible (see note
below), the window automatically adjusts the Name column width to fit
the longest record in the column.

Tabs Lists all tabs present in the window.

Add Tab Opens the Add New Tab to Watches Window dialog for entering a new
tab name. The window adds the new tab upon pressing OK.

Remove Tab Removes the tab selected in the Tabs list.

Edit Tab Name Opens the Edit Watch Window Tab Name dialog for editing tab name.

Global Debug/ Display
Options

Opens Debug Options dialog.

Note. To make grids visible in the Watches window, open Configure menu, the Environment dialog, the
Fonts tab and check the corresponding boxes in the Grid field.

184

203 183

57

80

Scripting 185

© 2021 Phyton, Inc. Microsystems and Development Tools

7.4.2.2 The Add Watch Dialog

Use this dialog to add symbol names (for example, a variable name or an expression) to the Watches
window. The dialog contains a list of symbol names defined in, or known to, the program.

Dialog Control Description

Name or expression to
watch:

Enter the symbol name or expression to be added. You can specify
several names and expressions either manually (separated with
semicolons) or by selecting from the list with the Ctrl key pressed.

History List of previous names and expressions.

7.5 Script Editor

A script is similar to a source program written in C programming language. Scripts can be created and edited
using ChipProg-02 built-in editor described below or by using any other text editor. Scripts can be stored as
files in your working directory or in the directory where the ChipProg-02 is installed.

To open a built-in editor select Script menu > Editor window. The Editor toolbar that contains all buttons
related to editing is normally hidden. To customized editor toolbar right click on a blank area in the main toolbar,
select Customize in the drop-down menu, and check the boxes for editor functions that you want to make
visible.

To create a new script file and open it for editing, select Script menu > Editor window > New. This will open
a blank window shown below. Right clicking in the window brings up the Editor menu with buttons you can add
to the local Editor toolbar. On the figure the toolbar is shown above the window.

203

CPI2-Gx Device Programmers - CPI2-Gx186

© 2021 Phyton, Inc. Microsystems and Development Tools

Now you can edit the script in the window.

Note that you should not use the punctuation characters (braces, dash, etc.) in the script file name.

To finish editing click on the Save button in the Editor toolbar, the program will prompt you for script file name
and location.

Scripting 187

© 2021 Phyton, Inc. Microsystems and Development Tools

7.5.1 The File Menu

Commands in this menu act on the currently active Edit window.

Button Command Description

New Opens the Editor window for a new script file.

Open... Brings up Open file dialog to load a script file for editing. The file
name and path can be either entered or browsed here.

Save Saves contents of the active window to a file on disk.

Save As... Opens the Save as... dialog.

Print Opens standard Print dialog for default printer. You can print entire
file or just the selection.

Properties.. Common properties for open files.

7.5.2 The Edit Menu

Commands of this menu act on the active Edit window.

Button Command Description

Undo Undoes the last text editing action performed in this window. For
example, if the last action deleted a line, then deleted line will be
restored. The number of steps provided by the Undo function is set in
the of the Configure > Editor Options > General tab.

Copy Copies selection to clipboard. The text format in the clipboard is
standard and the copied block is accessible to other programs.

Cut Moves selection to clipboard..

Paste Pastes text from clipboard, starting at the cursor position.

Clipboard
History/
Repository

Opens the Clipboard History/Repository dialog.

Append to
Clipboard

Copies and appends selection to clipboard contents.

Cut & Append to
Clipboard

Cuts selection and appends it to clipboard.

Fast Copy Copies selection to a specified position in the same window.

Fast Move Moves a block from one position in a window to another position in the
same window.

187

187

187

83

CPI2-Gx Device Programmers - CPI2-Gx188

© 2021 Phyton, Inc. Microsystems and Development Tools

Block Off Unmarks a marked text block.

Search Opens the Search for Text dialog.

Next Search Repeats search with parameters used in the previous search.

Replace Opens the Replace Text dialog.

Display Multi-file
Search Results

Re-opens the last multi–file search results in the Multi-File Search
Results dialog.

Display from line
number...

Opens the Display from Line Number dialog for you to specify a
line number. Source text will be displayed from this line.

Set bookmark... Opens the Set Bookmark dialog to set a local bookmark.

Retrieve
bookmark

Opens the Retrieve Bookmark dialog to retrieve a local
bookmark.

Condensed mode Toggles Condensed display mode on and off.

Condensed mode
setup

Opens the Condensed Mode Setup dialog.

Line numbers
on/off

Toggles line numbers on and off.

Return to last
editing context

 Activates the most recently edited Source window, and places the
cursor in its final position during the edit.

7.5.3 Block Operations

Block operations are operations on blocks of text. The script Source window supports persistent blocks and
performs a full range of operations with standard (stream), vertical (column) and line blocks of text.

Non-persistent blocks In this mode, once a block is marked, you have to immediately carry out an operation
with it (delete, copy, etc.). Any movement of cursor turns the marking off. If a block is marked, then any entered
text will replace the block with the typed text.

Persistent blocks In this mode, the block remains marked until the marking is explicitly removed (hot key
Shift+F3) or the block is deleted (Ctrl+X). The Paste operation for persistent blocks has certain specifics. Two
additional block operations are available for persistent blocks: fast copy and fast move. These operations do not
use clipboard and require fewer keyboard manipulations.

To enable persistent block mode check corresponding box in the Main menu > Configure>Editor Options>
General tab.

Standard blocks A standard (stream) block contains a "text stream" that begins at the initial line/column of the
block and ends at the final line/column.

The Standard blocks mode is enabled by default.

Line blocks A line block consists of lines of text. To mark a line block, put the cursor anywhere in the first line
and press Alt+Z; then put the cursor anywhere in the last line of the block and press Alt+Z once more (the
latter is not necessary if the block is to be immediately deleted or copied to the clipboard).

Line blocks are always available.

191

192

193

195

194

194

189

195

83

Scripting 189

© 2021 Phyton, Inc. Microsystems and Development Tools

Vertical blocks - A vertical block contains a rectangular text fragment. Characters within the block that go
beyond line ends are considered to be spaces.

 Vertical blocks are convenient in cases like the following:

char Timer0 far ;
char Timer1 far ;
char Int0 far ;
char Int1 far ;

Assume the word "far" is to be moved to the place right after the word "char" in each line. The stream blocks
are of little help here. However the task can be easily done with one vertical block. Mark the persistent vertical
block containing the word "far" in each line, place the cursor on the first letter of word "Timer0" and press
Shift+F2 (fast move the block):

The Vertical Blocks checkbox in the the Main menu > Configure>Editor Options> General tab
toggles between the vertical block and the stream block modes. Standard blocks are enabled by default; i.e. the
Vertical Blocks checkbox in the Editor Options dialog is unchecked by default. Line blocks are always
accessible, independent of the state of the Vertical Blocks checkbox.

To mark a block, move the mouse while pressing its left button or use the arrow keys on the keyboard while
holding the Shift key. To unmark the block, press Shift+F3.

Copying / moving blocks

A marked block can be copied or moved in two ways within the same Source window: directly (fast copying,
fast moving) or using clipboard (Copy/Cut/Paste). Copying and moving blocks across Source windows or to
another application is always done using clipboard.

Note. The result of copying a stream or vertical non-persistent block depends on the INSERT mode. If the mode
is enabled, the block is inserted into the text starting at the cursor position; otherwise the copied block
overwrites the text in an area of equivalent size.

Fast copying / moving

Fast copying or moving of the blocks in the same window happens without the use of clipboard. It is convenient
because it requires pressing the keys only once per operation. Mark a persistent block, then place the cursor to
the destination position and press Shift+F1 to copy, or Shift+F2 to move the block.

7.5.4 Condensed Mode

In the Condensed mode, only lines that satisfy a specific criterion are displayed in the window. There are two
available criteria:

· Line must contain the given substring;
· The first non-space character in a line must be at a specified position (column).

83

CPI2-Gx Device Programmers - CPI2-Gx190

© 2021 Phyton, Inc. Microsystems and Development Tools

Examples:
(a) with the substring criterion and the substring set to "counter," only the lines containing the word "counter"
are displayed;
(b) with the second criterion and the position set to four, only the lines in which text starts at column 4 will be
displayed.

Condensed mode brings lines having some common feature to "one place." If you attentively follow the rule to
begin a declaration of data at position 2, procedures at position 3, and interrupt handlers at position 4,
Condensed mode will help you find necessary declaration. If you comment certain lines with the same or similar
comments and use the Condensed mode with substring, you will be able to benefit from your composing style.
In Condensed mode, you can move the cursor just the same way as in normal mode.

The criterion for display is set in the Main menu > Script > Text Edit > Condensed Mode Setup dialog.
To toggle Condensed mode on/off, use the Edit menu command, the Condensed Mode command of the local
menu or the F12 hot key. To exit Condensed mode, press Esc; at exit the cursor returns to the position at
which it was before the mode was turned on. To exit condensed mode leaving cursor in the same line as while
in the mode, press Enter or begin editing the line.

7.5.5 Syntax Highlighting

When the Source window displays script source, it marks certain language constructs with different
colors. This feature improves readability. The following constructions are highlighted:
· Punctuation and special characters: () [] { } . , : ; etc.
· Comments starting with // are highlighted.
· Comments enclosed in the /* */ pairs are highlighted only if the opening and closing pairs are placed in the

same line.
· Strings enclosed in double or single quotation marks.
· Keywords of the scripting language (for, while, and so on).
· Type names of the language (char, float, and so on).
· Library function names (printf, strcpy, and so on).

You can disable syntax highlighting through the Main menu > Configure>Editor Options> General
 tab>Syntax Highlighting flag. In addition, you can change the color of each construction; to do so use Main
menu > Configure> Environment > Colors tab.

7.5.6 Automatic Word Completion

It is normal for words (labels, names of variables) to be repeated within some part of a file; the Source window
helps you typing such word.

When the cursor is at the end of line being composed, upon typing a letter the editor scans the text above and
below the current line. If a word beginning with the letters you just typed is found, the editor will "complete" this
word for you by writing the remaining part of the word from the current cursor position. To accept the completion
press Alt+Right (Alt+<right arrow>) and the editor will append the remaining part of the word to the text as if
you have typed it yourself. To discard completion, just continue typing and the editor will accept whatever you
type. At any point during typing you may press Alt+Right to accept editor’s completion suggestion.

You can press Alt+Right at any time (not only when the editor offers you to complete a word). In this case the
editor will open a list of words that begin with the typed letters. If the list does not contain an applicable word,
just ignore the prompt. The right pane of the Source window, if it is open, also displays the word completion list.

To disable automatic word completion, uncheck the Automatic Word Completion box in the Main menu >
Configure>Editor Options> General tab. When the box is checked, a number placed in the Scan
Range box defines the number of lines for the editor to scan. The default is 24 lines below and 24 lines above
the current line. When this parameter is greater than the total number of lines in the file (for example, 65535),
then program composing will become slower because the whole file will be scanned.

195

187

83

80

83

Scripting 191

© 2021 Phyton, Inc. Microsystems and Development Tools

7.5.7 The Quick Watch Function

The Quick Watch function works as follows: if you roll the mouse pointer over a variable name in the Source
window or the Script Source window, a small box containing the value of the variable will be opened. This box
disappears upon moving the mouse off the object.

7.5.8 Dialogs

This section describes dialogs used by Script Editor.

7.5.8.1 The Search for Text Dialog

This dialog sets criteria to search for text in files. This dialog and the Replace Text dialog have a number of
features in common. To specify file names, you can use one or several wildcards. Also, the names may contain
paths. You can search more than one file by using parameters of the Multi-File Search area.

Dialog Control Description

String to Search for Text to search for.

Case Sensitive Unchecked by default. Checking this box makes the search case sensitive.

Whole Words Only Unchecked by default. If checked, the editor will search only for whole words:
the string will be found only if it is enclosed between punctuation characters or
delimiters (spaces, tabs, commas, quotation marks, etc.).

Regular Expressions Unchecked by default. Checking off this box specifies that the search string is a
regular expression .

Global Search entire file for the string. Enabled by default.

Selected Text Search for string in the selected block.

From Cursor Search from the current cursor position.

Entire Scope Search from the beginning or end of the file (depending on the search direction).
Enabled by default.

Perform Multi-File
Search

If checked, the editor will search in all project files (see the notes below). If
unchecked, the search will be performed in current Source window only.

Search All Source
Files in Project

If checked, the editor will search in all the source files included in the project.

Include
Dependency Files

If checked, the editor will search in all the source files included in the project
and all files on which the source files depend, whether explicitly or implicitly.

Search Wildcard(s) Check this box to search for one or several wildcards specifying the files to be
searched. Separate wildcards with semicolons. No quotes are required to
denote Windows-style long names. Example: *.txt;*.c;c:\prog*.h.

This option and the Search All Source Files in Project option act
independently of each other: you can search in all files of the project AND in
other files that comply with the specified wildcard(s).

Search
Subdirectories

If checked, the editor will search in subdirectories of all directories specified by
the Search All Source Files in Project option and by wildcards.

Starting Path Begin search from the directory specified in this text box. This directory serves
as the common path and is useful when there are several wildcards such as the
following ones:

194

CPI2-Gx Device Programmers - CPI2-Gx192

© 2021 Phyton, Inc. Microsystems and Development Tools

c:\prog\text\source*.txt;c:\prog\text\source*.doc

In this case, make use of wildcards (*.txt;*.doc) and common path

(c:\prog\text\source).

Notes

1. When you search in the file opened in the Source window, then only the window buffer will be searched, not
the file on disk.

2. Multi-file search is performed in all source files of the project. Upon finishing, the Multi-File Search
Results dialog remains open.

7.5.8.2 The Replace Text Dialog

This dialog sets parameters for search-and-replace operation. This dialog and the Search for Text dialog have
a number of common parameters, which function in the same way in both dialogs. To specify file names, you
can use one or several wildcards. Also, the names may contain paths. You can search in more than one file at
once by using parameters of the Multi-File Search area.

Element of dialog Description

Text to Search for Specifies the text string to look for (search string).

Replace with Specifies the text string to replace the found one.

Case Sensitive Unchecked by default. Checking this box specifies that the case of the string is
to be matched.

Whole Words Only Unchecked by default. If checked the editor will search only for whole words: the
string will be found only if it is enclosed between punctuation or separation
characters (spaces, tabulation symbols, commas, quotation marks, etc.).

Regular
Expressions

Unchecked by default. Checking of this box specifies that the search string is a
regular expression .

Prompt at Replace Checked by default. If checked, the editor will always pop up the Confirm
Replace dialog requiring your permission to replace the found text. If
unchecked the editor will automatically replace the searched-and found text.

Global Search entire file for the string. Enabled by default.

Selected Text Search in selected block.

From Cursor Search from current cursor position.

Entire Scope Search from beginning or end of the file (depending on the search direction).
Enabled by default.

Perform Multi-File
Search and
Replace

Checked by default. If checked, the editor will search in all project files (see the
notes below). If unchecked, the search will be performed in the current Source
window only.

Search All Source
Files in Project

If checked, search in all the source files included in the project.

Include
Dependency Files

If checked, search in all the source files included in the project and all files on
which the source files depend, whether explicitly or implicitly.

Search Wildcard(s) Check this box to search for one or several wildcards specifying the files to be
searched. Separate wildcards with semicolons. No quotes are required to

193

194

193

Scripting 193

© 2021 Phyton, Inc. Microsystems and Development Tools

denote Windows-style long names. Example: *.txt;*.c;c:\prog*.h.

This option and the Search All Source Files in Project option act
independently of each other: you can search in all files of the project AND in
other files that comply with the specified wildcard(s).

Search
Subdirectories

If checked, search in subdirectories of all the directories, which are specified by
the Search All Source Files in Project option and by wildcards.

Starting Path Begin search from the directory specified in this text box. This directory serves
as the common path and is useful when there are several wildcards such as the
following ones:

c:\prog\text\source*.txt;c:\prog\text\source*.doc

In this case, make use of wildcards (*.txt;*.doc) and common path

(c:\prog\text\source).

Notes

1. When you search in the file opened in the Source window, then only the window buffer will be searched, not
the file on disk.

2. Multi-file search is performed in all source files of the project. Upon finishing, the Multi-File Search
Results dialog remains open.

7.5.8.3 The Confirm Replace Dialog

This dialog asks permission to replace the found string. You can turn the prompt on/off by checking/clearing the
Prompt at Replace box in the Replace Text dialog.

Button Function

Yes Replace the found string.

No Cancel this replacement. If the procedure is started with the Change All
button for all occurrences in the search area, then the search-and-replace
process will continue.

Non-Stop From this moment, replace all found strings in this file without prompt.

Cancel Cancel the search-and-replace process.

Skip this File Stop searching in this file and switch to the next one.

Replace in All Files Replace all occurrences in all other files without asking for confirmation.

Move cursor to the
Yes/No Buttons

If checked, the cursor will be automatically placed on the Yes button on
each inquiry for confirmation.

7.5.8.4 The Multi-File Search Results Dialog

This dialog displays the multi-file search results. To learn about the multi-file search, see the Search for
Text dialog.

The List of Matched Files shows files in which the search string is found. File name is on the left and its
directory is on the right. The line with green text beneath this box displays information about the file selected in
the box. "File in memory" means that the file is opened in the Source window. General information from FAT
means the file is on disk, not loaded. The Preview area shows the source line with the found text string.

193

192

191

CPI2-Gx Device Programmers - CPI2-Gx194

© 2021 Phyton, Inc. Microsystems and Development Tools

The Sort Files by area includes a radio button with four file sorting options. When the Consider Directory box
is checked, the files are sorted with respect to their directories.

The Edit button opens selected file in a new Source window and places the cursor on the line with the found
string. The found string background is highlighted. To check for other occurrences of the search string in the file,
press Ctrl+R or use the Next Search command of the Edit menu.

The Close button closes the dialog but search results are not lost. To reopen the dialog use the Display Multi-
file Search Results button. You can also use the same command of the Edit menu or press Shift+F5. The
files in the List of Matched Files box, which are opened in the Source window, will be marked with asterisks
on the left.

7.5.8.5 Search for Regular Expressions

Text editor supports "regular expressions." Regular expressions contain control characters in the search string:

? Means any one character in this place. Example: if you specify ?ell as the search string,
then "bell," "tell," "cell," etc. will be found.

% Means beginning of line. The characters following '%' must begin from column 1. Example:
%Counter - find the word "Counter," which begins at the first column.

$ End of line. The characters preceding the '$' should be at the trailing positions of the line.
Example: Counter$ - find the word "Counter" at the line end.

@ Match the next character literally; '@' lets you specify the control characters as usual
letters. Example: @? - search for the question mark character.

\xNN The hexadecimal value of the character. Example: \xA7 - find the character with the
hexadecimal code of A7.

+ Indefinite number of repetitions of the previous character. For example, if you specify
1T+2, then the editor will find the lines containing "1" followed by "2", which are separated
with any number of the letter T.

[c1-c2] Match any character in the interval from c1 to c2. Example: [A-Z] means any letter from A
to Z.

[~c1-c2] Match any character whose value is outside the interval from c1 to c2. Example: [~A-Z]
means any character except for the uppercase letters.

text1|text2 The "|" character is the logical "OR" and the editor will look for either text1 or text2.
Example: LPT|COM|CON means search for "LPT" or "COM" or "CON."

7.5.8.6 The Set/Retrieve Bookmark Dialogs

Bookmarks help you return to a marked cursor position in a source file.

You can set and retrieve up to 10 local bookmarks. Every local bookmark has an individual numbered button
assigned to it.

To open the Set Bookmark dialog, press Alt+[. To open the Retrieve Bookmark dialog, press Alt+]. To
set/retrieve a bookmark, press its numbered button. The number of the bookmarked line, the bookmark position
in the line (in brackets) and the text of the line are shown at the right of the button.

Local bookmarks are stored in the configuration file and you can work with them in the next session.

Scripting 195

© 2021 Phyton, Inc. Microsystems and Development Tools

7.5.8.7 The Condensed Mode Setup Dialog

This dialog sets up the parameters for the Condensed mode of the Source window.

Display Lines of Text area has radio buttons for switching between two alternative criteria for condensing text
in the Source window: Containing String and Where First Non-blank Column Is:

1. If you check the Containing String radio button, Source window displays only lines with text that matches
the sub-string specified in the text box at the right. Additionally, you can specify case-sensitivity, that whole
words only should be used, and that the sub-string is a regular expression .

2. If you check the Where First Non-blank Column Is radio button, the Source window will display the lines
where text begins from the position specified in the Column box. Then you should select one of four options by
checking an appropriate radio button:
· Equal to - the first non-space character should be exactly in the specified column. For example, if you

specify position number 2, the window will display only the lines whose text begins in column 2.
· Not Equal to - the first non-space character should be in any column except the position specified here. For

example, if you specify position number 2, the window will not display all the lines beginning in this column.
All other lines will be displayed.

· Less than - display only the lines in which text begins at a position less than the specified one.
· Greater than - display only the lines in which text begins at a position greater than the specified one.

Once setup is complete click OK to switch the Source window into Condensed mode.

7.5.8.8 The Display from Line Number Dialog

Use this dialog to display source file in the active Source window starting with specified line. Enter the line
number or select any previous number from the History list. Line numbers start with 1.

8 Reference

8.1 How to ...

This chapter describes typical operations with a one selected programming module of a CPI2-Gx
gang programmer running in the Single Programming control mode .. The description refers to
the operation made withing the ChipProg-02 GUI , only.

8.1.1 How to check if device is blank

1. Select the target device type: press the Select Device button in the Main toolbar or select
command Main menu > Configure > Select device.

2. Connect a CPI2-Gx programmer to the device.

3. a) Click the Check button on the main toolbar, or
 b) Double click on the Blank check function line in the Function list of the Program Manager
window, or
 c) Select the Blank check function line in the Function list of the Program Manager window
and click the Execute button, or
 d) Select the Main menu > Commands and click on the Blank check line.

Wait for the message Checking … OK in the Program Manager window, or for the warning
message if the device is not blank.

189 187

194

187

30

120

105

105

105

CPI2-Gx Device Programmers - CPI2-Gx196

© 2021 Phyton, Inc. Microsystems and Development Tools

8.1.2 How to erase a device

1. Make sure the device is electrically erasable. Some devices are not erasable; these may be
programmable once or over-writable – in this case the Erase button is disabled (grayed out).

2. If the device is electrically erasable:
 a) Click the Erase button on the main toolbar or
 b) Double click on the Erase function line in the Function list of the Program Manager
window or
 c) Select the Erase function line in the Function list of the Program Manager window and
click the Execute button or
 d) Select the Main menu > Commands and click on the Erase line.

Wait for the message Erasing … OK in the Program Manager window or for the warning
message if the device is not blank after erasing.

8.1.3 How to read data from device

There are several ways of reading device content into the active buffer:

- click the Read button on the main toolbar, or
- double click on the Read function line in the Function list of the Program Manager window,
or
- select the Read function line in the Function list of the Program Manager window and click
the Execute button, or
- select Commands > Read menu command.

In every case above, wait for the message Reading … OK in the Program Manager window
or for the warning message if the device could not be read.

8.1.4 How to program a device

In order to write (program) a device you need to perform a few consecutive operations:

· load the file that you want to write to the device;

· edit the file (if necessary);

· configure the device to be programmed (if necessary);

· write the prepared information into the device and verify the programming.

8.1.4.1 How to load a file into a buffer

1. In the main menu select File > Load or click the Load button on the local toolbar of the Buffer
window.

2. In the pop-up dialog box that appears enter file name, select file format, addresses, buffer and
sub-level to load the file to.

3. Wait for the message File loaded: "......" in the Program Manager window, or for a warning
message if the file cannot be loaded for some reason.

105

105

105

105

105

105

196

197

197

197

18

105

Reference 197

© 2021 Phyton, Inc. Microsystems and Development Tools

8.1.4.2 How to edit data before programming

1. If you need to modify source data before writing it into the target device, open the Buffer Dump
window. Please keep in mind that the View button must be released to enable editing.

2. Make necessary changes using Modify dialog or select the data to be modified and type new
data over old data.

8.1.4.3 How to configure target device

1. Parameters displayed in the Device and Algorithm Parameters window that can be modified

are shown in blue.

2. Click on the name of the parameter to be changed to open a dialog. Set a new value for the
parameter or check/uncheck appropriate boxes and click OK. Modified parameter will be displayed in
red.

3. Repeat the above procedure for other parameters that you wand to modify.

Note. All changes above will become effective in the target device only upon programming by the
Program Parameters function in the Program Manager window.

8.1.4.4 How to write information into the device

1. Click on the Options tab in Program Manager window. Check the options you need. We
recommend you always check Blank check before programming and Verify after
programming to ensure reliable programming.

2. Click on the Program Manager tab. Select the Program line in the Function box and double
click on it to start programming of the primary memory layer (Code). Click on the Execute button
to launch the process. Alternatively, you can do the same by clicking on the big Program button or
by selecting the menu command Commands > Program.

3. Wait for the message Programming … OK in the Operation Progress box of the Program
Manager tab. If an error has occurred, ChipProg-02 issues an error message.

4. Execution of the main Program function (always shown at the top of the Function list) writes the
specified buffer layer to the Code memory of the device. However, other buffer layers may exist for
the selected device (Data, User, etc.). If more than one buffer layer exists for the selected device,
go down in the list of functions, expand those that are collapsed and execute the Program
functions for as many types of memory as device has (Data, User, etc.). Skip those steps if only
the Code layer exists in the device.

5. IMPORTANT. If any options in the Device and Algorithm Parameters Editor window have
been modified, you have to program the options set after programming all memory layers (Code,
Data, User, etc.). Go down to the Device parameters & ID line, expand it if collapsed, select the
Program function and double click on it. Continue until every parameter that has been changed in
the Device and Algorithm Parameters window is successfully programmed.

6. Some microcontrollers can be protected against unauthorized reading of the code stored in them
by setting Lock bits. You can selectively lock only certain parts of the device memory. Go down to
the Lock bits line, expand it if collapsed and double click on the lock bit# lines one by one. Continue

95

100

93

105

108 105

195 198

106

106

93

CPI2-Gx Device Programmers - CPI2-Gx198

© 2021 Phyton, Inc. Microsystems and Development Tools

until every lock bit you want is set.

7. After every operation described above make sure that you see Ok [xxxxx... Ok] message in the
Operation Progress box of the Program Manager tab. In case you get an error message stop
programming and troubleshoot the issue.

8.1.5 How to verify programming

There are several ways to check if device was programmed correctly:

- click the Verify button on the main toolbar, or
- double click on the Verify function line in the Function list of the Program Manager window,
or
- select the Verify function line in the Function list of the Program Manager window and click
the Execute button, or
- select the Commands > Verify menu command.

Wait for the message Verifying … OK in the Program Manager window or for a warning
message if the device verification has failed.

8.1.6 How to save data to disc

1. After you have read device content into the Buffer or specified Buffer layer you may want to
save the data to a PC hard drive or other media. To save the data:
a) Click the Save button on the local toolbar of the Buffer window, or
b) Select menu command File > Save.

2. In the pop-up dialog enter destination file path and name, format, start and end addresses in the
buffer, source sub-level, then click OK.

8.1.7 Multi-Target Programming

Multi-target device programming

In production environments, maximum programming efficiency is an important goal. It is possible to
organize several CPI2-Gx programmers into multiple virtual programmer clusters in order to achieve
concurrent parallel programming that takes the least amount of time to accomplish. Consider the
following example.:

- A panel has four identical boards;
- Each board carries three devices of different types;
- Each device should be written with its own file.

Then you will need CPI2-Gx device programmers with twelve CPI2-GM1 modules altogether. An
optimal configuration can be formed by a couple of cascaded CPI2-06/12V1 programmers with 6
modules in each. Each module inside of a CPI2-Gx programmer has a unique serial number that can
be specified in the command line in two different ways. If each motherboard carries 6 modules then
each module can be specified as a combination of the module order number and the motherboard serial number.

For example, #5@VM2-00012 is a fifth module set on the motherboard VM2-00012. A typical scenario of use:

105

105

105

17 17

121

Reference 199

© 2021 Phyton, Inc. Microsystems and Development Tools

1. Prepare a matrix of the module serial numbers assigned to programming a particular target board
and a particular device on each board. For example for the programmers with motherboards' serial
numbers VM2-00011 and VM2-00012 the module distribution could look like:

Device #1 (Project 1) Device #2 (Project 2) Device #3 (Project 3)

Board #1 #1@VM2-00011 #2@VM2-00011 #3@VM2-00011

Board #2 #4@VM2-00011 #5@VM2-00011 #6@VM2-00011

Board #3 #1@VM2-00012 #2@VM2-00012 #3@VM2-00012

Board #4 #4@VM2-00012 #5@VM2-00012 #6@VM2-00012

2. Connect the programmers to a computer's USB or LAN ports directly or through a USB hub or a
LAN switch.

3. Make tree programming projects - one for each target device. Save their .upp files that includes
device types, file names and other options. It is supposed that you have preliminary debugged these
projects on a CPI2-Gx programmer working in a single-programming mode.

4. Launch three copies of the ChipProg-02 program in the gang mode. In the command line of the
startup dialog specify serial numbers of the programming modules in accordance to the matrix
above - four numbers per a project. The program itself will "connect" appropriate modules to
appropriate USB or LAN ports and to appropriate target devices and load appropriate files to
appropriate buffers.

5. Then place the first panel into the fixture and start device programming either by the ATE signal
or manually by executing the Auto Programming command in the GUI . Then replace target
panels upon successful programming of all 12 devices.

8.2 Error Messages

8.2.1 Error Load/ Save File

5005 "Error reading file"

5004 "CRC mismatch, loading terminated"

5003 "Invalid .HEX file format"

5043 "Address out of range"

5078 "End address should be greater than start address"

5151 "Invalid file format"

5007 "Error writing file"

6899 "Cannot load file '%s': buffer #%u does not exist"

6900 "Cannot load file '%s': sub-level #%u does not exist"

7019 "Unable to open project file: '%s'.\n\nAfter start, the programmer attempts to load the most recent project.
This error means that the project file does not exist on disk."

47

42

29

108 48

CPI2-Gx Device Programmers - CPI2-Gx200

© 2021 Phyton, Inc. Microsystems and Development Tools

8.2.2 Error Addresses

5189 "Device start address (0x%LX) is too large.\nMax. address is 0x%LX."

5190 "Device end address (0x%LX) is too large.\nMax. address is 0x%LX."

5191 "Buffer start address is too large"

4024 "Address %s is out of range (%s...%s)"

4106 "File format does not allow addresses larger than 0xFFFFFFFF"

4019 "Address in device: 0x%08X, Address in buffer: 0x%08X\n"

6626 "Buffer start address must be even"

6627 "Device start address must be even"

6628 "Buffer end address must be odd"

8002 "Buffer named '%s' already exists. Please choose another name for the buffer."

8.2.3 Error sizes

6372 "Buffer size is too small for selected split data option"

6495 "Requested buffer size (%lu) is too large"

6441 "Size of file is greater than buffer size:\nAddr = %08lX, length = %u"

6431 "Source block does not fit into destination sub-level"

6859 "File size is %u bytes that is less than header size (%u bytes), loading terminated. Probably, you have
specified an invalid file format."

4107 "Cannot allocate %Lu MBytes for the buffer, maximal buffer size is %Lu MBytes"

5192 "Invalid number: '%s'"

.

8.2.4 Error command-line option

5329 "/%s command-line option: Device name required"

5330 "/%s command-line option: Missing file name"

5331 "/%s command-line option: Missing file format tag"

5332 "/%s command-line option: Invalid file format tag"

5333 "Command line: unable to determine the file format"

5334 "/%s command-line option: Invalid address value"

4104 "Command-line option /I ignored because /A option is not specified"

Reference 201

© 2021 Phyton, Inc. Microsystems and Development Tools

8.2.5 Error Programming option

6409 "Invalid programming function or menu name:\n'%s'"

6410 "Invalid programming option name '%s'"

6902 "Invalid '%s' programming option value string: '%s'"

6411 "Programming option '%s' cannot be changed"

6412 "Programming option string is too long.\nMax. length is %u."

6854 "Programming option '%s' has type of '%s'. Use '%s()' script function to get the value of this option."

5188 "Value %.2f is out of range of %.2f...%.2f for programming option '%s'"

6561 "Value %ld is out of range of %ld...%ld for programming option '%s'"

4001 "Not all of the saved auto-programming functions were restored. Check the auto-programming functions list."

8.2.6 Error DLL

6499 "Cannot find bit resource with id 0x%X in DLL:\n'%s'"

6500 "Error handling bit resource with id 0x%X in DLL:\n'%s'"

6502 "Unable to find device '%s' in DLL:\n'%s'"

8.2.7 Error USB

4015 "USB device driver error 0x%04X in '%s'.\n\nCannot recover from this error, exiting.\n\nPlease check if the
programmer power is on. If yes, disconnect the USB cable from computer and connect it again, then restart the %s
shell."

4016 "All sites reported USB device driver error.\n\nCannot recover from this error, exiting.\n\nPlease check if the
programmer(s) power is on. If yes, disconnect the USB cable from computer and connect it again, then restart the
%s shell."

4017 "The following site(s):\n\n%s\n\nreported USB device driver error.\n\nThese site(s) will be removed from the
gang programming process.\n\nPlease check if the programmer(s) power is on. If yes, disconnect the USB cable
from computer and connect it again, then restart the %s shell."

8.2.8 Error programmer hardware

6546 "Source area does not fit into destination address space"

4005 "Attempt to read memory beyond buffer end: Addr = %s, len = %u bytes"

6988 "Unable to establish connection with programmer hardware. Please check if:\n\n"

4006 "Attached programmers have duplicate serial number '%s'"

4010 "This programmer with serial number '%s' has been already assigned the site number = %u"

CPI2-Gx Device Programmers - CPI2-Gx202

© 2021 Phyton, Inc. Microsystems and Development Tools

4011 "This gang programmer with serial number '%s' has been already assigned the site numbers = %u..%u"

4013 "The programmers attached are of different types and cannot be used for gang mode.\n\nExiting."

4014 "ExecFunction() does not work in Gang mode"

4020 "%s reported hardware error 0x%X, error group 0x%X. If problem persists, please contact Phyton."

4000 "The attached programmer with id = %u is not supported"

4102 "Device programming countdown value is zero%s"

8.2.9 Error internal

6527 "Internal error:\nCORE() for %s %s returned NULL.\nPlease contact your %s distributor."

4025 "Internal Error: Unable to allocate %u bytes for the buffer. Please contact Phyton."

8.2.10 Error confiquration

6503 "No programmer configuration files found (prog.ini)"

5325 "The device type '%s %s' stored in configuration "
 "or choosen from script file function 'SetDevice()' is not supported by %s.\n"
 "The device '%s %s' will be selected.\n"
 "Use 'Configure / Select device' to choose the device "
 "you need to operate on."

4002 "The '%s' configuration option has been set to an illegal state due to the data read from file. Setting this
option to its default state ('%s')."

8.2.11 Error device

5326 "Device selection error"

4018 "Device '%s' is not supported by the %s. Please choose another device."

8.2.12 Error check box

6852 "Error in check box option specification string: '=' expected"

6853 "Cannot find check box option string '%s'"

8.2.13 Error mix

5195 " Number of repetitions cannot be zero"

5206 "The 'View only' option is on; editing disabled. Click the 'View' button on toolbar to enable editing."

6501 "No power-on tests defined in:\n'%s'"

6903 "'%s' is a sub-menu name, not a function name"

Reference 203

© 2021 Phyton, Inc. Microsystems and Development Tools

6401 "No more occurences"

6387 "Invalid fill string"

5172 "Checksum = %08lX"

5311 "No more mismatches"

8.2.14 Warning

5338 "Warning: JEDEC file has no file CRC"

5339 "Warning: JEDEC file has invalid CRC"

6933 "Warning: no 'file end' record in file"

6845 "Attention! The %s %s device must be inserted into the programmer's socket shifted by %d row(s) relative to
the standard position as shown in the Device Information window."

6846 "Attention! Insert device into socket shifted by %d row(s) as shown on the picture."

8.3 Expressions

Expressions are mathematical constructs for operations on one or more operands .

When a number is required, you may use an expression; ChipProg-02 will accept the value expression. For
example, when using the Modify command in the Buffer window, you can enter the new value in the form of a

number or arithmetic expression.

Interpreting the expression result

The expression result is interpreted in accordance with the context in which it is used.

In the dialog box, when an address is required, the program tries to interpret the expression’s value as the
address. If you enter a variable name, the result of the expression will be the variable’s address but not the value
of the variable.

If the dialog expects a number to be entered, the expression’s value will be interpreted as a number (for
example, the Modify Memory dialog box of the Buffer Dump window). If you enter a variable name there, then
the result will be the value of the variable, but not its address.

Nonetheless, you can follow the default rules:

If you need to use the variable’s value, where an address is expected, then you can write something like var

+ 0. In this case, the variable’s value will be used in the expression.

If you need to use the variable address, apply the & (address) operation, that is, &var.

8.3.1 Operations

The program supports all arithmetic and logical operations valid for the C language, as well as pointer and
address operations:

Designation Description

203 205

CPI2-Gx Device Programmers - CPI2-Gx204

© 2021 Phyton, Inc. Microsystems and Development Tools

() Brackets (higher priority)

[] Array component selector

. Structure component or union selector

-> Selection of a structure component or a union addressed with a pointer

!

Logical negation

~ Bitwise inversion

- Bitwise sign change

& Returns address

* Access by address

(type) Explicit type conversion

(sizeof) (returns size of operand, in bytes)

*

Multiplication

/ Division

% Modulus operator (produces the remainder of an integer division)

+ Addition

- Subtraction

<<

Left shift

>> Right shift

<

Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

!= Not equal to

&

Bitwise AND

^ Bitwise XOR

| Bitwise OR

&& Logical AND

|| Logical OR

= Assignment

Reference 205

© 2021 Phyton, Inc. Microsystems and Development Tools

The types of operands are converted in accordance with the ANSI standard.

The results of logical operations are 0 (false) or 1 (true).

Allowed type conversions:
· Operands can be converted to simple types (char, int, ... float).
· Pointers can be converted to simple types (char *, int *, ... float *) and to structures or unions.
· The word "struct" is not necessarily (MyStruct *).

8.3.2 Operands

By default, numbers are treated as decimals. Integers should fit into 32 bits; floating point numbers should fit
into the single precision format (32 bits).

The following formats are supported:

1) Decimal integer.

Example: 126889

2) Decimal floating point.

Examples: 365.678; 2.12e-9

3) Hexadecimal.

 <%CM%> understands numbers in C format and assembly format.

Examples: 0xF6D7; 0F6D7H; 0xFFFF1111

4) Binary.

 Binary numbers must end with 'B'.

Examples: 011101B; 111111111111111000011B

5) Symbol (ASCII).

Examples: 'a'; 'ab'; '$B%8'.'.

8.3.3 Expression Examples

 #test#i + #test#j << 2
 (unsigned char)#test#i + 2
 sizeof(##array) > 200

main

i + j << 2 / :CW0x1200

(unsigned char)i + 2

sizeof(array) > 200

(a == b && a <= 4) || a > '3'

sptr -> Member1 -> a[i]

*p

*((char *)ptr)

CPI2-Gx Device Programmers - CPI2-Gx206

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4 Scripting Reference

Description of Script Language

Script Language Built-in Functions

Script Language Built-in Variables

Alphabetical List of Script Language Built-in Functions and Variables

8.4.1 Scripting Language Description

ChipProg-02 scripting language is similar to C programming language. If you are familiar with C, you can
proceed to the section describing the differences between the script language and the C language .

Here are the links to the sections of this scripting language manual.

General Syntax of Script Language
Basic Data Types
Data byte order
Operations and Expressions
Operators
Functions
Descriptions
Directives of the Script File Language Preprocessor
Predefined Symbols in the Script File Compilation

8.4.1.1 Difference Between Scripting and C Languages

The script files are written in a C-type language and you should not expect it to meet standards. Many features
are not supported because they are not necessary and complication of the language can cause compiler errors
(the script file language compiler is not a simple thing).
• Pointers are not directly supported. But arrays are supported, therefore a pointer can always be built from

an array and element number. Note that, for example, string operation functions, such as strcpy , receive a
string and a byte number (index) as parameters, which form the pointer. In function declarations, index is equal
to zero by default.

• Pointers to functions are not supported. If necessary, a table call can always be replaced with the switch
operator.

• Multidimensional arrays are not supported. If it is necessary, you can write a couple of functions, such as:

 int GetElement(int array[], int index1, int index2);
 void SetElement(int array[], int index1, int index2, int value);

• Structures (and unions) are not supported. In fact, you can always do without structures. Structures may
be required for API Windows and user DLLs operations, but as a rule only experienced programmers should do
it, such as those who know how to reach structure elements. As a tip, there are functions, such as
memcpy , which receive a void "pointer").

• Enumerated types (enum) are not supported #define.
• Preprocessor macros, such as #define half(x) (x / 2), are not supported. The same operations can be

done with functions.
• Conditional operators such as x = y == 2? 3 : 4;, are not supported; the operator "comma" outside

variable declaration is not supported. For example,

 int i = 0, j = 1; is supported, but
 for (i = 0, j = 1; ...) is not supported.

• User functions with a variable amount of parameters are not supported. However, there are many system
functions, such as printf , with a variable number of parameters.

206

232

257

257

206

207

210

211

211

221

226

228

231

232

344

312

320

Reference 207

© 2021 Phyton, Inc. Microsystems and Development Tools

• Declaration of user function parameters such as void array[] is not supported. The system functions
such as memcpy , have such parameters.

• Logical expressions are always fully computed. It is very important to remember it, as a situation like

 char array[10];
 if (i < 10 && array[i] != 0)
 array[i] = 1;

will cause an error at the execution stage, if i is greater than 9, because the expression of array[i] will be
computed. In a standard compiler such an expression is not computed, because the condition of i > 10 would
cancel any further processing of the expression.
• Constant expressions are always computed during execution. For example, int i = 10 * 22 will be

computed not during compilation, but during execution.
• The const key word is absent.
• Static variables cannot be declared inside functions.

But
• Variables can be declared anywhere, not just in front of the first executed operator. For example:

 void main()
 {
 GlobalVar = 0;
 int i = 1; // will be OK as in C++
 }

• Nested comments are allowed.
• Expressions like array = "1234" are allowed.
• Default parameter values in declared functions, as in C++, are allowed. For example, void func(char

array[],int index = 0);. Expressions can also serve as default values, for example void func(char array[], int
index = func1() + 1);.

• Expressions in global variable initializers are allowed. For example:

 float table[] = { sin(0), sin(0.1) };

 void main()
 {
 ...
 }

8.4.1.2 Scripting Language Syntax

Format
Comments
Identifiers
Reserved words
Integer Constants
Long integer constants
Floating-point Constants
Character Constants
String Constants

8.4.1.2.1 Format

Spaces, tabs, line advance and page advance symbols are used as separators. You can use any number of
these separator symbols.

8.4.1.2.2 Comments

Comments begin with the pair of the /* symbols and end with the pair of the */ symbols.

Comments are allowed wherever the spaces are allowed.

312

207

207

208

208

208

209

209

210

210

CPI2-Gx Device Programmers - CPI2-Gx208

© 2021 Phyton, Inc. Microsystems and Development Tools

The one-line comments (//) are supported. The part of the line following the one-line comment symbol is
ignored.

Note. Only the one-line comments are allowed in the line that contains the #define directive.

Examples:

// The one-line comment

/* The multi-line comment */

8.4.1.2.3 Identifiers

Identifiers are used as the names of variables, functions and data types.

The allowable symbols are: digits from 0 to 9, the Latin lower and upper case letters a - z, A - Z and the
underscore symbol (_).

A special case is accessing the names built in <%CM%>, for example, a special function register. Such
names are preceded by the dollar mark, for example, $SP, and can be used in the program while not being
declared. Identifiers shall comply with the following rules:

The first symbol can not be a digit.
The upper and lower case letters are discriminated.
An identifier can consist of up to 48 symbols.

Examples:

NAME1 name1 Total_5

8.4.1.2.4 Reserved words

break extern return

case float short

char for sizeof

continue goto switch

default if unsigned

do int void

else long while

8.4.1.2.5 Integer constants

 Decimal constants

Numbers from 0 to 9.

Examples:

12
111
956

Reference 209

© 2021 Phyton, Inc. Microsystems and Development Tools

1007

Hexadecimal constants

Numbers from 0 to 9; letters a-f or A-F for the values of 10 to 15. The hexadecimal contents shall begin with
0x or 0X.

Examples:

 0x12 = 18 (decimal);
 0x2f = 47 (decimal);
 0xA = 10 (decimal);

Binary constants

Numbers 0 and 1. The binary constants shall end in b or B.

Examples:

 010011101b = 0x9D (hexadecimal) = 157 (decimal);
 0101B = 5

Note. If the value exceeds 65535, then it will be presented as the long integer.

8.4.1.2.6 Long integer constants

Latin letter l or L following the constant explicitly defines long integer constants. The explicit definition of a
long constant is useful, for example, for transforming the type of operand into the long type value.

Examples:

 Long decimal constant: 12l 12 (decimal)
 956L 956 (decimal)
 Long hexadecimal constant: 0x12l 18 (decimal)
 0xA3L 163 (decimal)

8.4.1.2.7 Floating-point constants

A floating-point constant consists of the following parts:
• Integer part, which is the sequence of numbers
• Decimal point
• Fractional part, which is the sequence of numbers
• Exponential symbol e or E
• Exponential in the form of an integer constant (can have sign)

Any of the two parts (but not both at the same time) of the following pairs can be omitted:
• Integer or fractional part
• Decimal point or symbol e (E) and the exponential in the form of an integer constant

Examples:

 345. = 345 (decimal);
 3.14159 = 3.14159 (decimal);
 2.1E5 = 210000 (decimal);
 .123E3 = 123 (decimal);
 4037e-5 = .04037 (decimal).

CPI2-Gx Device Programmers - CPI2-Gx210

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.1.2.8 Character constants

A character constant may consist of one ASCII code character enclosed within the apostrophes. Also, you
may specify the character by its hexadecimal value of exactly two hexadecimal digits preceded by characters
'\x '.

Examples:

'A' 'a' '7' '$' '\x02' '\x88'

Special (control) character constants

 New line (line feed) HL (LF) '\n'
 Horizontal tabulation HT '\t'
 Vertical tabulation VT '\v'
 Backspacing BS '\b'
 Carriage return CR '\r'
 Form feed FF '\f'
 Backslash \ '\\'
 Apostrophe ' '\''
 Quotation marks " '\"'
 Zero character (null) NUL '\0'

Note. The character constants are considered to be the int-type data.

8.4.1.2.9 String constants

A string constant is the quoted sequence of the ASCII code characters: "...".

A string constant is the quoted character array; its type is char[].

To mark the end of string, the compiler places the null symbol '\0' in the end of each string.

If you need to include the quotation mark (") in a string, then enter the backslash (\) before the quotation
mark. Any special character constants preceded by the backslash (\) can be included in the string.

A symbol can also be presented by its hexadecimal value (exactly two hexadecimal digits) preceded by the
symbols of '\x '.

The string constants following in sequence are interpreted as one string constant. This is useful for the
advance of the constant part to the next line, for example:

printf("Line 1\n"
 "Line 2");

Examples:

"This is the character string"
"A"
"1234567890\x33"
"_____________"
""

8.4.1.3 Basic Data Types

The script file compiler supports the following data types:

signed char 8 1 -128...+127

Reference 211

© 2021 Phyton, Inc. Microsystems and Development Tools

unsigned char 8 1 0...255
signed short 16 2 -32768...+32767
unsigned short 16 2 0...65535
signed int 16 2 -32768...+32767
unsigned int 16 2 0...65535
signed long 32 4 -2147483648...2147483647
unsigned long 32 4 0...4294967295
float 32 4 +/-1.17549435E-38...+/-3.40282347E+38

The "pure" int type coincides with the signed int type.
The long type is equivalent to the signed long.
The short type is equivalent to the signed short.
The char type is equivalent to the signed char.

8.4.1.4 Data byte order

Data byte order

All many-byte data is stored in the memory in the "little engine" format, that is, the low byte is
allocated at the low address and the high byte is allocated at the high address in accordance with
the 80x86 processor architecture. For experienced programmers, it is useful to know this, if they
want to use Windows API and DLL functions access

8.4.1.5 Operations and Expressions

Expressions

An expression consists of one or more operands and operation symbols.

Examples:

a++

b = 10

x = (y * z) / w

Note. Any expression ending with semi is the operator.

Operand Metadesignation

Arithmetic Operations

Assignment Operations

Relation Operations

Logical Operations

Bit Operations

Array Operations

Other Operations

Operation Execution Priorities and Order

Operand Execution Order

Arithmetic Conversions in Expressions

212

212

213

215

216

217

217

218

219

220

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

CPI2-Gx Device Programmers - CPI2-Gx212

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.1.5.1 Operand Metadesignation

Some operations require specific operand types. The type of operand is indicated by one of the
following letters:

 e - any expression

 v - any expression referring to the variable, to which a value

 can be assigned. Such expressions are called the address ones.

The prefix indicates the type of expression. For example, ie indicates any integer expression. All
the possible prefixes are as follows:

 i

 a - the arithmetic expression (the integer number, symbol or

 floating-point number)

 f - the function

Note.

8.4.1.5.2 Arithmetic Operations

+ Usage: ae1 + ae2

 Sum of ae1 and ae2.

 Example:

 i = j + 2;

 Sets i equal to j plus 2.

- Usage: ae1 - ae2

 Subtraction of ae1 and ae2.

 Example:

 i = j - 3;

- Usage: -ae

 Example:

* Usage: ae1 * ae2

 Product of ae1 and ae2.

 Example:

 z = 3 * x

/

Reference 213

© 2021 Phyton, Inc. Microsystems and Development Tools

 Quotient of ae1 and ae2.

 Example:

 i = j / 5;

% Usage: ae1 % ae2

 Remainder (modulus division) of the division of ae1 by ae2.

 Example:

 minutes = time % 60;

Note. Execution of the ++ and -- operations produces side effects; the value of variable used as
an operand changes.

++ Usage: iv++

 Increasing iv by 1. The value of this expression is the value of ie

 before increasing.

 Example:

 j = i++;

++ Usage: ++iv

 Increasing iv by 1. The value of this expression is the value of ie

 after increasing.

 Example:

 i = ++j;

-- Usage: iv--

 Decreasing iv by 1. The value of this expression is the value of ie

 before decreasing.

 Example:

 j = i--;

-- Usage: --iv

 Decreasing iv by 1. The value of this expression is the value of ie

 after decreasing.

 Example:

 i = --j;

8.4.1.5.3 Assignment Operations

Note. The value of expression containing the assignment operation is the value of the left operand
after the assignment.

CPI2-Gx Device Programmers - CPI2-Gx214

© 2021 Phyton, Inc. Microsystems and Development Tools

= Usage: v = e

 The value of e is assigned to variable v.

 Example:

 x = y;

Note. The following operations combine arithmetic or bit-by-bit operations with the assignment
operation.

+= Usage: av += ae

 Increasing av by ae.

 Example:

 y += 2;

-= Usage: av -= ae

 Decreasing av by ae.

 Example:

 x -= 3;

*= Usage: av *= ae

 Multiplication of av by ae.

 Example:

 timesx *= x;

/= Usage: av /= ae

 Division of av by ae.

 Example:

 x /= 2;

%= Usage: iv %= ie

 The value of iv in modulus ie.

 Example:

 x %= 10;

>>= Usage: iv >>= ie

 The right ie bit shift of the iv binary form.

 Example:

 x >>= 4;

Usage: iv <<= ie

 The left ie bit shift of the iv binary form.

 Example:

Reference 215

© 2021 Phyton, Inc. Microsystems and Development Tools

 x <<= 1;

&= Usage: iv &= ie

 The bit-by-bit AND operation of the iv and ie binary forms.

 Example:

 remitems &= mask;

=̂ Usage: iv = ie

 The bit-by-bit exclusive OR operation of the iv and ie binary forms.

 Example:

 control =̂ seton;

|= Usage: iv |= ie

 The bit-by-bit OR operation of the iv and ie binary forms.

 Example:

 additems |= mask;

8.4.1.5.4 Relation Operations

Note. Logical False is presented by integral zero, and logical True is presented by any integer
other than zero.

The expressions that contain the relation operations or logical operations have the values of 0
(False) or 1 (True).

== Usage: ie1 == ie2

 True, if ie1 is equal to ie2; False otherwise.

 Example:

 if (i == 0) break;

!= Usage: ie1 != ie2

 True, if ie1 is not equal to ie2.

 Example:

 while (i != 0)

 i = func;

< Usage: ae1 < ae2

 True, if ae1 is less than ae2.

 Example:

 if (x < 0)

 printf ("negative");

<= Usage: ae1 <= ae2

CPI2-Gx Device Programmers - CPI2-Gx216

© 2021 Phyton, Inc. Microsystems and Development Tools

 True, if ae1 is less than or equal to ae2.

 Usage: ae1 > ae2

 True, if ae1 is larger than ae2.

 Example:

 if (x > 0)

 printf ("positive");

>= Usage: ae1 >= ae2

 True, if ae1 is larger than or equal to ae2.

8.4.1.5.5 Logical Operations

! Usage: !ae

 True, if ae or pe is false.

 Example:

 if (!good)

 printf ("not good");

|| Usage: e1 || e2

 checked. The value of e2 will be checked only, if e1 is False. The expression will be

 True, if e1 or e2 is True.

 Example:

 if(x < A || x > B) printf

 ("out of range");

&&

 Logical AND operation of e1 and e2. At first, the value of e1

 is checked. The value of e2 will be checked only, if e1 is True.

 The expression will be True, if e1 and e2 are True.

 Example:

 if (a ! = 0 && b > 7)

 n++;

Reference 217

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.1.5.6 Array Operations

[] Usage: name[ie]

 The expression value is the number equal to the value of the element

 number ie of the name array. The array elements are numbered beginning from 0.

 Example:

 arname[i] = 3;

 To assign 3 to the array element i.

 Note the first element as described by the expression of

 arname[0].

8.4.1.5.7 Bit Operations

~ Usage: ~ie

 One's complement of the value ie. The expression value contains ones in

 all those bits, in which ie contains 0, and contains 0 in all

 those bits, in which ie contains ones.

 Example:

 opposite = ~mask;

>> Usage: ie1 >> ie2

 The right ie2 shift of the ie1 binary form.

 The shift may be arithmetic (that is, the bits cleared from the left

 assume the value of the sign bit) for the signed numbers and

 logical for the unsigned numbers (the bits cleared from the left are

 filled with zeroes).

 Example:

 x = x >> 3;

<< Usage: ie1 << ie2

 The left ie2 bit left of the ie2 binary form.

 The bits cleared from the right are filled with zeroes.

 Example:

 fourx = x << 2;

& Usage: ie1 & ie2

 The bit-wise AND operation of the ie1 and ie2 binary forms. The expression

 value assumes 1 in all those bits, in which both ie1 and ie2 contain

 1, and assumes 0 in all other bits.

CPI2-Gx Device Programmers - CPI2-Gx218

© 2021 Phyton, Inc. Microsystems and Development Tools

 flag = ((x & mask) != 0);

| Usage: ie1 | ie2

 The bit-wise OR operation of the ie1 and ie2 binary forms. The expression

 value assumes 1 in all those bits, in which either ie1 or ie2 contain

 1, and assumes 0 in all other bits.

 Example:

 attrsum = attr1 | attr2;

 ̂ Usage: ie1 ̂ie2

 The bit-wise exclusive OR operation of the ie1 and ie2 binary forms.

 The expression value contains 1 in all those bits, in which ie1 and

 ie2 contain different binary values, and the expression value

 contains 0 in all other bits.

 Example:

 diffbits = x ̂y;

8.4.1.5.8 Other Operations

sizeof Usage: sizeof(e)

 The number of bytes required for allocation of e-type data. If e

 describes the array, then e means the whole array, and not only the

 address of the first element, as in other operations.

(type) Usage: (type)e

 The value of e is converted into the data type.

 Example:

 x = (float)n / 3;

 The integer value of the variable n is transformed into

 the floating-point number before dividing by 3.

() Usage: fe(e1, e2,..., eN)

 The fe function is called with the arguments e1, e2,..., eN.

 order from

 Example:

Reference 219

© 2021 Phyton, Inc. Microsystems and Development Tools

 x = sqrt(y);

8.4.1.5.9 Operation Execution Priorities and Order

Priorities are the same for each group of operations listed in the table below. The higher the
priority of operation, the higher is its place in the table.

If there are no brackets and the operations are related to the same group, then the order of
execution determines the operation and operand grouping (from left to right or from right to left).

Examples

 The expression of a * b / c is equivalent to the expression of (a * b) / c,

 as the operations are executed from left to right.

 The expression of a = b = c is equivalent to the expression of a = (b = c),

 as the operation is executed from right to left.

[] Array element selection

! Logical negation From right to left (RL)

~ Bit-by-bit negation

- Sign change

++ Increasing by one

-- Decreasing by one

(type) Type conversion

sizeof Determining of size in bytes

* Multiplication LR

/ Division

% Modulus division

+ Addition LR

- Subtraction

<< Left shift LR

 Right shift

< Less than LR

<= Less than or equal to

> Larger than

>= Larger than or equal to

== Equal to LR

!= Not equal to

CPI2-Gx Device Programmers - CPI2-Gx220

© 2021 Phyton, Inc. Microsystems and Development Tools

& Bit-by-bit AND operation LR

 ̂ Bit-by-bit exclusive OR operation LR

| Bit-by-bit OR operation LR

&& Logical AND operation LR

|| Logical OR operation LR

=

*= /= %= += -=

<<= >>= &= =̂ |=

8.4.1.5.10 Operand Execution Order

The operands are normally executed from left to right.

. If you assign a value to a variable in any expression (including the function call), do not use this
variable again in the same expression.

Example:

y = (x = 5) + (++x);

8.4.1.5.11 Arithmetic Conversions in Expressions

First, every char-type operand is converted into the int-type value, and the unsigned char-type
operand is converted into the unsigned int-type value.

Then, if one of the operands is of the float type, then the other will be converted into the float-type
value and the result will be of the float type.

Otherwise, if one of the operands is of the unsigned long type, then the other will be converted into
the unsigned long-type value and the result will be of the same type.

Otherwise, if one of the operands is of the long type, then the other will be converted into the long-
type value and the result will be of the same type.

Otherwise, if one of the operands is of the long type, and the other is of the unsigned int type, then
both operands will be converted into the unsigned long-type value and the result will be of the
same type.

Otherwise, if one of the operands is of the unsigned type, then the other will be converted into the
unsigned-type value and the result will be of the same type.

Otherwise, both operands should be of int type and the result will be of the same type.

Reference 221

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.1.6 Operators

Format and nesting

Operator label

Composite operator

Operator-expression

Operator Break

Operator Continue

Operator Return

Operator Goto

Conditional Operator If-Else

Cycle Operator While

Cycle Operator Do-While

Cycle Operator For

8.4.1.6.1 Format and nesting

Format and nesting

Format. One operand can occupy one or more lines. Two or more operands can be located in
one line.

Nesting. The execution control operators (if, if-else, switch, while, do-while and for) can be nested
in each other.

8.4.1.6.2 Operator label

Operator label

The label can be placed before any operator, which makes it possible to go to this operator with
the help of the "goto" operator.

A label consists of an identifier followed by the colon (:). The definition domain of the label is the
specified function.

Example:

next: x = 3;

8.4.1.6.3 Composite operator

Composite operator

The composite operator (block) consists of one or more operators of any type enclosed in the
brackets ({ }).

221

221

221

222

222

223

223

223

223

225

225

226

CPI2-Gx Device Programmers - CPI2-Gx222

© 2021 Phyton, Inc. Microsystems and Development Tools

There shall be no semicolon (;) behind the closing bracket.

Example:

 {

 x = 1;

 y = 2;

 z = 3;

 }

8.4.1.6.4 Operator-expression

Any expression, which ends with the semicolon (;), is the operator. Refer to the following examples of
operators-expressions.

Assignment operator
 Identifier = expression;

Example:

 x = 3;

Function call operator
 Function_name (argument1,..., argumentN);

Example:

 fclose(file);

Empty operator
 Consists only of semicolon (;).
 It is used to identify the empty body of the control operator.

8.4.1.6.5 Operator Break

Syntax:

break;

Stops execution of the nearest nested external operator switch, while, do, or for. Control is
transferred to the operator following the operator being completed. One purpose of this operator is
to complete the cycle, when specific value is assigned to the variable.

Example:

 for (i = 0; i < n; i++)

 if (a[i] == 0)

 break;

Reference 223

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.1.6.6 Operator Continue

Syntax:

continue;

Transfers control to the beginning of the nearest external operator of the cycle while, do, or for,
which starts the next iteration. This effects produced by this operator are opposite to those of the
break operator.

Example:

 for (i = 0; i < n; i++)

 {

 if (a[i] == 0) continue;

 a[i] = b[i];

 }

8.4.1.6.7 Operator Return

Syntax:

return;

Stops execution of the current function and returns control to the function that called it.

expression return;

Stops execution of the current function and returns control to the program that called it, together
with the expression value.

Example:

 return x + y;

8.4.1.6.8 Operator Goto

Syntax:

goto label;

Control is unconditionally transferred to the operator with the label "label". It is used to exit from the nested
control operators. The scope of the label is limited within the current function.

Example:

 goto next;

8.4.1.6.9 Conditional Operator If-Else

Syntax:

if (expression)

 operator

CPI2-Gx Device Programmers - CPI2-Gx224

© 2021 Phyton, Inc. Microsystems and Development Tools

If the expression is True, then the operator will be executed. If the expression is False, then
nothing will happen.

Example:

 if (a == x) temp = 3;

if (expression)

 operator1

else

 operator2

If the expression is True, then operator1 will be executed and control will be transferred to the
operator following operator2 (which means that operator2 will not be executed).

If the expression is False, then operator2 will be executed.

The "else" part of the operator can be omitted. That is why ambiguity may arise in the nested
operators with omitted "else" part. In this case, else is related to the nearest preceding operator in
the same block that does not have the "else" part.

Examples:

1) The "else" part relates to the second if operator:

 if(x > 1)

 if (y == 2)

 z = 5;

 else

 z = 6;

2) The "else" relates to the first if operator:

 if (x > 1)

 {

 if (y == 2) z = 5;

 }

 else z = 6;

3) The nested if operators:

 if (x == 'a') y = 1;

 else

 if (x == 'b')

 {

 y = 2;

 z = 3;

 }

 else

Reference 225

© 2021 Phyton, Inc. Microsystems and Development Tools

 if (x == 'c') y = 4;

 else

 printf("ERROR");

8.4.1.6.10 Cycle Operator While

Syntax:

while (expression)

 operator

If the expression is True, then the operator will be executed until the expression becomes False.

If the expression is False, then control is passed to the next operator.

Note. The value of the expression is determined before executing the operator. Therefore, if the
expression is False from the very beginning, then the operator will not be executed at all.

Example:

 while (k < n)

 {

 y *= x;

 k++;

 }

8.4.1.6.11 Cycle Operator Do-While

Syntax:

do
 operator
while (expression);

If the expression is True, then the operator will be executed and the expression value will be
calculated. This will be repeated until the expression becomes False.

If the expression is False, then control is passed to the next operator.

Note. The expression value is determined after the operator is executed. Therefore, the operator is
executed at least once.

The do-while operator checks the condition in the end of the cycle.

The while operator checks the condition in the beginning of the cycle.

Example:

 x = 1;

 do

 printf('%d\n", pow(x, 2));

 while (++x <= 7);

CPI2-Gx Device Programmers - CPI2-Gx226

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.1.6.12 Cycle Operator For

Syntax:

for (expression1; expression2; expression3)

 operator

Expression1 describes the cycle initialization. Expression2 is checking the condition of the cycle
completion. If it is True, then:

the "for" operator of the cycle body will be executed;

expression3 will be executed.

Everything will be repeated until expression2 becomes False.

If it is False, then the cycle will be finished and control will be passed to the next operator.

Expression3 is calculated after each iteration.

The "for" operator is equivalent to the following operator sequence:

 expression1;

 while (expression2)

 {

 operator

 expression3;

Example:

 for(x = 1; x <= 7; x++)

 printf("%d\n", pow(x, 2));

In any of the three expressions, or in all three expressions of the operator, "for" may be absent, but
the semicolons (;) separating them cannot be omitted.

If expression2 is omitted, then it will be considered True. The "for" operator (;;) is the endless
cycle equivalent to the While(1) operator.

8.4.1.7 Functions

Function Definition

Function Call

Function Main

8.4.1.7.1 Function Definition

Functions are defined by description of the type of result, formal parameters and composite operator (block) that
describe the actions carried out by the function.

Example:

int the type of result

226

227

227

Reference 227

© 2021 Phyton, Inc. Microsystems and Development Tools

 func(function name
 long a, char str[] list of parameters, which describes the names and
types
)
{ composite operator
 // ...
 return 0; returned value
}

The return operator can not return any value or return the value of the expression included in this operator.

The function, which does not return a value, shall be described as having type void.

One or several last parameters on the list can assume the default values. Examples:

int func(int x, int y = 0);
int f1(char s[], char s1[] = "null", int x = func(0));

void errmesg(char s[])
{
 printf{"***Error: %s", s);
 // the Return operator (explicit) is not required
}

8.4.1.7.2 Function Call

Syntax of a function call is as follows:

function_name(e1, e2, ..., eN)

Arguments that are not arrays (actual parameters) are transferred by value, that is, each expression e1, ..., eN
is calculated and the parameter is transferred to the function. Arrays are transferred "by pointer", as shown in
the example:

void func(char s[])
{
 s[0] = 2;
}

void main()
{
 char array[3];
 func(array);
}

The func function modifies the value of element0 of the "array" array declared in the main function, and not of its
duplicate.

Pointers to functions (like all other pointers) are not supported.

8.4.1.7.3 The main Function

The script file operation commonly starts with the main function. The main function shall be declared as
follows:

void main()
{
 ...
}

Note. The main function should not necessarily be included in a script file. If there is no main function, then
the script file will be loaded into the memory and stay there with its global functions and data available to other
script files.

CPI2-Gx Device Programmers - CPI2-Gx228

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.1.8 Descriptions

Descriptions are used for variable definitions and to declare types of variable and functions defined

elsewhere. Descriptions are also used for defining new data types on the basis of existing data types.

A description can be an operator, if an initialized variable or array are described.

Basic Types

Arrays

Local Variable Definition

Global Variable Definition

8.4.1.8.1 Basic Types

Examples:

char c;

int x = 0;

The basic types are:

char - character (one byte);

short - short integer (word, 16 bit);

int - integer (word, 16 bit);

unsigned - non-negative integer (of the same size as integer);

long - long integer (word or double word);

float - floating-point number (single precision);

void - no value (used to neutralize the value

 returned by function)

The Short type is equivalent to the Int type and was introduced for generality.

Also, see Basic Data

8.4.1.8.2 Arrays

Only one-dimensional arrays are supported.

Example:

int a[50];

Variable a is the array consisting of 50 integer numbers.

228

228

229

229

210

Reference 229

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.1.8.3 Local Variable Definition

The automatic variable is temporary, because it loses its value upon the exit from the block. The
domain of the variable is the block, where it is defined. Variables defined inside the block take
precedence over the variables defined in the enclosing blocks. Example:

void func(char c)

{

 int i = 0;

 if (c == '0')

 {

 char i = 8;

 i++;

 }

 i++;

}

The local variable can be described everywhere within the function, as in C++.

Values of non-initialized local variables are undefined.

The function formal parameters are processed the same way as local variables.

Static variables inside the function are not implemented.

8.4.1.8.4 Global Variable Definition

Global variables

Example:

int Global_flag;

Global variables are defined on the same level as functions, that is, they are not local in any block.
They are initialized with 0, unless other initial value is explicitly defined. The scope is all script files
currently being executed. Global variables should be described in all the script files that can
access them.

Static variables

Example:

static int File_flag;

Constant. The scope is the script file, in which the variable is defined. The static variables shall be
described before they are used in the file for the first time.

Variable Initialization

External Object Description

230

230

CPI2-Gx Device Programmers - CPI2-Gx230

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.1.8.4.1 Variable Initialization

Any variable, except for formal parameters, can be initialized upon definition.

Any permanent variable is initialized with 0, unless other initial value is explicitly defined.

Any expression can be used as the initial value.

Basic types

Examples:

 int i = 1 + j;

 float x = sin(_PI / 2);

Arrays

Examples:

 int a[] = {1,4,9,16,25,36};

 char s[20] = { 'a', 'b', 8 };

The values of array elements are listed in curly brackets.

If an array size is defined, then the values, which are not explicitly defined, will be equal to 0.

If an array size is omitted, then it will be determined by the amount of initial values.

Strings

Example:

 char s[] = "hello";

This description is equivalent to the description of

 char s[] = {'h','e','l','l','o','\0'};

8.4.1.8.4.2 External Object Description

Any type of external objects (for example, variables or functions) not defined explicitly in another
script file, should be described explicitly.

Use the keyword Extern hen describing an external object.

Examples:

 extern int Global_var;

 extern char *Name;

 extern int func();

The length of external one-dimensional array can be omitted.

Example:

 extern float Num_array[];

Because all functions are defined on the external level, the adjective extern is not needed to
describe a function inside the block and you can omit it.

Reference 231

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.1.9 Directives of the Script Language Preprocessor

If you use the # symbol as the first symbol in the program line, this line is the preprocessor
(microprocessor) command line.

The preprocessor command line ends with the line advance symbol.

Identifier Change (#define)

Inclusion of Files (#include)

Conditional

8.4.1.9.1 Identifier Change (#define)

Syntax:

#define identifier line

Example:

#define Count 100

Changes each occurrence of the Count identifier in the program text to 100.

#undef identifier

Example:

#undef Count

Cancels any previous definition for the Count identifier.

8.4.1.9.2 Inclusion of Files (#include)

Note. You can put the #include command line everywhere in the program, but normally, all
inclusions are located in the beginning of the source file text.

Syntax:

#include <file_name>

Example:

#include <system.h>

The preprocessor changes this line to the contents of the system.h file. The angle brackets
indicate that the system.h file will be taken from the standard catalog. The directory, where CPI2-
Gx is installed, and the list of directories specified in the "include-file directory" field in the Script
Files dialog , are automatically used as the standard directory. If the file is not found in any of
the standard directories, then the current directory will be checked.

#include "file_name"

Example:

#include "defs.h"

This structure operates the same way as the #include <system.h>, except that the compiler
searches the current directory first.

231

231

232

179

CPI2-Gx Device Programmers - CPI2-Gx232

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.1.9.3 Conditional Compilation

Preprocessor command lines are used for conditional compilation of various parts of the source
text depending on external conditions.

Syntax:

#ifdef identifier

Example:

#ifdef Debug

True, if the Debug identifier was defined earlier by the #define directive. Identifiers can also be
defined in the Defines text box in the Script Files dialog.

Syntax:

#ifndef identifier

Example:

#ifndef Debug

Syntax:

#else
#endif

If all previous checks of #if, #ifdef, or #ifndef show the True value, then the lines from #else to
#endif will be ignored during compilation.

If those checks show the False value, then the lines from the check to #else (and if #else is
missing, then from the check to #endif) will be ignored.

The #endif command ends the conditional compilation.

Example:

#ifdef DEBUG printf("Location: x = %d", x); #endif

8.4.1.10 Predefined Symbols in the Script File Compilation

The compiler automatically defines these symbols, as if they were defined by the #define directive.

Symbols that define the microcontroller family

One of the following symbols is defined:

__ARM - for the ARM debuggers

- for the MCS-51 debuggers;

__MCS_96 - for the MCS-96 debuggers;

__PIC - for the Microchip PIC debuggers.

8.4.2 Built-in Functions by Group

The script file system provides you with a large set of built-in functions intended for work with lines, files, for
mathematical calculations, and access to the processor resources. The system.h file contains descriptions of

179

Reference 233

© 2021 Phyton, Inc. Microsystems and Development Tools

these built-in functions. You should include the system.h file in the script file source text with the #include
directive:

#include <system.h>

You can use these built-in functions in the same way you use any function that you have defined.

Buffer access functions

Device programming control functions
Mathematical Functions
String Operation Functions
Character Operation Functions
Functions for File and Directory Operation
Stream File Functions
Formatted Input-Output Functions
Script File Manipulation Functions
Text Editor Functions
Control Functions
Windows Operation Functions and Other System Functions
Graphical Output Functions
I/O Stream Window Operation Functions

Event Wait Functions
Other Various Functions

Note. To get help on a function or variable, while editing the script source with the <%CM%> built-in editor,
point that function/variable name with the cursor and hit Alt+F1.

8.4.2.1 Buffer access functions

LoadProgram
ReloadProgram
SaveData
SetDevice
MinAddr
MaxAddr
GetByte
GetWord
GetDword
SetByte
SetWord
SetDword
GetMemory
SetMemory
CheckSum

8.4.2.1.1 CheckSum

unsigned long CheckSum(unsigned long start_addr, unsigned long end_addr, int addr_space);

 Description

233

238

246

247

248

248

250

251

251

251

253

254

254

255 255

256

256

235

236

236

237

236

236

234

235

234

237

238

237

234

238

233

CPI2-Gx Device Programmers - CPI2-Gx234

© 2021 Phyton, Inc. Microsystems and Development Tools

Calculates checksum for data in the addr_space memory{addr_sp} starting at start_addr and
ending at end_addr. Checksum is calculated by simple addition of byte values.

 Return Value

32-bit checksum.

 Example

printf("%08lX", CheckSum(0, 0x1FFF, SubLevel(1, 0)));

8.4.2.1.2 GetByte

unsigned int GetByte(unsigned long addr, int addr_space);

 Description

To read a byte from a specified address space{addr_sp} (parameter addr_space) at a specified
address.

 Returned value

Read byte or word.

 Example

printf("%02X", GetByte(SubLevel(0, 0), 0x1F));

8.4.2.1.3 GetDword

unsigned long GetDword(unsigned long addr, int addr_space);

 Description

To read a double word (32 bits) from a specified memory area{addr_sp} (parameter addr_space) at
a specified address.

 Returned value

Read double word.

 Example

printf("%08lX", GetDword(0, 0x1F));

8.4.2.1.4 GetMemory

void GetMemory(void dest[], int n, unsigned long addr, int addr_space);

Reference 235

© 2021 Phyton, Inc. Microsystems and Development Tools

 Description

To read n-byte memory block from a specified memory area{addr_sp} (parameter addr_space) at a
specified address to the array dest.

 Example

char array[20]; GetMemory(array, sizeof(array), 0x20, SubLevel(0, 0));

8.4.2.1.5 GetWord

unsigned int GetWord(unsigned long addr, int addr_space);

 Description

To read a word (16 bits) from a specified memory area{addr_sp} (parameter addr_space) at a
specified address.

 Returned address

Read word.

 Example

printf("%04X", GetWord(0, 0x1F));

8.4.2.1.6 LoadProgram

void LoadProgram(unsigned char file_name[], int format, int addr_space=AS_CODE, unsigned long
start_addr=0);

 Description

To download a program in the buffer{buffer} memory.

Parameters:

 file_name - Name of the loaded file.
 format - Format of the loaded file. Character constants with the
 prefix F_ declared in the mprog.h header file
 are provided for this parameter. To understand this
 better, open the Load Programm Dialog.
 and go through format names.
 addr_space - address space{addr_sp} where the data is downloaded
 (0 by default).
 start_addr - Load address. This parameter is used only for loading
 a file that is a binary memory image.

 Example

LoadProgram("C:\\PROG\\TEST.HEX", F_HEX, SubLevel(1, 0));

CPI2-Gx Device Programmers - CPI2-Gx236

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.2.1.7 MaxAddr

unsigned long MaxAddr(int addr_space);

 Description

Returns the address of the address space{addr_sp} upper boundary.

8.4.2.1.8 MinAddr

unsigned long MinAddr(int addr_space);

 Description

Returns the address of the address space{addr_sp} lower boundary.

8.4.2.1.9 ReloadProgram

void ReloadProgram();

 Description

To reload the file that was the last to be loaded to the buffer. This is equivalent to "Re-Load" in the
File menu.

8.4.2.1.10 SaveData

void SaveData(unsigned char file_name[], int format, int addr_space, unsigned long start_addr,
unsigned long end_addr);

 Description

To save memory area from buffer{buffer} in the file.

Parameters:

 file_name - Name of unloaded file.
 format - Format of unloaded file. Character constants with
 the prefix F_ declared in the mprog.h header file
 are provided for this parameter. To understand this better,
 open the Save Program Dialog and go through
 format names.
 addr_space - address space{addr_sp} where data is unloaded from.
 start_addr - Initial address of unloaded area.
 end_addr - Final address of unloaded area (inclusive).

51

Reference 237

© 2021 Phyton, Inc. Microsystems and Development Tools

 Example

SaveData("C:\\PROG\\TEST.HEX", F_HEX, SubLevel(0, 0), 0, 0x3FFF);

8.4.2.1.11 SetByte

void SetByte(unsigned long addr, int addr_space, unsigned int value);

 Description

To write value (byte) to a specified memory area{addr_sp} (parameter addr_space) at a specified
address.

 Description

SetByte(0x2000, SubLevel(0, 1), 0xFF);

8.4.2.1.12 SetDevice

int SetDevice(char manufacturer[], char name[]);

 Description

Set device type. The manufacturer parameter is the device manufacturer name, name is the device
name.

 Returned value

TRUE if the device is successfully selected, FALSE if it is not found.

 Example

SetDevice("Altera", "EP910");

8.4.2.1.13 SetDword

void SetDword(unsigned long addr, int addr_space, unsigned long value);

 Description

To write a double word (32 bits) to a specified memory area{addr_sp} (parameter addr_space) at a
specified address.

 Example

SetDword(0x2000, 0, 0x12345678);

CPI2-Gx Device Programmers - CPI2-Gx238

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.2.1.14 SetMemory

void SetMemory(void src[], int n, unsigned long addr, int addr_space);

 Description

To write n-byte memory block to a specified memory area{addr_sp} (parameter addr_space) at a
specified address from the array src.

 Example

SetMemory("12345678", 8, 0x20, 0);

8.4.2.1.15 SetWord

void SetWord(unsigned long addr, int addr_space, unsigned int value);

 Description

To write a word (16 bits) to a specified memory area{addr_sp} (parameter addr_space) at a
specified address.

 Example

SetWord(0x2000, 0, 0xFFFF);

8.4.2.2 Device programming control functions and variables

 Here is the list of the functions that control programming scripts (alphabetic order):

AllProgOptionsDefault
ExecFunction
GetProgOptionBits
GetProgOptionFloat
GetProgOptionList
GetProgOptionLong
GetProgOptionString
mprintf
ProgOptionDefault
SetProgOption

 Here is the list of the variables that controls programming operations in scripts (alphabetic order):

BlankCheck
BufferStartAddr
ChipEndAddr
ChipStartAddr
DialogOnError

239

239

241

241

241

242

242

242

242

243

244

244

244

244

245

Reference 239

© 2021 Phyton, Inc. Microsystems and Development Tools

InsertTest
LastErrorMessage
ReverseBytesOrder
VerifyAfterProgram
VerifyAfterRead

8.4.2.2.1 Function AllProgOptionsDefault

void AllProgOptionsDefault();

Description:

Set all the programming options to their default values.

8.4.2.2.2 Function ExecFunction

int ExecFunction(char func_name[], int buffer=0, int repetitions=1);

Description:

Perform the specified action (function) on device - programming, blank check, etc. The list of
available functions is displayed in the upper left corner of the Program window .

Parameters:

func_name - function name, for example "Blank Check". If you need to execute a function located
in the pop-up menu, you should precede the function name with the menu name and separate them
with ' '̂ sign, e.g. "Data Memory P̂rogram".

buffer - the buffer number.

repetitions - number of repetitions of the function.

Returned value:

For the value returned by ExecFunction, the header file mprog.h contains two constants:

EF_OK - function was completed successfully

EF_ERROR - there was an error while executing function. In this case, the error description is
copied into the built-in variable LastErrorMessage .

 Example:

 if (ExecFunction("Blank Check") != EF_OK)
 printf("Error in blank check: %s", LastErrorMessage);

 See also DialogOnError .

245

245

245

246

246

105

245

245

CPI2-Gx Device Programmers - CPI2-Gx240

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.2.2.3 Function GangExecute

int GangExecute(int site, int buffer=0);

Description:

In the gang mode, launch the Auto Programming command on the socket, the number of which is
specified by the site parameter (the first socket in the gang programmer has the number 0). The
buffer's number is specified by the parameter buffer. The default buffer number is 0.

A successful launch of the GangExecute() function returns 1; if the function fails it returns 0.
Regardless of the Auto Programming result, immediately after launching the GangExecute() function,
full control returns to the active script. In order to check the Auto Programming command completion,
use the script functions GangStatus() or GangWaitComplete().

8.4.2.2.4 Function GangGetError

int GangGetError(int site, char s[]);

Description:

In the gang mode get an error message about the failure of the socket, the number of which is specified
by the parameter site (the first socket in the gang programmer has the number 0). The error message
(a string) dumps to the array with the pointer s. If no single error has occurred during the programming
session the first byte in the error string will be 0 (zero).

8.4.2.2.5 Function GangStatus

int GangStatus(int site);

Description:

In the gang mode get the status of the operation on the socket, the number of which is specified by the
site parameter (the first socket in the gang programmer has the number 0). The function call returns
the status string, two bits of which define the operation statuses:

If the bit GS_EXECUTING =1 this indicates that Auto Programming is still in process;
If the bit GS_FAILED =1 this indicates an Auto Programming failure.

8.4.2.2.6 Function GangWaitComplete

void GangWaitComplete(int site);

Description:

In the gang mode, wait for completion of the Auto Programming operation on the socket, the number
of which is specified by the site parameter (the first socket in the gang programmer has the number 0).
Regardless of the operation result, a call of this function returns control to the script only upon
completion of the Auto Programming operation.

Reference 241

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.2.2.7 Function GetBadDeviceCount

unsigned long GetBadDeviceCount(int site=0);

Description:

In the gang mode get the current number of devices that could not be successfully programmed or did

not pass verification in the socket, the number of which is specified in the site parameter (the first

socket in the gang programmer has the number 0). Each socket in the gang programmer has a virtual

counter "Bad" that increments the variable after each programming cycle failure. The "Bad" counter

display is accessible in the Statistics tab in the Program Manager window.

8.4.2.2.8 Function GetGoodDeviceCount

unsigned long GetGoodDeviceCount(int site=0);

Description:

In the gang mode, get the current number of the devices successfully programmed in the socket, the
number of which is specified by the site parameter (the first socket in the gang programmer has the
number 0). Each socket in the gang programmer has a virtual counter "Good" that increments the
variable after each successful device programming cycle. The "Good" counter display is accessible in
the Statistics tab in the Program Manager window.

8.4.2.2.9 Function GetProgOptionBits

unsigned long GetProgOptionBits(char option_name[]);

Description:

Returns current value of the option_name programming option. The option must be of type 'Bits' -
a list of options; each of them can be checked or unchecked. Example: "Sectors" option of the
Fujitsu MBM29LV008BA device.

8.4.2.2.10 Function GetProgOptionFloat

float GetProgOptionFloat(char option_name[]);

Description:

Returns current value of the option_name programming option. The option must be of type 'Long' -
a floating-point number. Example: "Vcc" option of the Microchip PIC16F628A device.

8.4.2.2.11 Function GetProgOptionList

unsigned int GetProgOptionList(char option_name[]);

Description:

Returns current value of the option_name programming option. The option must be of type 'List' -
a menu-like list of strings. Example: "WDT" option of the Microchip PIC16F628A device.

CPI2-Gx Device Programmers - CPI2-Gx242

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.2.2.12 Function GetProgOptionLong

long GetProgOptionLong(char option_name[]);

Description:

Returns current value of the option_name programming option. The option must be of type 'Long'
- a 32-bit integer. Example: "Tpgm" option of the Atmel ATF2500C device.

8.4.2.2.13 Function GetProgOptionString

void GetProgOptionString(char option_name[], char str[]);

Description:

Copies the current value of the option_name programming option to the str string. The option must
be of type 'String' - a text string. Example: "Copyright" option of the National Semiconductor
COP87SER7 device.

8.4.2.2.14 Function mprintf

void mprintf(char format[], ...);

 Description:

The mprintf function is used just like printf but the message is displayed not in the Console
window but in the "Operation Progress" window of the Program Manager window.

8.4.2.2.15 Function OpenProject

void OpenProject(char file_name[]);

Description:

Load the project with the name specified as the file_name. Call of this function is equivalent of loading
the project via the menu Project > Open. Use of projects is very convenient, especially for mass
production.

8.4.2.2.16 Function ProgOptionDefault

void ProgOptionDefault(char option_name[]);

Description:

Set the default value of the option_name programming option.

8.4.2.2.17 Function ReadShadowArea

void ReadShadowArea(int sub_level, unsigned long addr, unsigned int len, void data[], int
site=0);

Description:

Read data from a specified shadow memory to the array "data". First, you have to create a shadow
area through the menu Configure > The Serialization, Checksum and Log File dialog > Custom
shadow memory tab. The start address of the data to be written into the addr may differ from the start

341

105

Reference 243

© 2021 Phyton, Inc. Microsystems and Development Tools

address of the custom shadow area but it is necessary the end address should not exceed the end
address of the shadow area.

The int site=0 means the socket# 0; i.e., the only socket for a single-site programmer or the first
socket in a gang programmer. In the gang mode it is necessary to specify the socket number (the first
one has the number 0).

8.4.2.2.18 Function SetProgOption

void SetProgOption(char option_name[], char option_string[]);

 Description:

Set value for the programming option. The programming options are listed in the lower right corner
of the Device and Algorithm Parameters' Editor window.

Parameters:

option_name - option name, e.g. "Vpp".

option_string - option value as character string. Options can be of several types (certain option
type can be determined by hitting the "Edit" button in the Device and Algorithm Parameters'
Editor window).

• floating point numbers, for example, programming voltage. For such options, the option_string
parameter should represent a floating point number, for example, "12.3".

• integer numbers. The option_string parameter should represent an integer value, for example,
"215".

• "menu" type options. In these cases, the option_string parameter should be a menu item string,
for example, "Disabled". Menu can be observed by hitting the "Edit" button in the Device and
Algorithm Parameters' Editor window).

• character strings, for example, "Copyright".

• check boxes option. Check boxes option is a list of options; each of them can be checked or
unchecked. To specify a value for a check box option, append an '=' sign to the option name
followed with 0 or 1. For example, to set up the CPD memory protection bit of PIC18F8720 chip,
write

SetProgOption("Memory protection", "CPD=1");

 Examples

 SetProgOption("Vpp", "12.5");
 SetProgOption("PWRT", "Disabled");

See also examples that come with the ChipProg package.

8.4.2.2.19 Function WriteShadowArea

void WriteShadowArea(int sub_level, unsigned long addr, unsigned int len, void data[], int
site=0);

Description:

93

93

93

CPI2-Gx Device Programmers - CPI2-Gx244

© 2021 Phyton, Inc. Microsystems and Development Tools

Write data from the array data to a specified shadow memory. First, you have to create a shadow area
through the menu Configure > The Serialization, Checksum and Log File dialog > Custom
shadow memory tab. The start address of the data, to be written into the addr, may differ from the
start address of the custom shadow area but it is necessary that the end address should not exceed
the end address of the shadow area.

The int site=0 means the socket# 0; i.e., the only socket for a single-site programmer or the first
socket in a gang programmer. In the gang mode it is necessary to specify the socket number (the first
one has the number 0).

8.4.2.2.20 Variable BlankCheck

extern int BlankCheck;

The value of the "Blank check before program" option in the Program Manager window (tab
Options). Assigning value to BlankCheck automatically changes the option in the window and vice
versa.

8.4.2.2.21 Variable BufferStartAddr

extern unsigned long BufferStartAddr;

The value of the start address in the buffer used for operation. Assigning value to BufferStartAddr
automatically changes the buffer start address field in the window and vice versa.

8.4.2.2.22 Variable Checksum

extern unsigned long Checksum;

A checksum of the data to be written into the device being currently programmed. This checksum can
be specified by the script that defines an algorithm for the checksum computation. This parameter is
usually set in the Checksum tab of the Serialization, Checksum and Log File dialog of the
Configure menu.

8.4.2.2.23 Variable ChipEndAddr

extern unsigned long ChipEndAddr;

The value of the start address in the device used for operation. Assigning value to ChipEndAddr
automatically changes the end address field in the window and vice versa.

8.4.2.2.24 Variable ChipStartAddr

extern unsigned long ChipStartAddr;

The value of the start address in the device used for operation. Assigning value to ChipStartAddr
automatically changes the start address field in the window and vice versa.

8.4.2.2.25 Variable DeviceBatchSize

extern unsigned long DeviceBatchSize;

Number of devices in the lot to be programmed. This variable is used for counting down the devices
from the DeviceBatchSize value to zero. A check box for enabling the device count-down and other
controls is accessible in the Statistic tab of the Program Manager window.

105

Reference 245

© 2021 Phyton, Inc. Microsystems and Development Tools

Example: if you need to program 10000 devices of the same type with the same data and then the
programming should be stopped, the DeviceBatchSize=10000.

8.4.2.2.26 Variable DialogOnError

extern int DialogOnError;

If the value of this variable is set to nonzero (default), then if there is an error occurred during a
programming function execution (see ExecFunction), the dialog with error description is
displayed. Otherwise no dialog is displayed and ExecFunction() immediately returns with code
EF_ERROR.

8.4.2.2.27 Variable GangMode

extern int GangMode;

The variable's value will be 1 if the ChipProgUSB software has been launched in the gang mode; for
example, if it has been launched in the command line mode with the key /GANG, otherwise it will be 0.
The GangMode variable is accessible for reading only.

8.4.2.2.28 Variable InsertTest

extern int InsertTest;

The value of the "Insert test" option in The Program Manager Window (tab Options). Assigning
value to InsertTest automatically changes the option in the window and vice versa.

8.4.2.2.29 Variable LastErrorMessage[]

extern char LastErrorMessage[];

String that contains the last error message about operation on device. See also ExecFunction .

8.4.2.2.30 Variable NumSites

extern int NumSites;

The number of the gang programmer's operable sockets (for example, for a ChipProg-G41 device
programmer, NumSites is four. The NumSites variable is accessible for reading only.

8.4.2.2.31 Variable ReverseBytesOrder

extern int ReverseBytesOrder;

The value of the "Reverse bytes order" option in The Program Manager Window (tab Options).
Assigning value to ReverseBytesOrder automatically changes the option in the window and vice
versa.

8.4.2.2.32 Variable SerialNumber

extern unsigned long SerialNumber;

The serial number of the device currently being programmed. This number can be specified by the
script that defines a start serial number and an algorithm for the serial number incrementation. These

239

105

239

105

CPI2-Gx Device Programmers - CPI2-Gx246

© 2021 Phyton, Inc. Microsystems and Development Tools

parameters are usually set in the Serial Number tab of the Serialization, Checksum and Log File
dialog of the Configure menu.

8.4.2.2.33 Variable Signature

extern char Signature[];

A string of characters to be written in the device being currently programmed as a unique signature.
This signature can be specified by the script. Usually it is set in the Signature String tab of the
Serialization, Checksum and Log File dialog of the Configure menu.

8.4.2.2.34 Variable VerifyAfterProgram

extern int VerifyAfterProgram;

The value of the "Verify after program" option in The Program Manager Window (tab Options).
Assigning value to VerifyAfterProgram automatically changes the option in the window and vice
versa.

8.4.2.2.35 Variable VerifyAfterRead

extern int VerifyAfterRead;

The value of the "Verify after read" option in The Program Manager Window (tab Options).
Assigning value to VerifyAfterRead automatically changes the option in the window and vice versa.

8.4.2.3 Mathematical functions

sin

asin

cos

acos

tan

tanh

atan

log

log10

sqrt

ceil

floor

exp

fabs

fmod

frexp

105

105

341

269

275

267

350

350

269

310

341

272

288

283

283

289

293

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 247

© 2021 Phyton, Inc. Microsystems and Development Tools

abs

pow

pow10

8.4.2.4 String operation functions

Functions for string operation receive arrays as parameters. Functions of the memxxxx type can
use arrays of any type; other functions use the char arrays.

The script file language does not support pointers, that is why all string operation functions include
the index, desr_index, and scr_index parameters to specify the initial shift in the array. The default
value of these parameters is 0. These parameters are not considered in the following line function
descriptions.

Note once again that arrays are transferred "by pointer", that is, the array itself is transferred and
not its copy.

memccpy

memcpy

memmove

movmem

memchr

memset

setmem

memcmp

memicmp

stpcpy

strcat

strchr

strcmp

stricmp

strcmpi

[****]

strcpy

[****]

strlwr

[****]

strncat

267

319

319

311

312

313

315

311

313

337

312

312

343

343

343

343

344

344

344

344

345

345

350

345

CPI2-Gx Device Programmers - CPI2-Gx248

© 2021 Phyton, Inc. Microsystems and Development Tools

strncmp

strncmpi

strnicmp

strncpy

strnset

strpbrk

strspn

[****]

strrchr

strrev

[****]

8.4.2.5 Character operation functions

isalnum

isalpha

isascii

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

toascii

tolower

toupper

8.4.2.6 Functions for file and directory operation

chdir

getcurdir

346

346

347

346

347

347

348

348

347

348

303

303

304

304

304

304

305

305

305

305

351

352

352

272

296

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 249

© 2021 Phyton, Inc. Microsystems and Development Tools

findfirst

findnext

_ff_attrib

_ff_time

_ff_date

_ff_size

_ff_name

fnsplit

fnmerge

_fullpath

getcwd

getdisk()

setdisk

mkdir

rmdir

searchpath

getdfree

unlink

chsize

close

creat

creatnew

creattemp

dup

dup2

eof

filelength

getftime

setftime

isatty

lock

unlock

locking

287

265

266

265

266

289

264

266

297

336

314

330

333

297

352

272

274

275

276

276

279

279

280

286

297

337

303

360

353

309

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

CPI2-Gx Device Programmers - CPI2-Gx250

© 2021 Phyton, Inc. Microsystems and Development Tools

lseek

open

read

write

rename

setmode

[****]

8.4.2.7 Stream file functions

clearerr

fclose

fdopen

feof

ferror

fflush
fgetc

fgets

fileno

fopen

fprintf

fputc

fputs

fread

freopen

fscanf

fseek

ftell

fwrite

getc

getw

putc

[****]

rewind

310

315

328

359

330

338

283

284

284

285

285

285

286

286

289

290

291

291

292

293

294

294

295

295

300

327

327

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 251

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.2.8 Formatted input-output functions

Formatted input-output functions perform data conversion in accordance with the format line. You
can find description of the format line in any book on the C language.

Note that the arguments for input functions should be arrays, and not simple variables. This is
because the pointers are not supported in the script file language, and it is impossible to transfer
an address with the simple variable.

Attention! Your arguments passed to the formatted input-output functions shall match the format
line. Otherwise, the CPI2-Gx program may fail.

fprintf

fscanf

scanf

pscanf

sscanf

printf

_printf

sprintf

MessageBox

MessageBoxEx

8.4.2.9 Script File Manipulation Functions

ExecScript

GetScriptFileName

TerminateScript

TerminateAllScripts

exit

8.4.2.10 Text editor functions

The text editor functions manipulate with text in the Source You can start the script files with
the custom hot keys (for more about this, see).

All text editor functions assume that the text editor window is active, when function is called, so
they do not receive the window handle as a parameter unlike other functions that manipulate
windows in CPI2-Gx.

The CPI2-Gx package includes several examples of script files performing useful commands. The
sources are located in the KEYCMD sub-directory.

290

293

332

326

342

320

267

341

313

282

299

351

351

282

187

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

CPI2-Gx Device Programmers - CPI2-Gx252

© 2021 Phyton, Inc. Microsystems and Development Tools

Note that line and column numbers begin from 1.

GotoXY

Up

Down

Left

Right

Tof

Eof

Eol

BackSpace

Cr

DelLine

DelChar

CurChar

GetLine

ForwardTill

ForwardTillNot

_GetWord

WordLeft

WordRight

FirstWord

SetMark

GetMark

Text

BlockBegin

BlockEnd

BlockOff

BlockCopy

BlockFastCopy

BlockDelete

BlockMove

BlockPaste

Search

301

279

330

351

280

281

270

275

278

277

277

298

290

290

266

359

359

288

337

298

351

270

271

271

270

271

270

271

271

333

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 253

© 2021 Phyton, Inc. Microsystems and Development Tools

SearchReplace

SetFileName

GetFileName

SaveFile

[****]

OpenEditorWindow

Text editor built-in variables

InsertMode

CaseSensitive

WholeWords

[****]

BlockCol1

BlockCol2

BlockLine1

BlockLine2

BlockStatus

CurLine

CurCol

LastFoundString

8.4.2.11 Debug shell control functions

These functions control CPI2-Gx.

RedrawScreen
LoadDesktop
LoadOptions
SaveDesktop
SaveOptions
OpenWindow
OpenUserWindow
OpenStreamWindow
CloseWindow
FindWindow
MoveWindow
ActivateWindow
SetWindowSize
SetWindowSizeT
GetWindowWidth
GetWindowHeight

334

336

297

332

316

363

362

365

364

361

361

361

361

361

362

362

363

329

307

308

331

332

317

317

316

274

288

315

267

340

340

300

300

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

CPI2-Gx Device Programmers - CPI2-Gx254

© 2021 Phyton, Inc. Microsystems and Development Tools

SetWindowFont
WindowHotkey
AddWatch
Inspect
ExecMenu
ExitProgram
LoadProject
CloseProject
LoadProgram
ReloadProgram
SaveData

8.4.2.12 Windows operation functions and other system functions

Attention! Only the experienced programmers should use the Windows operation functions.
These functions provide advanced capabilities, but when used incorrectly, they may hang the
operating system.

API

LoadLibrary

FreeLibrary

WaitSendMessage

WaitGetMessage

inport

inportb

outport

outportb

peek

peekb

poke

pokeb

exec

getenv

putenv

8.4.2.13 Graphical output functions

Graphical output functions draw various graphical objects and text in special User window . To
draw in a user window, first open it with the OpenUserWindow function that returns the
window identifier (handle). Then use the identifier to reference the window (multiple user windows
can be open at the same time). For more information, see User window .

In all graphical output functions, the first parameter () is the window identifier.

339

358

268

302

281

283

309

274

308

329

331

269

308

292

356

355

302

302

318

318

318

318

318

319

281

297

327

181

317

181

Reference 255

© 2021 Phyton, Inc. Microsystems and Development Tools

OpenUserWindow

ClearWindow

SetCaption

SetToolbar

SetUpdateMode

UpdateWindow

SelectPen

SelectBrush

SelectFont

SetTextColor

SetBkColor

SetBkMode

DisplayText

DisplayTextF

MoveTo

LineTo

FillRect

Rectangle

[****]

InvertRect

Curcuit

Ellipse

Polyline

SetPixel

AddButton

RemoveButtons

WaitWindowEvent

[****]

LastEventInt{1...4}

8.4.2.14 I/O Stream window operation functions

Stream window control functions allow you to display text in the special I/O Stream window .

317

274

336

339

339

353

334

334

334

338

335

335

278

278

315

307

287

329

291

302

277

280

319

338

267

329

357

306

307

181

CPI2-Gx Device Programmers - CPI2-Gx256

© 2021 Phyton, Inc. Microsystems and Development Tools

In all Stream window control functions, the first parameter (handle) is the window identifier.

OpenStreamWindow

SetTextColor

wprintf

wgetchar

LastChar

wgethex

wgetstring

LastString

8.4.2.15 Event Wait Functions

These extremely useful functions serve to simulate external environment. Also, you can use them in simulators

to develop various tests.

Wait

WaitMemoryAccess

WaitExprTrue

WaitExprChange

WaitStop

WaitWindowEvent

8.4.2.16 Other Various Functions

delay
gettime
getdate
difftime
atof
atoi
itoa
ltoa
ultoa
rand
random
randomize
srand
strtol
strtoul

316

338

359

357

306

358

358

307

353

355

354

357

357

277

299

296

278

269

270

306

311

352

328

328

328

342

349

349

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 257

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.3 Built-in Variables by Group

You can access script language built-in variables in the same way as regular global variables. However, some built-
in variables are accessible only for reading, and in case of attempt to write to such variable.

The built-in variables are declared in the system.h header file.

Programming variables:
InsertTest
ReverseBytesOrder
BlankCheck
VerifyAfterProgram
VerifyAfterRead
ChipStartAddr
ChipEndAddr
BufferStartAddr
LastErrorMessage
DialogOnError

Text editor built-in variables:
InsertMode
CaseSensitive
WholeWords
RegularExpressions
BlockCol1
BlockCol2
BlockLine1
BlockLine2
BlockStatus
CurLine
CurCol
LastFoundString

Miscellaneous variables:
WorkFieldWidth
WorkFieldHeight
ApplName[]
DesktopName[]
SystemDir[]
errno
_fmode
MainWindowHandle
NumWindows
WindowHandles[]
SelectedString[]
LastMessageInt
LastMessageLong

8.4.4 List of Built-in Functions and Variables

Below is the alphabetical list of all built-in functions and variables of scripting language.

AllProgOptionsDefault

API

ActivateWindow

245

245

244

246

246

244

244

244

245

245

363

362

365

364

361

361

361

361

361

362

362

363

365

365

360

362

365

362

360

364

364

365

365

364

364

239

269

267

CPI2-Gx Device Programmers - CPI2-Gx258

© 2021 Phyton, Inc. Microsystems and Development Tools

AddButton

AddWatch

ApplName[]

BackSpace

BlankCheck

BlockBegin

BlockCol1

BlockCol2

BlockCopy

BlockDelete

BlockEnd

BlockFastCopy

BlockLine1

BlockLine2

BlockMove

BlockOff

BlockPaste

BlockStatus

BufferStartAddr

CaseSensitive

CheckSum

ChipEndAddr
ChipStartAddr

ClearWindow

CloseProject

CloseWindow

Cr

CurChar

CurCol

CurLine

Curcuit
DelChar

DelLine

DesktopName[]

DialogOnError

DisplayText

DisplayTextF

Down

Ellipse

Eof

Eol

ExecFunction

ExecMenu

ExecScript

ExitProgram
Expr

FileChanged

FillRect

FindWindow

267

268

360

270

244

270

361

361

270

270

271

271

361

361

271

271

271

361

244

362

233

244

244

274

274

274

275

277

362

362

277

277

278

362

245

278

278

279

280

280

281

239

281

282

283

283

286

287

288

Reference 259

© 2021 Phyton, Inc. Microsystems and Development Tools

FirstWord

FloatExpr

ForwardTill

ForwardTillNot

FrameRect
FreeLibrary

GetByte

GetDword

GetFileName

GetLine

GetMark

GetMemory

GetProgOptionBits
GetProgOptionFloat
GetProgOptionList
GetProgOptionLong

GetProgOptionString

GetScriptFileName

GetWindowHeight

GetWindowWidth

GetWord

GotoXY

InsertMode

InsertTest

Inspect

InvertRect

LastChar

LastErrorMessage

LastEvent

LastEventInt{1...4}
LastFoundString

LastMessageInt

LastMessageLong

LastString

Left

LineTo

LoadDesktop

LoadLibrary

LoadOptions

LoadProgram

LoadProject

MainWindowHandle

MaxAddr

MessageBox

MessageBoxEx

MinAddr
MoveTo

MoveWindow

NumWindows

OpenEditorWindow

288

288

290

290

291

292

234

234

297

298

298

298

241

241

241

242

242

299

300

300

301

301

363

245

302

302

306

245

306

307

363

364

364

307

308

307

307

308

308

308

309

364

236

313

313

236

315

315

364

316

CPI2-Gx Device Programmers - CPI2-Gx260

© 2021 Phyton, Inc. Microsystems and Development Tools

OpenStreamWindow

OpenUserWindow

OpenWindow

Polyline

ProgOptionDefault

Rectangle

RedrawScreen

RegularExpressions

ReloadProgram

RemoveButtons

ReverseBytesOrder

Right

SaveData

SaveDesktop

SaveFile

SaveOptions

Search

SearchReplace

SelectBrush

SelectFont

SelectPen

SelectedString[]

SetBkColor

SetBkMode
SetByte

SetCaption

SetDevice

SetDWord
SetFileName

SetMark

SetMemory

SetPixel

SetProgOption

SetTextColor

SetToolbar

SetUpdateMode

SetWindowFont

SetWindowSize

SetWindowSizeT

SetWord

SystemDir[]

TerminateAllScripts

TerminateScript

Text
Tof

Up

UpdateWindow

VerifyAfterProgram

VerifyAfterRead

316

317

317

319

242

329

329

364

329

329

245

330

331

331

332

332

333

334

334

334

334

365

335

335

335

336

237

336

336

337

338

338

243

338

339

339

339

340

340

340

365

351

351

351

351

353

353

246

246

Reference 261

© 2021 Phyton, Inc. Microsystems and Development Tools

WaitEprTrue

WaitGetMessage

WaitSendMessage

WaitWindowEvent

WholeWords
WindowHandles[]

WindowHotkey

WordLeft

WordRight
WorkFieldHeight

WorkFieldWidth

_GetWord

_ff_attrib
_ff_date

_ff_name

_ff_size

_ff_time

_fmode

_fullpath
_printf

abs

acos

asin

atan
atof

atoi

ceil

chdir

chsize

clearerr

close

cos

creat
creatnew

creattemp
delay

difftime

dup

dup2

eof

errno

exec

exit

exp

fabs

fclose

fdopen

feof

ferror

fflush

354

355

356

357

365

365

358

359

359

365

365

266

265

265

265

266

266

360

266

267

267

267

269

269

269

270

272

272

272

273

274

275

275

276

276

277

278

279

279

280

362

281

282

283

283

283

284

284

285

285

CPI2-Gx Device Programmers - CPI2-Gx262

© 2021 Phyton, Inc. Microsystems and Development Tools

fgetc

fgets

filelength

fileno

findfirst

findnext

floor

fmod

fnmerge
fnsplit

fopen

fprintf

fputc

fputs
fread

freopen

frexp

fscanf

fseek

ftell

fwrite

getc

getcurdir

getcwd

getdate

getdfree

getdisk()

getenv

getftime
gettime

getw

inport

inportb

isalnum

isalpha

isascii

isatty

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

itoa

lock

locking

285

286

286

286

287

287

288

289

264

289

289

290

291

291

292

292

293

293

294

294

295

295

296

296

296

297

297

297

297

299

300

302

302

303

303

303

303

304

304

304

304

305

305

305

305

305

306

360

309

Reference 263

© 2021 Phyton, Inc. Microsystems and Development Tools

log

log10

lseek

ltoa

memccpy

memchr

memcmp

memcpy

memicmp

memmove

memset

mkdir

movmem

mprintf

open

outport

outportb

peek

peekb

poke
pokeb

pow

pow10

printf

pscanf

putc

putenv

putw

rand

random

randomize

read

rename
rewind

rmdir

scanf

searchpath

setdisk

setftime

setmem

setmode
sin

sprintf

sqrt

srand

sscanf

stpcpy

strcat

strchr

310

310

310

311

311

311

312

312

312

313

313

314

315

242

315

318

318

318

318

318

319

319

319

320

326

327

327

327

328

328

328

328

330

330

330

332

333

336

337

337

338

341

341

341

342

342

343

343

343

CPI2-Gx Device Programmers - CPI2-Gx264

© 2021 Phyton, Inc. Microsystems and Development Tools

strcmp

strcmpi

strcpy

strcspn

stricmp

strlen
strlwr

strncat

strncmp

strncmpi

strncpy

strnicmp

strnset

strpbrk

strrchr
strrev

strset

strspn

strstr

strtol

strtoul

strupr

tan

tanh

tell

toascii
tolower

toupper

ultoa

unlink

unlock

wgetchar

wgethex

wgetstring

wprintf

write

8.4.5 Scripting Functions

Enter topic text here.

8.4.5.1 fnmerge

Declaration:

void fnmerge(char path[], char drive[], char dir[], char name[], char ext[]);

Builds a path from component parts.

fnmerge makes the path name from its components. The new path name is

X:\DIR\SUBDIR\NAME.EXT

343

344

344

344

344

345

345

345

346

346

346

347

347

347

347

348

348

348

348

349

349

350

350

350

350

351

352

352

352

352

353

357

358

358

359

359

Reference 265

© 2021 Phyton, Inc. Microsystems and Development Tools

where:

drive = X

dir = \DIR\SUBDIR\

name = NAME

ext = .EXT

fnmerge assumes there is enough space in path for the constructed path name. The maximum
constructed length, MAXPATH, is defined in system.h.

fnmerge and fnsplit are invertible: if you split the given path with fnsplit, then merge the
resultant components with fnmerge and you end up with this path.

8.4.5.2 Function _ff_attrib

Declaration:

char _ff_attrib(char ffblk[]);

Description

Returns the attribute byte of the file found upon the function findfirst or findnext access. The ffblk
parameter is the buffer filled with information on the file after findfirst or findnext access.

Example

See function findfirst

8.4.5.3 Function _ff_date

Declaration:

int _ff_date(char ffblk[]);

Description

Returns the word with the file (creation or modification) date for the file found upon the function findfirst or
findnext access. The ffblk parameter is the buffer filled with information on the file after the findfirst or
findnext access.

Example

See function findfirst

8.4.5.4 Function _ff_name

Declaration:

void _ff_name(char ffblk[], char fname[]);

Description

Copies the name of the file found upon the function findfirst or findnext access to the fmane array. The
ffblk parameter is the buffer filled with information on the file after the findfirst or findnext access. The file name
does not contain the disk name or path.

Example

See function findfirst

289

287 287

287

287

287

287

287 287

287

CPI2-Gx Device Programmers - CPI2-Gx266

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.5 Function _ff_size

Declaration:

long _ff_size(char ffblk[]);

Description

Returns the size of the file found upon the function findfirst or findnext access. The ffblk parameter is
the buffer filled with information on the file after the findfirst or findnext access.

Example

See function findfirst

8.4.5.6 Function _ff_time

Declaration:

int _ff_time(char ffblk[]);

Description

Returns the word with the file creation (or modification) time for the file found upon the function findfirst or
findnext access. The ffblk parameter is the buffer filled with information on the file after the findfirst or
findnext access.

Example

See function findfirst .

8.4.5.7 Function _fullpath

Declaration:

int _fullpath(char buf[], char path[]);

Description

Converts a relative path name to the absolute one.

_fullpath converts the relative path name in a path to the absolute path name that is stored in the
array of characters pointed to by buf. The function returns FALSE the path contains an invalid
drive letter.

Returned value

If successful, the _fullpath function will return TRUE. On error, it returns FALSE.

8.4.5.8 Function _GetWord

Declaration:

void _GetWord(char dest[]);

Description

Copies the word under the cursor to the dest array. If there is no word under the cursor, then the first element
of dest will be 0.

287 287

287

287

287

287

Reference 267

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.9 Function _printfv

Declaration:

void _printf(char format[], ...);

Description

Acts like printf , but does not append the newline character to the line.

Note. Your arguments passed to this function shall match the format line. In case of mismatch, the <%CM%
> program may crash, because it cannot check the correspondence between the format string and
parameters passed.

8.4.5.10 Function abs

Declaration:

long abs(long x);

Description

The abs function calculates the absolute value of the integer argument val.

Returned value

The abs function returns the absolute value of the integer argument val.

8.4.5.11 Function acos

Declaration:

float acos(float x);

Description

The acos function calculates the arc cosine of the floating-point number x. Argument x should range from -1
to 1, otherwise the result will be equal to 0 (for x > 1) or to PI (for x < -1). The function returns value in the
range from 0 to PI.

Returned value

The acos function returns the arc cosine of argument x.

8.4.5.12 Function ActivateWindow

Declaration:

void ActivateWindow(unsigned long handle);

Description

Activates the specified window. The window becomes 'active' and is placed over all other windows of <%CM%
>.

8.4.5.13 Function AddButton

Declaration:

320

CPI2-Gx Device Programmers - CPI2-Gx268

© 2021 Phyton, Inc. Microsystems and Development Tools

int AddButton(unsigned long handle, char button_text[], int x, int y, int
width, int height);

Description

Adds a button to the window. The button is a usual button of the standard Windows dialog boxes. When you
click the button, the event is generated that can be captured with the WaitWindowEvent function, and the
corresponding operation is carried out.

If the specified button already exists in the window (already added by AddButton with the same parameters),
the new button will not be added and the existing button will be used.

Parameters:

 button_text - the text written on the button
 x, y - the coordinates of the upper left corner within the window
 width - the button width
 height - the button height

Returned value

The button identifier. It is used by the WaitWindowEvent function to determine, which button was clicked
(there multiple buttons in the window).

Example

AddButton(handle, "Start", 50, 50, 70, 24);

8.4.5.14 Function AddrExpr

Declaration:

unsigned long AddrExpr(char str[]);

Description

Calculates the expression and returns the result (the str parameter) as an address in microcontroller memory.

Example

 int addr_port0 = AddrExpr("PORT0");
 WaitMemoryAccess(addr_port0, AS_DATA, 1, MA_WRITE);

Note that 'AddrExpr("PORT0")' is the same as 'Expr("&PORT0")'.

Also, see Expr , FloatExpr , Operations and Expressions .

8.4.5.15 Function AddWatch

Declaration:

void AddWatch(char name[], int format=DF_HEX);

Description

Adds the specified name (the name parameter) to the Watches window in the specified format. If the
Watches window is not already opened, it will be opened automatically.

Examples

 AddWatch("Duration", DF_DEC);
 AddWatch("Address"); // the default format is hexadecimal

357

357

283 288 211

183 183

Reference 269

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.16 Function API

Declaration:

unsigned long API(char func_name[], ...);

Description

Calls a 16-bit Windows API function with the name specified in func_name and transfers the parameters
specified in API to this function.

Make sure you use the correct parameter number and size, because <%CM%> knows nothing about them.
When necessary, use the explicit type conversions and put character 'L' in the end of long-type constants.

To reduce problems, when an array is transferred as the parameter, a long (32-byte) pointer is transferred.

Returned value

What was returned by the called API function is in registers DX:AX. If it is a pointer, then data can be
accessed using the peek , poke , peekb , or pokeb functions.

Example

int ScreenHeight = API("GetSystemMetrics", SM_CYFULLSCREEN);

8.4.5.17 Function asin

Declaration:

float asin(float x);

Description

The asin function calculates the arc sine of the floating-point number x. The argument x should range from -1
to 1, otherwise the result will be equal to PI/2 (for x > 1) or to -PI/2 (for x < -1). The function returns value in
the range from -PI/2 to PI/2.

Returned value

The asin function returns the arc sine of argument x.

8.4.5.18 Function atan

Declaration:

float atan(float x);

Description

The atan function calculates the arc tangent of the floating-point number x. The function returns value in the
range from -PI/2 to PI/2.

Returned value

The atan function returns the arc tangent of argument x.

8.4.5.19 Function atof

Declaration:

float atof(char s[]);

318 318 318 319

CPI2-Gx Device Programmers - CPI2-Gx270

© 2021 Phyton, Inc. Microsystems and Development Tools

Description

Converts an ASCII-string (parameter s) into the floating-point number.

8.4.5.20 Function atoi

Declaration:

int atoi(char s[]);

Description

Converts an ASCII-string (parameter s) into the integer number.

8.4.5.21 Function BackSpace

Declaration:

void BackSpace();

Description

Works like the BackSpace key.

8.4.5.22 Function BlockBegin

Declaration:

void BlockBegin(int block_type);

Description

Begins marking of block (see Block Operations). The block_type parameter indicates the type of block.
For convenience, the system.h header file defines constants for the block functions:

 EB_NONE - no block (not used in this function)
 EB_LINE - line block
 EB_VERT - vertical block
 EB_STREAM - stream block

8.4.5.23 Function BlockCopy

Declaration:

void BlockCopy();

Description

Copies the block to the clipboard.

8.4.5.24 Function BlockDelete

Declaration:

void BlockDelete();

Description

Deletes the block. The block is copied to the clipboard

188

Reference 271

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.25 Function BlockEnd

Declaration:

void BlockEnd();

Description

Finishes marking of block. It is supposed that before calling BlockEnd(), the BlockBegin function is called
and then the cursor is moved to the end of the block.

8.4.5.26 Function BlockFastCopy

Declaration:

void BlockFastCopy();

Description

Copies the block from the cursor position.

8.4.5.27 Function BlockMove

Declaration:

void BlockMove();

Description

Moves the block to the cursor position.

8.4.5.28 Function BlockOff

Declaration:

void BlockOff();

Description

Turns the block off..

8.4.5.29 Function BlockPaste

Declaration:

void BlockPaste();

Description

Pastes the block from the clipboard to the cursor position

8.4.5.30 Function CallLibraryFunction

Declaration:

unsigned long CallLibraryFunction(unsigned long inst, char func_name[], ...);

Description

Calls the func_name function from DLL and its HINSTANCE is transferred to inst. Otherwise, this function is
similar to the function API call.

Example

270

269

CPI2-Gx Device Programmers - CPI2-Gx272

© 2021 Phyton, Inc. Microsystems and Development Tools

unsigned long instance = LoadLibrary("EXTEND.DLL");
long result = CallLibraryFunction(instance, "Initialize", 0, 1L);

8.4.5.31 Function ceil

 Declaration:

float ceil(float x);

Description

The ceil function calculates the least integer value that is greater than or equal to x.

Returned value

The ceil function returns the double-type number equal to the least integer that is no greater than x.

8.4.5.32 Function chdir

Declaration:

int chdir(char path[]);

Description

Sets up the new default directory specified in parameter path. The latter might also contain a disk name, but
the disk does not change: only the default directory changes on this disk.

Returned value

If the directory change is successful, 0 will be returned, and -1 otherwise.

8.4.5.33 Function CheckSum

Declaration:

unsigned long CheckSum(unsigned long start_addr, unsigned long end_addr, int
addr_space);

Description

Calculates the checksum for data in the addr_space memory that starts from start_addr and ends at
end_addr. The checksum is calculated by simple addition of byte values.

Returned value

The 32-bit checksum.

Example

printf("%08lX", CheckSum(0, 0x1FFF, AS_DATA));

8.4.5.34 Function chsize

Declaration:

int chsize(long handle, long size);

Description

Reference 273

© 2021 Phyton, Inc. Microsystems and Development Tools

Changes the file size.

chsize changes the size of the file associated with handle. It can truncate or extend the file,
depending on the value of size compared to the file's original size.

The mode, in which you open the file, must allow writing.

If chsize extends the file, it will append the null characters (\0). If it truncates the file, all data
beyond the new end-of-file indicator will be lost.

Returned value

On success, chsize returns 0. On failure, it returns -1 and sets the errno global variable to one
of the following values:
 EACCESS Permission denied
 EBADF Bad file number
 ENOSPC No space left o

8.4.5.35 Function ClearAllBreaks

Declaration:

void ClearAllBreaks();

Description

Clears all breakpoints of all types.

8.4.5.36 Function ClearBreak

Declaration:

void ClearBreak(unsigned long addr);

Description

Clears the code breakpoint at the specified address.

8.4.5.37 Function ClearBreaksRange

Declaration:

void ClearBreaksRange(unsigned long start_addr, unsigned long end_addr);

Description

Clears the code breakpoints in the range from start_addr to end_addr inclusive.

8.4.5.38 Function clearerr

Declaration:

void clearerr(unsigned long stream);

Description

362

CPI2-Gx Device Programmers - CPI2-Gx274

© 2021 Phyton, Inc. Microsystems and Development Tools

Resets error indication.

clearerr resets the specified stream's error and end-of-file indicators to 0. Once the error indicator
is set up, the stream operations continue to return the error status until a call is made to clearerr
or rewind. The end-of-file indicator is reset with each input operation.

8.4.5.39 Function ClearWindow

Declaration:

void ClearWindow(unsigned long handle);

Description

Clears the specified window, which can be a User window or an I/O Stream window .

8.4.5.40 Function close

Declaration:

int close(long handle);

Description

Closes a file.

The close function closes the file associated with handle (the file handle obtained from a call to
creat, creatnew , creattemp , dup , dup2 ,).

It does not write the Ctrl-Z character to the end of the file. If you want to terminate the file with Ctrl-
Z, you must explicitly output it.

Returned value

Upon successful completion, close returns 0. On error (if it fails because handle is not the handle
of a valid, open file), close returns -1 and the errno global variable is set to

EBADF Bad file number

8.4.5.41 Function CloseProject

Function CloseProject

Declaration:

void CloseProject();

Description

Closes the project. If no project is loaded, nothing will happen.

Calling this function is useful, if you want to prepare the shell for loading a program without a project.

8.4.5.42 Function CloseWindow

Declaration:

void CloseWindow(unsigned long handle);

Description

Closes the specified window. The handle parameter is the window identifier produced by the calls of the
OpenWindow , and FindWindow functions.

181 181 181 181

276 276 279 279

362

317 288

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 275

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.43 Function cos

Declaration:

float cos(float x);

Description

The cos function calculates the cosine of the floating-point number x.

Returned value

The cos function returns the cosine of argument 0x.

8.4.5.44 Function Cr

Declaration:

void Cr();

Description

Works like the Enter key.

8.4.5.45 Function creat

Declaration:

int creat(char path[], int amode);

Description

Creates a new file or overwrites an existing one.

Note. Remember that the backslash in a path requires '\\'.

creat creates a new file or prepares to rewrite an existing file given by path. amode applies only to
newly created files. A file created with creat is always created in the translation mode specified by
the _fmode global variable (O_TEXT or O_BINARY). If the file exists and the write attribute is
set, then creat will truncate the file to the length of 0 bytes, leaving the file attributes unchanged. If
the existing file has the read-only attribute set, then the creat call will fail and the file will remain
unchanged. The creat call examines only the S_IWRITE bit of the access-mode word amode. If
this bit is 1, then the file can be written to. If the bit is 0, then the file is marked as read-only. All
other operating system attributes are set to 0. amode can be one of the following (defined in
system.h):

Value of amode Access permission
 S_IWRITE Permission to write
 S_IREAD Permission to read
 S_IREAD | S_IWRITE Permission to read and write (write permission
 implies read permission))

Returned value

Upon successful completion, creat returns the new file handle (a nonnegative integer); otherwise,
it returns -1. In the event of error, the errno global variable is set to one of the following:
 EACCES Permission denied
 ENOENT Path or file name not found
 EMFILE Too many open files

360

362

CPI2-Gx Device Programmers - CPI2-Gx276

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.46 Function creatnew

Declaration:

int creatnew(char path[], int amode);

Description

Creates a new file.

creatnew is identical to creat with the only exception: if the file exists, then creatnew will return
error and leave the file untouched. The amode

FA_HIDDEN Hidden file

FA_RDONLY Read-only attribute

FA_SYSTEM System file

Returned value

Upon successful completion, creatnew returns the handle of new file (a non-negative integer);
otherwise, it returns -1. In the event of error, the errno global variable is set to one of the
following values:

EACCES Permission denied

EEXIST File already exists

EMFILE Too many open files

ENOENT Path or file name not found

8.4.5.47 Function creattemp

Declaration:

int creattemp(char path[], int attrib);

Description

Creates a unique file in the directory associated with the path name. A file created with creattemp
is always created in the translation mode specified by the _fmode global variable (O_TEXT or
O_BINARY).

path is the path name ending with backslash (\). The unique file name is selected in the directory
given by path. The newly created file name is stored in the path string supplied. path should be
long enough to hold the resulting file name. The file is not automatically deleted, when the program
terminates.

creattemp accepts attrib, the DOS attribute word. Upon successful file creation, the file pointer is
set to the beginning of the file. The file is opened for both reading and writing.

The attrib argument to creattemp can be either zero or an OR-combination of any of the following
constants (defined in system.h):
 FA_HIDDEN Hidden file
 FA_RDONLY Read-only attribute
 FA_SYSTEM System file

Returned value

Upon successful completion, the new file handle (a non-negative integer) is returned; otherwise, -
1 is returned. In the event of error, the errno global variable is set to one of the following values:

362

360

362

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 277

© 2021 Phyton, Inc. Microsystems and Development Tools

 EACCES Permission denied
 EMFILE Too many open files
 ENOENT Path or file name not found

8.4.5.48 Function CurChar

Declaration:

char CurChar();

Description

Returns the character under the cursor. If the cursor is beyond the line end, then CurChar() will return 0.

8.4.5.49 Function Curcuit

Declaration:

void Curcuit(unsigned long handle, int x1, int y1, int x2, int y2);

Description

Draws an unpainted ellipse using the pen selected with the SelectPen function; (x1, y1) are the
coordinates of the upper left corner of the rectangle, in which the ellipse will be drawn, (x2, y2) are the
coordinates of its lower right corner.

8.4.5.50 Function delay

Declaration:

void delay(unsigned int milliseconds);

Description

Suspends the program for the specified time interval.

Example

 while (1)
 {
 Step(); // to execute a step
 RedrawScreen(); // To update the screen. Step() does not do it.
 delay(1000); // wait for one second. During this time step
 } // results can be observed

8.4.5.51 Function DelChar

Declaration:

void DelChar(int count=1);

Description

334

CPI2-Gx Device Programmers - CPI2-Gx278

© 2021 Phyton, Inc. Microsystems and Development Tools

Deletes count characters beginning from the cursor position

8.4.5.52 Function DelLine

Declaration:

void DelLine(int count=1);

Description

Deletes the current line.

8.4.5.53 Function difftime

Declaration:

unsigned long difftime(int time1[], int time2[]);

Description

Obtains the time difference between the two counts transferred in the time1 and time2 arrays. The counts
should be obtained with the gettime function; time1 is the earlier count.

Because the gettime function uses the system timer, computation error for the interval can be as long as 104
milliseconds.

Returned value

The time difference between two counts in milliseconds.

Example

int time1[4];
int time2[4];
gettime(time1);
while (1)
{
 gettime(time2);
 printf("Difference: %lu", difftime(time1, time2));
}

8.4.5.54 Function DisplayText

Declaration:

void DisplayText(unsigned long handle, char text[], int x, int y);

Description

Displays text in the window using a monospaced font and text coordinates, that is, x is the column number,
and y is the line number.

To display text with any font and in any place, use the DisplayTextF function.

8.4.5.55 Function DisplayTextF

Declaration:

299

278

Reference 279

© 2021 Phyton, Inc. Microsystems and Development Tools

void DisplayTextF(unsigned long handle, char text[], int x, int y);

Description

Displays text in the window using a proportional font (see the SelectFont function) and graphical
coordinates (in pixels).

8.4.5.56 Function Down

Declaration:

void Down(int count=1);

Description

Move the cursor count lines down. The same result can be achieved by incrementing the CurLine built-in
variable.

8.4.5.57 Function dup

Declaration:

int dup(long handle);

Description

Duplicates a file handle.

dup creates a new file handle that has the following common features with the original file handle:

Same open file or device
Same file pointer (that is, changing the file pointer of one changes the other)

Same access mode (read, write, read/write))

handlecreat open , dup , or dup2 .

Returned value

Upon successful completion, dup returns the new file handle, a nonnegative integer; otherwise,
dup returns -1. In the event of error, the errno global variable is set to one of the following
values:
 EBADF Bad file number
 EMFILE Too many open files

8.4.5.58 Function dup2

Declaration:

int dup2(long oldhandle, long newhandle);

Description

Duplicates a file handle (oldhandle) onto an existing file handle (newhandle).

dup2 creates a new file handle that has the following common features with the original file handle:

Same open file or device

Same file pointer (that is, changing the file pointer of one changes the other)

334

362

275 315 279 279

362

CPI2-Gx Device Programmers - CPI2-Gx280

© 2021 Phyton, Inc. Microsystems and Development Tools

Same access mode (read, write, read/write)

dup2 creates a new handle with the value of newhandle. If the file associated with newhandle is
open, when dup2 is called, then the file will be closed.

newhandle and oldhandle are the file handles obtained from the creat , open , dup , or
dup2 call.

Returned value

dup2 returns 0 on successful completion, and -1 otherwise. In the event of error, the errno
global variable is set to one of the following values:

 EBADF Bad file number

 EMFILE Too many open files

8.4.5.59 Function Ellipse

Declaration:

void Ellipse(unsigned long handle, int x1, int y1, int x2, int y2);

Description

Draws an ellipse using the pen selected with the SelectPen function and paints it with the brush selected
by the SelectBrush function; (x1, y1) are the coordinates of the upper left corner of the rectangle, in which
the ellipse will be drawn; (x2, y2) are the coordinates of its lower right corner.

8.4.5.60 Function eof

Declaration:

int eof(long handle);

Description

Checks for end-of-file.

eof determines whether the file associated with handle has reached the end-of-file.

Returned Value

If the current position is the end-of-file, then eof will return 1; otherwise, it will return 0. The return value of -1
indicates an error; the errno global variable is set to

 EBADF Bad file number

8.4.5.61 Function Eof

Declaration:

void Eof();

Description

Move the cursor to the file end.

275 315 279

279

362

334

334

362

Reference 281

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.62 Function Eol

Declaration:

void Eol();

Description

Move the cursor to the end of the current line.

8.4.5.63 Function exec

Declaration:

int exec(char program[], char params[], char work_dir[], int show=SW_SHOW);

Description

Starts a Windows application or DOS.

Parameters:

 program - the name of the file under execution
 params - the command line parameters
 work_dir - the working directory for the application to be started
 show - the constant to define the application window display mode.
 Constants with the SW_ prefix are given in system.h.

Note that the script file will not wait for the started application to stop operation, if special measures are not
taken.

Returned value

What was returned by the function API ShellExecute, that is, HINSTANCE of the application or error
message.

Example

exec("pifedit.exe", "command.pif");

8.4.5.64 Function ExecMenu

Declaration:

int ExecMenu(char title[], char items[], int start_sel=0);

Description

Displays the dialog menu on the screen.

Parameters:

 title - the dialog box title;
 items - the line describing the menu items. Every item ends with the
zero
 byte; the last item ends with two zero bytes.
 start_sel - the number of the menu item that will be selected by default,
 when the window opens.

Returned value

The number of the menu item selected by the user or -1, if the Cancel button or Esc key is pressed. The
selected menu line is copied to the SelectedString[] built-in variable. If the user cancels the selection,
then the null string will be copied to the Selected String.

Example

365

CPI2-Gx Device Programmers - CPI2-Gx282

© 2021 Phyton, Inc. Microsystems and Development Tools

 int choice =
 ExecMenu("Choose program to load", // the title
 " Load Example #1 \0"
 " Load Example #2 \0"
 " Load Example #3 \0" // the items
 "\0"); // the second zero at the end

 switch (choice)
 {
 case 0: LoadProgram("EXAMPLE1.OMF", LF_UBROF); break;
 case 1: LoadProgram("EXAMPLE2.OMF", LF_UBROF); break;
 case 2: LoadProgram("EXAMPLE3.OMF", LF_UBROF); break;
 default: printf("No example will be loaded");
 }

8.4.5.65 Function ExecScript

Declaration:

void ExecScript(char file_name[], char include_dir[]="", char defines[]="", int
debug=0);

Description

The ExecScript function starts the script file, whose name is indicated in the file_name parameter.

Parameters:

 file_name[] The name of the script file to be started. It can contain
 a partial or full path. If extension is not specified,
 the CMD extension will be automatically substituted. If the
file
 is not found, the <%CM%> system directory will be
automatically scanned.

 include_dir[] The listing of directories, where the compiler will search
 for the #include-files. You can specify
 multiple directory names separated by semicolon.
 char defines[] The string with the definitions of preprocessor variables.
 Also, see the Script Files dialog .

 debug If not equal to 0, then the Script Source window will be
 opened for the loaded script file. After loading the
script
 file, switches to the debug mode.

Note that only the first parameter is required, other parameters have the default values.

If the specified script file is already under executing, then another script file cannot be loaded.

Also, see Inclusion of Files (#include) .

8.4.5.66 Function exit

Declaration:

void exit();

Description

Stops execution of the script file that called this function. The file is unloaded from the memory, if possible.

179 179

178

231

Reference 283

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.67 Function ExitProgram

Declaration:

void ExitProgram();

Description

Exits the work session of <%CM%> in the same way as by closing its window.

8.4.5.68 Function exp

Declaration:

float exp(float x);

Description

The exp function raises number e to the power x. The argument shall range from -88.72280 to 88.72280.

Returned value

The exp function returns the value of e raised to the power x.

8.4.5.69 Function Expr

Declaration:

unsigned long Expr(char str[]);

Description

Calculates the expression and returns the result as a 32-bit integer. The expression string is
passed in the str parameter.

Example

printf("Result=%08lX", Expr("array[i] -> StartValue");

Also, see AddrExpr , FloatExpr , Expressions .

8.4.5.70 Function fabs

Declaration:

float fabs(float x);

Description

The fabs function determines the absolute value of the floating-point number val.

Returned function

The fabs function returns the absolute value of val.

8.4.5.71 Function fclose

Declaration:

int fclose(unsigned long stream);

Description

268 288 211

CPI2-Gx Device Programmers - CPI2-Gx284

© 2021 Phyton, Inc. Microsystems and Development Tools

Closes a stream.

fclose closes the specified stream. All buffers associated with the stream are flushed before
closing. The system-allocated buffers are freed upon closing.

Returned value

fclose returns 0 on success. It will return EOF, if any errors are detected.

8.4.5.72 Function fdopen

Declaration:

unsigned long fdopen(long handle, char type[]);

Description

Associates a stream with a file handle.

obtained from creat dup , dup2 , or open . The type of stream must match the mode of
the opened handle. The type string used in a call to fdopen is one of the following values:

Value Description

r Open for reading only.

Create for writing.

a Append; open for writing at the end-of-file or create for writing, if the file does not exist.

r+ Open an existing file for update (reading and writing).

w+ Create a new file for update.

a+

To specify that the given file is being opened or created in the text mode, append t to the value of
the type string (for example, rt or w+t).

Similarly, to specify the binary mode, append brb or w+b). If t or b is not given in the type string,
the mode is controlled by the _fmode global variable. If _fmode is set to O_BINARY, then files will
be opened in the binary mode. If _fmode is set to O_TEXT, then files will be opened in the text
mode.

Note. The O_* constants are defined in file system.h.

• output cannot be directly followed by input without intervening fseekor rewind;
• input cannot be directly followed by output without intervening fseek, rewind, or an input that

encounters the end-of-file.

Returned value

On successful completion, fdopen returns the unsigned long identifying the stream. In the event of
error, it returns 0.

8.4.5.73 Function feof

Declaration:

int feof(unsigned long stream);

275 279 279 315

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 285

© 2021 Phyton, Inc. Microsystems and Development Tools

Description

Detects the end-of-file on a stream.

feof tests the given stream for the end-of-file indicator. Once the indicator is set, the read
operations on the file return the indicator until rewind is called or the file is closed. The end-of-file
indicator is reset with each input operation.

Returned value

feof will return nonzero, if the end-of-file indicator is detected on the last input operation on the
specified stream, and 0, if the end-of-file has not been reached.

8.4.5.74 Function ferror

Declaration:

int ferror(unsigned long stream);

 Description

Detects errors on stream.

ferror tests the given stream for a read or write error. If the stream's error indicator is set, it will
remain set until clearerr or rewind is called or until the stream is closed.

 Returned value

ferror will return nonzero, if an error is detected on the specified stream.

8.4.5.75 Function fflush

Declaration:

int fflush(unsigned long stream);

Description

Flushes a stream.

If the given stream has buffered output fflush writes the output for stream to the associated file.
The stream remains opened after fflush is executed. fflush produces no effect on the unbuffered
stream.

Returned Value

fflush returns 0 on success. It will return EOF, if any errors are detected.

8.4.5.76 Function fgetc

Declaration:

int fgetc(unsigned long stream);

Description

Gets character from stream.

fgetc returns the next character on the specified input stream.

CPI2-Gx Device Programmers - CPI2-Gx286

© 2021 Phyton, Inc. Microsystems and Development Tools

Returned Value

On success fgetc returns the character read after converting it to an int without the sign extension. On the
end-of-file or error, it returns EOF.

8.4.5.77 Function fgets

Declaration:

int fgets(char dest[], int n, unsigned long stream);

Description

Gets a string from a stream.

fgets reads characters from stream into the dest string. The function stops reading, when it reads either n-1
characters or the newline character, which event comes first. fgets retains the newline character at the end of
dest. The null byte is appended to s to mark the end of the string.

Returned Value

TRUE is returned on success; and FALSE on the end-of-file or error.

8.4.5.78 Function FileChanged

Declaration:

int FileChanged();

Description

If the file is changed since the last save, it will return 1; 0 otherwise.

8.4.5.79 Function filelength

Declaration:

long filelength(long handle);

Description

Gets file size in bytes.

filelength returns the length (in bytes) of the file associated with handle.

Returned Value

On success, filelength returns the long value of the file length in bytes. On error, it returns -1 and
the errno global variable is set to

EBADF Bad file number

8.4.5.80 Function fileno

Declaration:

int fileno(unsigned long stream);

Description

362

Reference 287

© 2021 Phyton, Inc. Microsystems and Development Tools

Gets file handle.

fileno returns the file handle for the given stream. If stream has more than one handle, then fileno will return
the handle assigned to the stream, when it was first opened.

Returned Value

fileno returns the integer file handle associated with the stream.

8.4.5.81 Function FillRect

Declaration:

void FillRect(unsigned long handle, int x1, int y1, int x2, int y2);

Description

Draws a painted rectangle using the brush selected with the SelectBrush function; (x1, y1) are the
coordinates of the upper left corner; (x2, y2) are the coordinates of the lower right corner.

8.4.5.82 Function findfirst

Declaration:

int findfirst(char path[], char ffblk[], int attrib);

Description

Starts search for files with the attributes specified in parameter attrib by the mask specified in path. The
search can be continued with the findnext function.

The ffblk parameter specifies an internal data storage buffer for the function. Its size should be 48 bytes.

After findfirst access, the ffblk buffer contains information about the found file. The _ff_attrib , _ff_time ,
_ff_date , _ff_size and _ff_name functions receive ffblk as the parameter and return information on
the file.

Returned value

If the specified file is found, it will return 0, and -1 otherwise.

Example

 char ffblk[48];
 int done = findfirst("c:\\data.*", ffblk, 0);
 long total_size = 0;
 while (@!done)
 {
 total_size += _ff_size(ffblk);
 done = findnext(ffblk);
 }
 printf("Total size of the files @%lu", total_size);

8.4.5.83 Function findnext

Declaration:

int findnext(char ffblk[]);

Description

334

287

265 266

265 266 265

CPI2-Gx Device Programmers - CPI2-Gx288

© 2021 Phyton, Inc. Microsystems and Development Tools

Continues the search for files started by the findfirst function.

Parameter ffblk is the buffer filled upon the findfirst access.

After the findnext access, the ffblk buffer contains information on the found file. The _ff_attrib , _ff_time ,
_ff_date , _ff_size and _ff_name functions receive ffblk as the parameter and return information on
the file.

Returned value

If the specified file is found, it will return 0, and -1 otherwise.

Example

See function findfirst .

8.4.5.84 Function FindWindow

Declaration:

unsigned long FindWindow(int type);

Description

Finds the window of specified type (disassembler, dump, etc.) among the opened windows.

Constants describing window types are declared in the system.h header file (see description of the
OpenWindow function).

If the window of specified type is opened but minimized, it will not be found.

Returned

The identifier of the opened window, if the latter is found; otherwise it returns 0.

8.4.5.85 Function FirstWord

Declaration:

void FirstWord();

Description

Moves the cursor to the first non-empty character in the line.

8.4.5.86 Function FloatExpr

Declaration:

float FloatExpr(char str[]);

Description

The same as Expr , but the result is a floating-point number.

Also, see AddrExpr , Expr .

8.4.5.87 Function floor

 Declaration:

float floor(float x);

Description

287

265 266

265 266 265

287

317

283

268 283

Reference 289

© 2021 Phyton, Inc. Microsystems and Development Tools

The floor function calculates the greatest integer number that is no greater than x.

Returned value

The floor function returns the greatest floating-point number that is no greater than argument x, with the
fractional part equal to 0.

8.4.5.88 Function fmod

Declaration:

float fmod(float x, float y);

Description

The fmod function calculates the remainder of dividing x by y.

Returned function

The fmod function returns the value equal to x - i * y, for integer i, and the absolute value of x - i * y is less
than the absolute value of y. The returned value has the same sign as x. If y is equal to 0, then 0 will be
returned.

8.4.5.89 Function fnsplit

Declaration:

int fnsplit(char path[], char drive[], char dir[], char name[], char ext[]);

Description

Selects components of the path to the file. Receives the file name with the path, for example, C:
\PROGRAM\TEST.C, as the parameter path, and copies the components of the path to appropriate lines. The
useful constants for describing the array sizes (MAXPATH, MAXDRIVE, MAXDIR, MAXFILE, MAXEXT) are
defined in the system.h file.

If any of the path components is missing, then 0 will be the first character in the corresponding line.

Returned value

Returns the flag word describing the result. Constants corresponding to the flag word bits (WILDCARDS,
EXTENSION, ...) are defined in system.h.

8.4.5.90 Function fopen

Declaration:

unsigned long fopen(char file_name[], char mode[]);

Description

Opens a stream.

fopen opens the file specified by file_name and associates a stream with it. fopen returns an unsigned long
value to be used as the stream identificator in subsequent operations. The mode string used in calls to fopen
is one of the following values:

 Value Description

 r Open for reading only.

CPI2-Gx Device Programmers - CPI2-Gx290

© 2021 Phyton, Inc. Microsystems and Development Tools

 w Create for writing.
 a Append; open for writing at the end-of-file or create for writing, if the
file does not exist.
 r+ Open an existing file for update (reading and writing).
 w+ Create a new file for update.
 a+ Open for append; open (or create, if the file does not exist) for update
at the end of file.

To specify that the given file is being opened or created in the text mode, append t to the value of the type
string (for example, rt or w+t).

Similarly, to specify the binary mode, append b to the type string (for example, rb or w+b). If t or b is not given
in the type string, then the mode is controlled by the _fmode global variable. If _fmode is set to
O_BINARY, then files will be opened in the binary mode. If _fmode is set to O_TEXT, then files will be opened
in the text mode.

Note. The O_* constants are defined in file system.h.

When a file is opened for update, both input and output can be done on the resulting stream; however,
• output cannot be directly followed by input without intervening fseekor rewind;
• input cannot be directly followed by output without intervening fseek, rewind, or an input that encounters

the end-of-file.

Returned Value

On successful completion fdopen returns the unsigned long identifying the stream. In the event of error, it
returns 0.

8.4.5.91 Function ForwardTill

Declaration:

void ForwardTill(char delimits[]);

Description

Moves the cursor right until any character from delimits or the end-of-line is reached.

Example:

 ForwardTill(" ({[<");

8.4.5.92 Function ForwardTillNot

Declaration:

void ForwardTillNot(char delimits[]);

Description

Moves the cursor right until any character not contained in delimits or the end-of-line is reached.

8.4.5.93 Function fprintf

Declaration:

int fprintf(unsigned long stream, char format[], ...);

Description

Writes formatted output to a stream.

360

Reference 291

© 2021 Phyton, Inc. Microsystems and Development Tools

fprintf accepts a series of arguments, applies to each of them a format specifier contained in the format string
pointed to by format and outputs the formatted data to a stream. There must be the same number of format
specifiers as the arguments.

Note. Your arguments passed to this function shall match the format line. In case of mismatch, the <%CM%
> program may crash, because it cannot check the correspondence between the format string and
parameters passed. For more, see description of format specifiers for printf .

Returned Value

fprintf returns the number of bytes that were output. In the event of error, it returns EOF.

8.4.5.94 Function fputc

Declaration:

int fputc(char c, unsigned long stream);

Description

Puts a character on a stream.

fputc outputs character c to the specified stream.

Returned Value

On success, fputc returns character c. On error, it returns EOF.

8.4.5.95 Function fputs

Declaration:

int fputs(char s[], unsigned long stream);

Description

Outputs a string on a stream.

fputs copies the s null-terminated string to the given output stream; it does not append the newline character
and the terminating null character is not copied.

Returned Value

On success fputs returns a non-negative value. On error it returns the value of EOF.

8.4.5.96 Function FrameRect

Declaration:

void FrameRect(unsigned long handle, int x1, int y1, int x2, int y2);

Description

Draws an unpainted rectangle using the brush selected with the SelectBrush function. The drawing line
width is always of 1 pixel; (x1, y1) are the coordinates of the upper left corner, (x2, y2) are the coordinates of
the lower right corner.

320

334

CPI2-Gx Device Programmers - CPI2-Gx292

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.97 Function fread

Declaration:

int fread(void s[], int size, int n, unsigned long stream);

Description

Reads data from a stream.

fread reads n items of data of size bytes long each from the given input stream into the block pointed to by s.
The total amount of bytes read is (n * size).

Returned Value

On success fread returns the number of items (not bytes) actually read. On end-of-file or error it returns a
short count (possibly 0).

8.4.5.98 Function FreeLibrary

Declaration:

void FreeLibrary(unsigned long inst);

Description

De-allocates the specified DLL. HINSTANCE obtained by the LoadLibrary call is transferred as the
parameter.

8.4.5.99 Function freopen

Declaration:

unsigned long freopen(char file_name[], char mode[], unsigned long stream);

Description

Associates a new file with an opened stream.

freopen substitutes the specified file in place of the open stream. It closes the stream regardless
of whether the open succeeds. freopen is useful for changing the file attached to stdin, stdout, or
stderr. The mode string used in calls to fopen is one of the following values:

Value Description

r Open for reading only.

w Create for writing.

a

r+ Open an existing file for update (reading and writing).

w+ Create a new file for update.

a+ Open for append; open (or create, if the file does not exist) for update at the end of file.

To specify that the given file is being opened or created in the text mode, append t to the value of
the type string (for example, rt or w+t).

308

Reference 293

© 2021 Phyton, Inc. Microsystems and Development Tools

Similarly, to specify the binary mode, append brb or w+b). If t or b is not given in the type string,
the mode is controlled by the _fmode global variable. If _fmode is set to O_BINARY, then files
will be opened in the binary mode. If _fmode is set to O_TEXT, then files will be opened in the text
mode.

Note. The O_* constants are defined in file system.h.

When a file is opened for update, both input and output can be done on the resulting stream;
however,
• output cannot be directly followed by input without intervening fseekor rewind;
• input cannot be directly followed by output without intervening fseek, rewind, or an input that

encounters end-of-file.

On successful completion freopen returns the argument stream. On error it returns NULL.

8.4.5.100 Function frexp

Declaration:

float frexp(float x, int exponent[]);

Description

The frexp function breaks up the floating-point number f into the normalized mantissa and exponent (the
integer power of number two), which is stored in the memory cell indicated by exp.

Returned value

The frexp returns the value of x such that x is the floating-point number in double format ranging from 0.5 to 1
or equal to 0, and the first argument of this function is equal to x multiplied by 2 raised to the power exp.

8.4.5.101 Function fscanf

Declaration:

int fscanf(unsigned long stream, char format[], ...);

Description

Scans and formats input from a .

format. Finally, fscanf stores the formatted input at the address passed to it as the argument
following the format. The number of format specifiers and addresses must be the same as the
number of input fields.

1. Your arguments passed to this function shall match the format line. In case of mismatch, the

CPI2-Gx program may crash, because it cannot check the correspondence between the format
string and parameters passed. For details on format specifiers, see the scanf Format
Specifiers.

2. All arguments for this function shall be arrays, because only the array parameters are passed
by address to functions. Also, see example for scanf .

fscanf can stop scanning a particular field before it reaches the normal end-of-field character
(whitespace) or it can terminate entirely for a number of reasons. See scanf for a discussion
on possible causes.

360

332

332

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

CPI2-Gx Device Programmers - CPI2-Gx294

© 2021 Phyton, Inc. Microsystems and Development Tools

Returned Value

fscanf returns the number of input fields successfully scanned, converted and stored. The return
value does not include the scanned fields that were not stored. If fscanf attempts to read at the
end-of-file, then EOF will be returned. If no fields are stored, then 0 will be returned.

8.4.5.102 Function fseek

Declaration:

int fseek(unsigned long stream, long offset, int fromwhere);

Description

Repositions a file pointer on a stream.

fseek sets the file pointer associated with stream to a new position that is offset bytes from the file
location given by fromwhereoffset should be 0 or the value returned by ftell fromwhere must be
one of the values 0. 1, or 2, which represent three symbolic constants (defined in system.h) as
follows:

Constant fromwhere File location

--

SEEK_SET 0 Beginning of the file

SEEK_CUR 1 Current file pointer position

SEEK_END 2 End-of-file

fseek discards any character pushed back. fseek is used with stream I/O; for file handle I/O, use
lseek . The next operation on the update file after fseek can be either input or output.

Returned Value

fseek will return 0, if the pointer is successfully moved, and nonzero on failure. fseek may return 0
indicating that the pointer has been moved successfully, when in fact it has not been. This is
because DOS, which actually resets the pointer, does not verify the setting. fseek returns an error
code only on an unopened file or device. In the event of an error return, the errno global
variable is set to one of the following values:

EBADF Bad file pointer

EINVAL Invalid argument

ESPIPE Illegal seek on device

8.4.5.103 Function ftell

Declaration:

long ftell(unsigned long stream);

Description

Returns the current file pointer.

294

310

362

Reference 295

© 2021 Phyton, Inc. Microsystems and Development Tools

ftell returns the current file pointer for stream. The offset is measured in bytes from the beginning of the file
(for the binary file). The value returned by ftell can be used in the subsequent call to fseek .

Returned Value

on success ftell returns the current file pointer position. It returns -1L on error and sets the errno global
variable to a positive value. In the event of error return, the errno global variable is set to one of the
following values:

 EBADF Bad file pointer
 ESPIPE Illegal seek on device

8.4.5.104 Function fwrite

Declaration:

int fwrite(void buf[], int size, int n, unsigned long stream);

Description

Writes to a stream.

fwrite appends n items of data of size bytes long each to the given output file. The data written begins at buf.
The total number of bytes written is (n * size). In the declarations, buf is an array object.

Returned Value

On successful completion fwrite returns the number of items (not bytes) actually written. On error it returns a
short count.

8.4.5.105 Function GetByte

Declaration:

unsigned int GetByte(unsigned long addr, int addr_space);

Description

Reads a byte from the specified address in the specified address space (the addr_space parameter).
Constants with the AS_ prefix for microcontroller memory areas (address spaces) are defined in the system.h
header file.

Returned value

The read byte.

Example

printf("%02X", GetByte(AS_DATA, 0x1F);

8.4.5.106 Function getc

Declaration:

int getc(unsigned long stream);

Description

Gets character from stream.

294

362

362

CPI2-Gx Device Programmers - CPI2-Gx296

© 2021 Phyton, Inc. Microsystems and Development Tools

getc returns the next character on the given input stream and increments the stream's file pointer to point to
the next character.

Returned Value

On success, getc returns the character read, after converting it to an int without the sign extension. On the
end-of-file or error, it returns EOF.

8.4.5.107 Function getcurdir

Declaration:

int getcurdir(int drive, char directory[]);

Description

Writes the name of the current directory for the device specified in parameter drive (0 - current disk; 1 - A; 2 -
B; ...) to parameter directory.

The received name does not contain the disk name and does not start with symbol \.

Returned value

0 will be returned, if the name is received successfully, and -1 otherwise

8.4.5.108 Function getcwd

Declaration:

void getcwd(char path[]);

Description

Gets the current working directory.

getcwd gets the full path name (including the drive) of the current working directory and stores it in buf.

8.4.5.109 Function getdate

Declaration:

void getdate(int date[]);

Description

Obtains the current computer date. The time information is stored in the date array:

date[0] - day (1...31)
date[1] - month (1...12)
date[2] - year

Example

 int date[3];
 getdate(date);
 printf("Date: %d/%d/%d", date[0], date[1], date[2]);

Reference 297

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.110 Function getdfree

Declaration:

unsigned long getdfree(int drive);

Description

Gets disk free space.

getdfree accepts a drive specifier in drive (0 for default, 1 for A, and so on) and returns the disk
free space in bytes.

8.4.5.111 Function getdisk()

Declaration:

int getdisk();

Description

Gets the current drive number. getdisk gets the current drive number and returns an integer: 0 for
A, 1 for B, 2 for C, and so on.

8.4.5.112 Function getenv

Declaration:

int getenv(char name[], char dest[]);

Description

Obtains the value of the name environment variable. The name should be in the upper case and should not
end with the equal sign (=). The variable value is copied to dest.

Returned value

1, if the specified variable is found; and 0 otherwise.

Example

char value[MAXPATH];
getenv("COMSPEC", value);

8.4.5.113 Function GetFileName

Declaration:

void GetFileName(char dest[]);

Description

Copies the name of the current Edit window to the dest array.

8.4.5.114 Function getftime

Declaration:

unsigned long getftime(long handle);

187 187

CPI2-Gx Device Programmers - CPI2-Gx298

© 2021 Phyton, Inc. Microsystems and Development Tools

Description

Gets the file date and time.

getftime retrieves the file time and date for the disk file associated with the open handle. The
return value has the following format:

Bits Value

0...4 two seconds

5...10 minutes

11...15 hours

16...20 days

21...24 months

25...31 year - 1980

Returned Value

getftime returns the file date and time on success. In the event of an error, 0xFFFFFFFF is
returned and the errno global variable is set to one of the following values:

EACCES Permission denied

EBADF Bad file number

EINVFNC Invalid function number

8.4.5.115 Function GetLine

Declaration:

void GetLine(char dest[]);

Description

Copies the whole current line to the dest array.

8.4.5.116 Function GetMark

Declaration:

void GetMark(int number);

Description

Retrieves the bookmark with the number number (1...10).

8.4.5.117 Function GetMemory

Declaration:

void GetMemory(void dest[], int n, unsigned long addr, int addr_space);

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 299

© 2021 Phyton, Inc. Microsystems and Development Tools

Description

Reads n-byte memory block from the specified address in the specified memory area (the addr_space
parameter) to the dest array. Constants with the AS_ prefix for microcontroller memory areas (address
spaces) are defined in the system.h header file.

Example

char array[20]; GetMemory(array, sizeof(array), 0x20, AS_DATA);

8.4.5.118 Function GetScriptFileName

Declaration:

void GetScriptFileName(char script_name[], char file_name[]);

Description

GetScriptFileName copies to file_name the fully qualified path of the script file passed in script_name.

Each script has name containing 8 characters: the name of the script source file without path and extension.
The GetScriptFileName function retrieves the path to the source file.

Example:

 char path[MAXPATH];
 GetScriptFileName("test", path);

8.4.5.119 Function gettime

Declaration:

void gettime(int time[]);

Description

Obtains the current computer time. The time information is stored in the time array:

time[0] - hundredths of a second (0...99)
time[1] - seconds (0...59)
time[2] - minutes (0...59)
time[3] - hours (0...23)

Because the gettime function uses the system timer, you may expect a time error of about 52 milliseconds.

Example

 int time[4];
 while (1)
 {
 gettime(time);
 printf("Time: %d:%d:%d.%d", time[3], time[2], time[1], time[0]);
 }

CPI2-Gx Device Programmers - CPI2-Gx300

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.120 Function getw

Declaration:

int getw(unsigned long stream);

Description

Gets integer from stream.

getw returns the next integer in the specified input stream. It assumes no special alignment in the file. getw
should not be used, when the stream is opened in the text mode.

Returned Value

getw returns the next integer on the input stream. On the end-of-file or error, getw returns EOF.

Note. Because EOF is the allowed value for getw to return, feof or ferror should be used to detect the
end-of-file or error.

8.4.5.121 Function GetWindowHeight

Declaration:

int GetWindowHeight(unsigned long handle);

Description

Obtains the height of the specified window user area.

The handle parameter is the window identifier produced by the call of the OpenWindow , and
FindWindow functions.

This function is useful, when it is necessary to draw in the User window regardless of its size.

Returned value

The height of the specified window user area in pixels.

8.4.5.122 Function GetWindowWidth

Declaration:

int GetWindowWidth(unsigned long handle);

Description

Obtains the width of the specified window user area.

The handle parameter is the window identifier produced by the call of the OpenWindow , and
FindWindow functions.

This function is useful, when it is necessary to draw in the User window regardless of its size.

Returned value

The height of the specified window user area in pixels.

8.4.5.123 Function GetWord

Declaration:

unsigned int GetWord(unsigned long addr, int addr_space);

284 285

317

288

181 181

317

288

181 181

Reference 301

© 2021 Phyton, Inc. Microsystems and Development Tools

Description

Reads a word (16 bits) from the specified address in the specified memory area (the addr_space parameter).
Constants with the AS_ prefix for microcontroller memory areas (address spaces) are defined in the system.h
header file.

Returned value

The read word.

Example

printf("%04X", GetWord(AS_DATA, 0x1F);

8.4.5.124 Function GetWord

Function GetWord

Declaration:

unsigned int GetWord(unsigned long addr, int addr_space);

Description

Reads a word (16 bits) from the specified address in the specified memory area (the addr_space parameter).
Constants with the AS_ prefix for microcontroller memory areas (address spaces) are defined in the system.h
header file.

Returned value

The read word.

Example

printf("%04X", GetWord(AS_DATA, 0x1F);

8.4.5.125 Function GotoXY

Declaration:

void GotoXY(int col, int line);

Description

Set the cursor position. The cursor is moved to line number 'line' and column number 'col'.

Alternatively, to position the cursor, just assign values to the CurCol and CurLine built-in variables.

8.4.5.126 Function HStep

Declaration:

void HStep();

Description

Executes one high-level step. Calling this function makes sense only if a program containing the character
information is loaded. If no such program is loaded, then calling HStep will be equivalent to calling the
Step function.

Note. The screen is not updated automatically after the HStep call. To organize automatic updates, use the
RedrawScreen function at the appropriate moment.

362 362

342

329

CPI2-Gx Device Programmers - CPI2-Gx302

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.127 Function inport

Declaration:

unsigned int inport(unsigned int port_num);

Description

Reads a value (word) from the specified parallel port.

Returned value

The read word.

Example

unsigned int val = inport(0x300);

8.4.5.128 Function inportb

Declaration:

unsigned char inportb(unsigned int port_num);

Description

Reads a value (byte) from the specified parallel port.

Returned value

The read byte.

Example

unsigned char val = inportb(0x3F8);

8.4.5.129 Function Inspect

Declaration:

unsigned int Inspect(char name[]);

Description

Opens the Inspector window for the specified name (the name parameter).

8.4.5.130 Function InvertRect

Declaration:

void InvertRect(unsigned long handle, int x1, int y1, int x2, int y2);

Description

Inverts colors within a rectangular area; (x1, y1) are the coordinates of the upper left corner, (x2, y2) are the
coordinates of the lower right corner.

Reference 303

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.131 Function isalnum

Declaration:

int isalnum(unsigned char c);

Description

The isalnum function checks, whether parameter c is a Latin alphabet letter or a digit ('A'-'Z', 'a'-'z', or '0'-'9').

Returned value

The isalnum function will return a non-zero value, if c is an alphabetic character or a digit, and will return 0
otherwise.

8.4.5.132 Function isalpha

Declaration:

int isalpha(unsigned char c);

Description

The isalpha function checks, if parameter c is a Latin alphabet character ('A'-'Z', or 'a'-'z').

Returned value

The isalpha function will return a non-zero value, if c is an alphabetic character, otherwise it will return 0.

8.4.5.133 Function isascii

Declaration:

int isascii(unsigned char c);

Description

The isascii function checks, if parameter c is an ASCII character.

Returned value

The isascii function will return a non-zero value, if the value of c is greater than or equal to 0 but less than 128.

8.4.5.134 Function isatty

Declaration:

int isatty(long handle);

Description

Checks for device type.

isatty determines, whether handle is associated with any one of the following character devices:
 a terminal
 a console
 a printer
 a serial port

Returned value

CPI2-Gx Device Programmers - CPI2-Gx304

© 2021 Phyton, Inc. Microsystems and Development Tools

If the device is one of the four character devices listed above, then isatty returns a nonzero
integer. Otherwise, isatty returns 0.

8.4.5.135 Function iscntrl

Declaration:

int iscntrl(unsigned char c);

Description

The iscntrl function checks, if parameter c is a control character (from 0x00 to 0x1F, or 0x7F).

Returned character

The iscntrl function will return a non-zero value, if c is a control character or digit, otherwise it will return 0.

8.4.5.136 Function isdigit

 Declaration:

int isdigit(unsigned char c);

Description

The isdigit function checks, if parameter c is a decimal number ('0'-'9').

Returned value

The isdigit function will return a non-zero value, if parameter c is a decimal number, otherwise it will return 0.

8.4.5.137 Function isgraph

Declaration:

int isgraph(unsigned char c);

Description

The isgraph function checks, if parameter c is a printed character excluding spaces (0x21 - 0x7E).

Returned value

The isgraph function will return a non-zero value, if c is a printed character, otherwise it will return 0.

8.4.5.138 Function islower

Declaration:

int islower(unsigned char c);

Description

The islower function checks, if parameter c is a lower case letter ('a'-'z').

Returned value

The islower function will return non-zero value, if c is a lower case character, otherwise it will return 0.

Reference 305

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.139 Function isprint

Declaration:

int isprint(unsigned char c);

Description

The isprint function checks, if parameter c is a printed character (0x20 - 0x7E).

Returned value

The isprint function will return a non-zero value, if c is an alphabetic character or a digit, otherwise it will return
0.

8.4.5.140 Function ispunct

Declaration:

int ispunct(unsigned char c);

Description

The ispunct function checks, if parameter cis a punctuation symbol of the following set:

 ! " # $ % & ' (
) * + , - . / :
 ; < = > ? [\
] ^ _ ` { | } ~

Returned value

The ispunct function will return a non-zero value, if c is a punctuation symbol, otherwise it will return 0.

8.4.5.141 Function isspace

Declaration:

int isspace(unsigned char c);

Description

The isspace function checks, if parameter c is a space character (0x09 - 0x0D or 0x20).

Returned function

The isspace function will return a non-zero value, if c is a space character, otherwise it will return 0.

8.4.5.142 Function isupper

Declaration:

int isupper(unsigned char c);

Description

The isupper function checks, if parameter c is an upper case letter ('A'-'Z').

Returned value

The isupper function will return a non-zero value, if c is an upper case letter, otherwise it will return 0.

8.4.5.143 Function isxdigit

Declaration:

CPI2-Gx Device Programmers - CPI2-Gx306

© 2021 Phyton, Inc. Microsystems and Development Tools

int isxdigit(unsigned char c);

Description

The isxdigit function checks, if parameter c is a hexadecimal number ('A'-'F', 'a'-'f', '0'-'9').

Returned value

The isxdigit function will return a non-zero value, if parameter c is a hexadecimal number, otherwise it will
return 0.

8.4.5.144 Function itoa

Declaration:

void itoa(int value, char string[], int radix);

Description

Converts an integer number (value) into the character string (string). The radix parameter is the radix of
notation (2...36), in which the conversion is carried out.

8.4.5.145 Function LastChar

Declaration:

int LastChar(unsigned long handle);

Description

Returns the code of the button pressed at the last call of wgetchar or the hexadecimal number entered at
the last call of wgethex .

8.4.5.146 Function LastEvent

Declaration:

int LastEvent(unsigned long handle);

Description

Returns the type of the latest event that occurred to the window and is accessed by the
WaitWindowEvent function.

Returned value

The type of event (constants are defined in system.h):

WE_REDRAW is the window data update request, an image display request. This event is generated in all
those cases, when it is necessary to update the window, for example, at the Windows task switch. This event
informs you that the window wishes to redraw itself, and your script file, generally speaking, does not have to
respond to this event. If the script file does not update the window data, the old picture will be drawn.

WE_MOUSEBUTTON (only the User window) - You clicked a mouse button, when the mouse cursor
was in the window. Information on the click can be obtained by calling the LastEventIntx function:
• LastEventInt1() and LastEventInt2() return the coordinates in pixels (x, y) for the point, where the cursor

was located, when the button was clicked.
• LastEventInt3() and LastEventInt4() return the text coordinates (x, y) for the point, where the cursor was

located, when the button was clicked; x is the column number; y is the line number.

WE_USERBUTTON (only the User window) You clicked one of the buttons added to the window by the
AddButton function. The LastEventInt1() function returns identifier of the clicked button. It equivalent to the
button identifier returned by the AddButton function.

357

358

357

181 181

307

267

Reference 307

© 2021 Phyton, Inc. Microsystems and Development Tools

WE_TOOLBARBUTTON (only the User window) You clicked one of the 0...F buttons on the window toolbar.
These buttons are particularly intended for simple interactions with the window. Using the customer buttons
(see AddButton) is more complicated, although it is more flexible.

WE_CHAR - (only the I/O Stream window) You pressed an alphanumeric key on the keyboard.
LastEventInt1() returns its code.

WE_CLOSE - You closed the window. After that, further window operation is useless and should be stopped.

8.4.5.147 Function LastEventInt{1...4}

Declaration:

int LastEventInt{1...4}(unsigned long handle);

Description

Four functions - LastEventInt1(), LastEventInt2(), LastEventInt3(), and LastEventInt4() - return parameters that
are generated upon event occurrence in a user window. See LastEvent , WaitWindowEvent .

8.4.5.148 Function LastString

Declaration:

int LastString(unsigned long handle, char s[]);

Description

Copies the string entered at the last call of wgetstring to the string (the s parameter).

8.4.5.149 Function LineTo

Declaration:

void LineTo(unsigned long handle, int x, int y);

Description

Draws a line from the point set up by the MoveTo or LineTo function to the point with coordinates (x, y).
The line is drawn with the pen selected with the SelectPen function (or a standard pen, when SelectPen
was not called). After the LineTo call, the benchmark is moved to the destination point.

Example

 // To draw triangle ABC
 MoveTo(handle, 10, 10); // point A
 LineTo(handle, 50, 50); // A --> B
 LineTo(handle, 20, 40); // B --> C
 LineTo(handle, 10, 10); // C --> A

8.4.5.150 Function LoadDesktop

Declaration:

void LoadDesktop(char file_name[]);

Description

267

306 357

358

315

334

CPI2-Gx Device Programmers - CPI2-Gx308

© 2021 Phyton, Inc. Microsystems and Development Tools

Downloads the specified screen configuration file (see Configuration Files).

8.4.5.151 Function Left

Declaration:

void Left(int count=1);

Description

Move the cursor count positions left. The same result can be achieved by decrementing the CurCol built-
in variable.

8.4.5.152 Function LoadLibrary

Declaration:

unsigned long LoadLibrary(char lib_name[]);

Description

Loads the specified DLL by calling the LoadLibrary function of Windows API. After the loading, the functions
from this DLL can be called with the CallLibraryFunction .

Returned value

What is returned by the LoadLibrary function of Windows API, that is, HINSTANCE of the loaded DLL or error
code.

Example

unsigned long instance = LoadLibrary("EXTEND.DLL");

8.4.5.153 Function LoadOptions

Declaration:

void LoadOptions(char file_name[]);

Description

Downloads the specified option file (see Configuration Files).

8.4.5.154 Function LoadProgram

Declaration:

void LoadProgram(unsigned char file_name[], int format, int addr_space=AS_CODE,
unsigned long start_addr=0);

Description

Downloads a program into the microcontroller memory.

Parameters:

 file_name - the name of the loaded file.
 format - the format of the loaded file. Character constants with the
 prefix LF_ declared in the system.h header file
 are provided for this parameter. To understand this
 better, open the Load Program dialog
 and see the list of formats.

52

362

271

52

Reference 309

© 2021 Phyton, Inc. Microsystems and Development Tools

 addr_space - the microprocessor address space, where the program is
downloaded
 (the code memory by default).
 start_addr - the load address. This parameter is used only for loading
 a file that is the binary memory image.

Not only programs can be loaded: you can also load data memory images that were saved, for example, with
the SaveData function.

Example

LoadProgram("C:\\PROG\\TEST.D32", LF_UBROF);

8.4.5.155 Function LoadProject

Declaration:

void LoadProject(char file_name[]);

Description

Loads the project with the specified name. If no extension is specified, then '.IDE' will be assumed.

<%CM%> will perform the same actions as if the project were loaded via menu.

8.4.5.156 Function locking

Declaration:

int locking(long handle, int cmd, long length);

Description

Sets or resets file-sharing locks.

locking provides interface to the operating system file-sharing mechanism. handle specifies the opened file to
be locked or unlocked. The region to be locked or unlocked starts at the current file position, and is length
bytes long. Locks can be placed on arbitrary, nonoverlapping regions of any file. A program attempting to read
or write into the locked region will retry the operation three times. If all three retries fail, the call fails with an
error. cmd specifies the action to be taken:

 0 Unlock the region, which must have been previously locked.
 1 Lock the region. If the lock is unsuccessful, try once a second for 10
seconds before giving up.
 2 Lock the region. If the lock if unsuccessful, give up immediately.

Returned Value

On successful operations, locking returns 0. Otherwise, it returns -1 and the errno global variable is set to
one of the following values:

 EACCES File already locked or unlocked
 EBADF Bad file number
 EDEADLOCK File cannot be locked after 10 retries (cmd is LK_LOCK or
LK_RLCK)
 EINVAL Invalid cmd, or SHARE.EXE not loaded

331

362

CPI2-Gx Device Programmers - CPI2-Gx310

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.157 Function log

Declaration:

float log(float x);

Description

The log function calculates the natural logarithm of the floating-point number val.

Returned function

The log function returns the natural logarithm of val. If val is negative or equal to 0, then the function will return
_MINUS_INF.

8.4.5.158 Function log10

Declaration:

float log(float x);

Description

The log function calculates the natural logarithm of the floating-point number val.

Returned Value

The log function returns the natural logarithm of val. If val is negative or equal to 0, then the
function will return _MINUS_INF.

8.4.5.159 Function lseek

Declaration:

long lseek(long handle, long offset, int fromwhere);

Description

Moves file pointer.

lseek sets the file pointer associated with handle to a new position, which is offset bytes beyond
the file location specified by fromwhere. fromwhere must be one of the following symbolic
constants (defined in system.h):

SEEK_CUR Current file pointer position

SEEK_END End-of-file

SEEK_SET File beginning

Returned Value

lseek returns the offset of the pointer new position measured in bytes from the file beginning. lseek
returns -1L on error, and the errno global variable is set to one of the following values:

EBADF Bad file handle

EINVAL Invalid argument

ESPIPE Illegal seek on device

362

Reference 311

© 2021 Phyton, Inc. Microsystems and Development Tools

For the devices incapable of seeking (such as terminals or printers), the return value is undefined.

8.4.5.160 Function ltoa

Declaration:

void ltoa(long value, char string[], int radix);

Description

Converts a long integer number (value) into the character string (string).

The radix parameter is the radix used for conversion (2...36).

8.4.5.161 Function MaxAddr

Declaration:

unsigned long MaxAddr(int addr_space);

Description

Returns the upper boundary address of the processor address space. Constants with the AS_ prefix for the
addr_space parameter are defined in the system.h header file.

Example

See MinAddr

8.4.5.162 Function memccpy

Declaration:

int memccpy(void dest[], void src[], int c, int n, int dest_index=0, int
src_index=0);

Description

The memccpy function copies the contents of the scr memory block to the dest memory block. Copying
stops, when either byte with the value of c is encountered and copied or when c bytes are copied.

Returned value

The memccpy function returns the number of copied bytes.

8.4.5.163 Function memchr

Declaration:

int memchr(void s[], int c, int n, int index=0);

Description

The memchr function searches for the first entry of character c (which was earlier converted into the unsigned
char) among the first n characters (interpreted as the unsigned char) of the object specified by s.

Returned value

314

CPI2-Gx Device Programmers - CPI2-Gx312

© 2021 Phyton, Inc. Microsystems and Development Tools

The memchr function returns the number of the found byte counting from the beginning of the array, or -1, if
the byte is not found

8.4.5.164 Function memcmp

Declaration:

int memcmp(void s1[], void s2[], int n, int s1_index=0, int s2_index=0);

Description

The memcmp function compares the first n bytes of objects s1 and s2 and returns the comparison result. The
bytes are interpreted as the unsigned char.

 Result Meaning

 < 0 s1 is less than s2
 = 0 but1 is equal to s2
 > 0 s1 is greater than s2

Returned value

The memcmp function returns the positive, negative, or zero value depending on the result of comparing the
first n bytes of objects s1 and s2.

8.4.5.165 Function memcpy

Declaration:

void memcpy(void dest[], void src[], int n, int dest_index=0, int src_index=0);

Description

The memcpy function copies n bytes from the buffer specified by scr to the buffer specified by dest. If these
buffers have common memory cells (that is, they overlap), then the memcpy function does not ensure that
byte copying is executed correctly. If overlapping is possible, then use the memmove function instead.

Returned value

None.

8.4.5.166 Function memicmp

Declaration:

int memicmp(void s1[], void s2[], int n, int s1_index=0, int s2_index=0);

Description

The memicmp function compares the first n bytes of objects s1 and s2 regardless of the character case, and
returns the comparison result. The bytes are interpreted as the unsigned char.

 Result Meaning

 < 0 s1 is less than s2
 = 0 but1 is equal to s2
 > 0 s1 is greater than s2

Returned value

The memicmp function returns the positive, negative or zero value, depending on the result of comparing the
first n bytes of objects s1 and s2.

Reference 313

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.167 Function memmove

Declaration:

void memmove(void dest[], void src[], int n, int dest_index=0, int
src_index=0);

Description

The memmove function copies n bytes from the buffer specified by scr to the buffer specified by dest. When
these buffers have common memory cells (that is, they overlap), the memmove function ensures that bytes
are copied correctly.

Returned value

None.

8.4.5.168 Function memset

Declaration:

void memset(void s[], int c, int n, int index=0);

Description

The memset function sets the first n bytes of the object, specified by s, equal to the value transferred to c
(and converted into the unsigned char).

Returned value

None.

8.4.5.169 Function MessageBox

Declaration:

int MessageBox(char format[], ...);

Description

The MessageBox function displays data in accordance with the format line in the form of a dialog message.

Note. Your arguments passed to this function shall match the format line. In case of mismatch, the <%CM%
> program may crash, because it cannot check the correspondence between the format string and
parameters passed.

Returned value

1, if the Close button is pressed;

0, if the Esc key is pressed.

Also, see:

Formatted Input-Output Functions

Alphabetical List of Script Language Built-in Functions and Variables

8.4.5.170 Function MessageBoxEx

Declaration:

int MessageBoxEx(int flags, char title[], char format[], ...);

Description

251

257

CPI2-Gx Device Programmers - CPI2-Gx314

© 2021 Phyton, Inc. Microsystems and Development Tools

This function displays data in accordance with the format line in the form of a dialog message. The dialog has
title, buttons and icon, which are specified by flags and title.

The flags parameter may contain one or several flags that determine the dialog buttons and icon. For these
flags, file system.h defines constants with the MB_ prefix.

The title parameter is the text in the dialog title bar.

The format parameter is the format string, it may be followed by data (see printf).

Note. Your arguments passed to this function shall match the format line. In case of mismatch, the <%CM%
> program may crash, because it cannot check the correspondence between the format string and
parameters passed.

Returned value

The function returns one of constants with the ID prefix determined in system.h, which corresponds the dialog
button pressed.

Example:

if (MessageBoxEx(MB_YESNO | MB_ICONQUESTION, "Confirm exit", "Do you want
to exit?") == IDYES)
 ExitProgram();

Also, see:

Formatted Input-Output Functions

Alphabetical List of Script Language Built-in Functions and Variables

8.4.5.171 Function MinAddr

Declaration:

unsigned long MinAddr(int addr_space);

Description

Returns the lower boundary address of the processor address space. Constants with the AS_ prefix for the
addr_space parameter are defined in the system.h header file.

Example

 // To set the whole data memory to zero
 int i;
 for (i = MinAddr(AS_DATA), i <= MaxAddr(AS_DATA); i++)
 SetByte(i, AS_DATA, 0);

8.4.5.172 Function mkdir

Declaration:

int mkdir(char path[]);

Description

Creates a directory. mkdir creates a new directory from the given path name path.

 Returned Value

mkdir will return 0, if the new directory is created.

The returned value of -1 indicates an error and the errno global variable contains one of the
following values:

EACCES Permission denied

320

251

257

362

Reference 315

© 2021 Phyton, Inc. Microsystems and Development Tools

ENOENT No such file or directory

8.4.5.173 Function MoveTo

Declaration:

void MoveTo(unsigned long handle, int x, int y);

Description

Sets up the coordinates of the start point of the line to be drawn with the LineTo function.

Examples

 // To draw a line from the point with coordinates (10, 10) to the point (50,
50).
 MoveTo(handle, 10, 10);
 LineTo(handle, 50, 50);

8.4.5.174 Function MoveWindow

Declaration:

void MoveWindow(unsigned long handle, int x, int y);

Description

Moves the specified window. The handle parameter is the window identifier produced by the call of the
OpenWindow , and FindWindow functions. x and y are the new coordinates (in pixels) of the window
upper left corner in the user area of the <%CM%> window. Coordinates 0, 0 correspond to the window upper
left corner.

The window size does not change.

8.4.5.175 Function movmem

Declaration:

void movmem(void dest[], void src[], unsigned int length, int dest_index=0, int
src_index=0);

Description

The movmem function copies length bytes from the buffer specified by scr to the buffer specified by dest.
When these buffers have common memory cells (that is, they overlap), the movmem function ensures that
byte are copied correctly.

Returned value

None.

8.4.5.176 Function open

Declaration:

int open(char path[], int access);

 Description

Opens a file for reading or writing.

307

317 288

CPI2-Gx Device Programmers - CPI2-Gx316

© 2021 Phyton, Inc. Microsystems and Development Tools

open opens the file specified by path and prepares it for reading and/or writing as determined by the
value of access. To create a file in a particular mode, you can either assign to the _fmode
global variable or call open with the O_CREAT options ORed with the translation mode desired.
For example, the call:

open("XMP", O_CREAT | O_BINARY);

creates a binary-mode file named XMP, truncating its length to 0 bytes, if it already exists. For
open, access is constructed by performing the bitwise OR with the flags from the following list.
Only one flag from the first list can be used (and one must be used); the remaining flags can be
used in any logical combination. These symbolic constants are defined in system.h.

Read/Write Flags:
 O_RDONLY Open for reading only.
 O_WRONLY Open for writing only.
 O_RDWR Open for reading and writing

Returned Value

On success, open returns a nonnegative integer (the file handle). The file pointer, which marks the
current position in the file, is set to the beginning of the file. On error, open returns -1 and the
errno global variable is set to one of the following values:
 EACCES Permission denied
 EINVACC Invalid access code
 EMFILE Too many open files
 ENOENT No such file or directory

8.4.5.177 Function OpenEditorWindow

Declaration:

unsigned long OpenEditorWindow(char file_name[]);

Description

Opens the Source window and loads the specified file into it.

If the window with the specified file is already opened, it will become active and the new window will not be
opened.

8.4.5.178 Function OpenStreamWindow

Declaration:

unsigned long OpenStreamWindow(char title[]);

Description

Opens the I/O Stream window window and sets up its title (the title parameter).

You can do the same with the OpenWindow function, by transferring the WIN_STREAM constant to it as
a parameter, however in this case, you cannot set up the title.

If there is an "unowned" stream window on the screen, the new window will not be opened and the already
opened window will be used.

360

362

187 187

181 181

317

Reference 317

© 2021 Phyton, Inc. Microsystems and Development Tools

The new window opens in a random place on the screen and has certain preset size. To resize the window,
use the SetWindowSize function, or do it manually.

Returned value

The identifier of opened window. It can be transferred to other window operation functions as a parameter.

Example

unsigned long handle = OpenStreamWindow("Serial port I/O");

8.4.5.179 Function OpenUserWindow

Declaration:

unsigned long OpenUserWindow(char title[]);

Description

Opens the User window and specifies its title (parameter title).

This can also be done with the OpenWindow function, by transferring the WIN_USER constant to it as a
parameter, however in this case, you cannot specify the title.

If there is an unowned user window opened on the screen, a new window will not be opened and the current
window will be used.

A new window is opened in a random screen location and has the preset size. To resize the window, use the
SetWindowSize function or do it manually.

Returned value

The identifier of the opened window. It can be transferred as a parameter to other window operation functions.

Example

unsigned long handle = OpenUserWindow("A/D conversion");

8.4.5.180 Function OpenWindow

Declaration:

unsigned long OpenWindow(int type);

Description

Opens the specified window type (disassembler, dump, etc.). The constants to describe the window types are
declared in the system.h header file:

 WIN_CONSOLE - Console
 WIN_DUMP - Memory Dump
 WIN_AUTO_WATCHES - AutoWatches
 WIN_INSPECT - Inspector
 WIN_SF_SOURCE - Script source
 WIN_STREAM - I/O stream
 WIN_USER - User window

The View menu gives access to the available windows.

The window will be opened, if an instruction of the View menu is executed. If you need to move a window
and/or change its size, use the SetWindowSize , SetWindowSizeT , or MoveWindow functions.

Returned value

The identifier of the opened window. It can be transferred as a parameter to other window operation functions.

340

181 181

317

340

52 52

340 340 315

CPI2-Gx Device Programmers - CPI2-Gx318

© 2021 Phyton, Inc. Microsystems and Development Tools

For Windows programmers: identifier is a window HWND.

8.4.5.181 Function outport

Declaration:

void outport(unsigned int port_num, unsigned int value);

Description

Writes a value (word) to the specified parallel port.

8.4.5.182 Function outportb

Declaration:

void outportb(unsigned int port_num, unsigned char value);

Description

Write a value (byte) to the specified parallel port.

8.4.5.183 Function peek

Declaration:

int peek(unsigned int segment, unsigned int offset);

Description

Reads a word from computer memory by a specified segment: offset. The segment is a selector.

Returned value

The read word.

8.4.5.184 Function peekb

Declaration:

unsigned char peekb(unsigned int segment, unsigned int offset);

Description

Reads a byte from the computer memory by a specified segment:offset. The segment is a selector.

Returned value

The read byte.

8.4.5.185 Function poke

Declaration:

void poke(unsigned int segment, unsigned int offset, int value);

Description

Writes a word to the computer memory by a specified segment: offset. The segment is a selector.

Reference 319

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.186 Function pokeb

Declaration:

void pokeb(unsigned int segment, unsigned int offset, unsigned char value);

Description

Writes a byte to the computer memory by specified segment: offset. segment is a selector.

8.4.5.187 Function Polyline

Declaration:

void Polyline(unsigned long handle, unsigned int points[], int n);

Description

Connects the points, whose coordinate pairs are transferred in the points array, with a line. The n parameter
is the amount of points. Each subsequent horizontal coordinate should be greater than the previous one.

Example

 Polyline(handle, { 0, 0,
 10, 20,
 12, 30,
 78, 10 }, 4);

8.4.5.188 Function pow

Declaration:

float pow(float x, float y);

Description

The pow function raises x to the power y.

Returned function

The pow function returns the result of raising x to the power y. If y is equal to 0, then the function will return
1.0. If x == 0 and y < 0, then the error will occur (falling outside the range) and the function will return 0. If x <
0 and y is not an integer, then the error of falling outside the range will also occur and the pow function will
return 0.

8.4.5.189 Function pow10

Declaration:

float pow10(int x);

Description

The pow10 function raises number 10 to the power x.

Returned value

The pow10 function returns the result of raising 10 to the power x. If x is 0, then the function will return 1.0.

CPI2-Gx Device Programmers - CPI2-Gx320

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.190 Function printf

Declaration:

void printf(char format[], ...);

 Description

The printf function displays the values of transferred parameters in the Console in accordance
with the format line.

Upon every printf access, data is displayed in the new window line, that is, "\n" is automatically added to the
displayed string.

If the Console window is already opened, it will be automatically opened.

The wprintf function provides more capabilities for the formatted output, but it requires certain preparatory
operations.

Note. Your arguments passed to this function shall match the format line. In case of mismatch, the CPI2-Gx
program may crash, because it cannot check the correspondence between the format string and parameters
passed.

For more info, see:

Format String

Format Specifiers

Flag Characters

Width Specifiers

Precision Specifiers

Input-size Modifiers

Type Characters

Format Specifier Conventions

Returned Value
Нет.

Example

printf("Counter = %d\n"

 "Value = %08lX",

 Counter, Value);

8.4.5.190.1 printf Conversion Type Characters

The information in this table is based on the assumption that no flag characters, width specifiers,
precision specifiers, or input-size modifiers were included in the format specifier .

Note. Certain accompany some of these format specifiers.

Type Char Expected Input Format of output

104

359

324

323

321

326

324

324

320

321

323

Reference 321

© 2021 Phyton, Inc. Microsystems and Development Tools

Numerics

d Integer signedinteger

i Integer signed decimal integer

o Integer unsigned octal integer

u Integer unsigned decimal integer

x Integer unsigned hexadecimal int (with a, b, c, d, e, f).

X Integer unsigned hexadecimal int (with A, B, C, D, E, F).

f Floating-point signed value of the form [-]dddd.dddd.

e Floating-point signed value of the form [-]d.dddd or [+/-]ddd

g Floating-point signed value in either ef form, based on given value and
precision. Trailing zeros and the decimal point are printed
if necessary.

E Floating-point Same as e; with E for exponent.

G Floating-point Same as g; with E for exponent if e format used.

Characters

c Character Single character.

s String pointer

% None Prints the % character.

Infinite floating-point numbers are printed as +INF and -INF.

An IEEE Not-A-Number is printed as +NAN or -NAN.

8.4.5.190.2 printf Flag Characters

The Flag characters can appear in any order and combination.
Flag Description

- Left-justifies the result, pads on the right with blanks. If not given, it right-justifies the

result, pads on the left with zeros or blanks.
+ Signed conversion results always begin with a plus (+) or minus (-) sign.
blank If value is nonnegative, the output begins with a blank instead of a plus; negative

values still begin with a minus.
Specifies that arg is to be converted using an alternate form .

Note. Plus (+) takes precedence over blank () if both are given

8.4.5.190.3 printf Format Specifier Conventions

Certain conventions accompany some of the printf format specifiers for the following

323

323

CPI2-Gx Device Programmers - CPI2-Gx322

© 2021 Phyton, Inc. Microsystems and Development Tools

conversions:

- %e or %E

- %f

- %g or %G

- %x or %X

Note. Infinite floating-point numbers are printed as +INF and -INF. An IEEE Not-a-Number is
printed as +NAN or -NAN.

8.4.5.190.3.1 %e or %E Conversions

 The argument is converted to match the style

[-] d.ddd...e[+/-]ddd

where:
• one digit precedes the decimal point
• the number of digits after the decimal point is equal to the precision;
• the exponent always contains at least two digits.

8.4.5.190.3.2 %f Conversions

The argument is converted to decimal notation in the style

[-] ddd.ddd...

where the number of digits after the decimal point is equal to the precision (if a non-zero precision
was given).

8.4.5.190.3.3 %g or %G Conversions

The argument is printed in style e, E or f, with the precision specifying the number of significant
digits.

Trailing zeros are removed from the result, and a decimal point appears only if necessary.

The argument is printed in style e or f (with some restraints) if g is the conversion character. Style
e is used only if the exponent that results from the conversion is either greater than the precision
or less than –4.

The argument is printed in style if G is the conversion character.

8.4.5.190.3.4 %x or %X Conversions

For x conversions, the letters a, b, c, d, e, and f appear in the output.

322

322

322

322

Reference 323

© 2021 Phyton, Inc. Microsystems and Development Tools

For X conversions, the letters A, B, C, D, E, and F appear in the output.

8.4.5.190.3.5 Alternate Forms for printf Conversion

If you use the # flag conversion character, it has the following effect on the argument (arg) being

converted:

Conversion character How # affects the argument

c s d iu No effect.
0 0 is prepended to a nonzero arg.
x X 0x (or 0X) is prepended to arg.
e E f The result always contains a decimal point even if no digits

follow the point. Normally, a decimal point appears in
these results only if a digit follows it.

g G Same as e and E, except that trailing zeros are not removed.

8.4.5.190.4 printf Format Specifiers

The printf format specifiers have the following form:

% [flags] [width] [.prec] [F|N|h|l|L] type_char

Each format specifier begins with the percent character (%). After the % come the following
optional specifiers, in this order:

Optional Format String Components

These are the general aspects of output formatting controlled by the optional characters,
specifiers, and modifiers in the format string:

Component Optional/Required

[flags] (Optional) Flag character(s) Output justification, numeric
signs, decimal points, trailing zeros, octal and hex
prefixes.

[width] (Optional) Width specifier Minimum number of characters to
print, padding with blanks or zeros.

 (Optional) Precision specifier Maximum number of characters
to print; for integers, minimum number of digits to print.

[F|N|h|l|L] (Optional) Input size modifier Override default size of next input
argument:H = short int

L = long

L = long double

321

326

324

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

CPI2-Gx Device Programmers - CPI2-Gx324

© 2021 Phyton, Inc. Microsystems and Development Tools

type_char (Required) Conversion-type character .

8.4.5.190.5 printf Format String

The format string shall be present in each of the printf function calls. It controls how each function
will convert, format, and print its arguments. The format string is a character string that contains
two types of objects:
• Plain characters are copied verbatim to the output stream.
• Conversion specifications fetch arguments from the argument list and apply formatting to

them.

Plain characters are just copied verbatim to the output stream. Conversion specifications fetch
arguments from the argument list and apply formatting to them.

Note. There must be enough arguments for the format; if not, the results will be unpredictable and
possibly disastrous. Excess arguments (more than required by the format) are ignored.

8.4.5.190.6 printf Input-size Modifiers

 These modifiers determine how printf functions interpret the next input argument, arg[f].

Modifier Type of arg arg is interpreted as ...

F p, s, A far pointer

N and n) A near pointer (Note. N cannot be used with any
conversion in the huge model.)

h d i o u x X A short int

l d i o u x X A long int

 e E f g G A double

L e E f g G A long double

arg.

Both F and N reinterpret the input variable arg. Normally, the arg for a p, %s, or n conversion is a
pointer of the default size for the memory model.

h, l, and L override the default size of the numeric data input arguments. Neither h nor l affects
character (c,s) or pointer () types.

8.4.5.190.7 printf Precision Specifiers

The printf precision specifiers set the maximum number of characters (or minimum number of
integer digits) to print. A printf precision specification always begins with a period (".") to separate
it from any preceding width specifier.

320

Reference 325

© 2021 Phyton, Inc. Microsystems and Development Tools

Then, like the width specifier, precision is specified in one of two ways:
• directly, through a decimal digit string;
• indirectly, through an asterisk (*).

If you use an * for the precision specifier, the next argument in the call (treated as an int) specifies
the precision.

If you use asterisks for the width or the precision, or for both, the width argument must
immediately follow the specifiers, followed by the precision argument, then the argument for the
data to be converted.
[.prec] How Output Precision Is Affected

(none) Precision set to default:

= 1 for d,i,,u,x,X types;
= 6 for e,E,f types;
= All significant digits for g,G types;
= Print to first null character for s types;
= No effect on types.

.0 For d,i,o,u,x types, precision set to default.
for e,E,f types, no decimal point is printed.

.n n characters or n decimal places are printed.
If the output value has more than n characters, the output might be truncated or
rounded. (Whether this happens depends on the type character.)

. The argument list supplies the precision specifier, which must precede the
actual argument being formatted.

No numeric characters will be output for a field (i.e., the field will be blank) if the following
conditions are all met:
• you specify an explicit precision of 0;
• the format specifier for the field is one of the integer formats (d, i, o, u, or x);
• the value to be printed is 0

How [.prec] Affects Conversion
Char Type Effect of [.prec] (.n) on Conversion

d Specifies that at least n digits are printed.
i n digits,
o output value is left-padded x with zeros.
u If input argument has more than n digits,
x the output value is not truncated.

e Specifies that n characters are
E printed after the decimal point, and
f the last digit printed is rounded.

g Specifies that at most n significant
G digits are printed.

c Has no effect on the output.
s Specifies that no more than n characters are printed.

CPI2-Gx Device Programmers - CPI2-Gx326

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.190.8 printf Width Specifiers

The width specifier sets the minimum field width for an output value. Width is specified in one of
two ways:
• directly, through a decimal digit string;
• indirectly, through an asterisk (*).

If you use an asterisk for the width specifier, the next argument in the call (which must be an int)
specifies the minimum output field width.

Nonexistent or small field widths do cause truncation of a field. If the result of a conversion is
wider than the field width, the field is expanded to contain the conversion result.
Width specifier How output width is affected

n At least n characters are printed. If the output value has less than n

characters, the output is padded with blanks (right-padded if - flag given,
left-padded otherwise).

0n At least n characters are printed. If the output value has less than n
characters, it is filled on the left with zeros.

* The argument list supplies the width specifier, which must precede the
actual argument being formatted.

8.4.5.191 Function pscanf

Declaration:

int pscanf(char title[], char format[], ...);

Description

performs the same as scanf; however, it receives an additional parameter, the header of the
prompt dialog box.

pscanf scans a series of input fields one character at a time reading from a stream. After that,
each field is formatted in accordance with a format specifier passed to pscanf in the format string
pointed to by format. Finally, pscanf stores the formatted input at the address passed to it as the
argument following the format. The number of format specifiers and addresses must be the same
as the number of input fields.

Notes
1. scanf Format Specifiers.
2. All arguments for this function shall be arrays, because only the array parameters are passed

by address to functions. Also, see example for scanf .

pscanf can stop scanning a particular field before it reaches the normal end-of-field character
(whitespace) or it can terminate entirely for a number of reasons. See scanf for a discussion
on possible causes.

Returned Value

pscanf returns the number of input fields successfully scanned, converted and stored. The return
value does not include the scanned fields that were not stored. If no fields are stored, then 0 will
be returned.

332

332

332

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 327

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.192 Function putc

Declaration:

int putc(int c, unsigned long stream);

Description

Outputs a character to a stream.

putc outputs character c to the stream specified by stream.

Returned Value

On success, putc returns the character printed, c. On error, putc returns EOF.

fprintf

fputc

fputs

fwrite

getc

printf

putw

8.4.5.193 Function putenv

Declaration:

int putenv(char name[]);

Description

Sets up the value of the environment variable. Here, is a string like:

"COMSPEC=C:\\COMMAND.COM"

Returned value

1, if the value of specified variable is set up; otherwise it returns 0.

8.4.5.194 Function putw

Declaration:

int putw(int c, unsigned long stream);

Description

Puts an integer on a stream.

putw outputs integer c to the given . putw neither expects nor causes special alignment in the file.

Returned Value

290

291

291

295

295

320

327

CPI2-Gx Device Programmers - CPI2-Gx328

© 2021 Phyton, Inc. Microsystems and Development Tools

On success, putw returns integer c. On error, putw returns EOF. Because EOF is the allowed
integer, use ferror to detect errors with putw.

8.4.5.195 Function rand

Declaration:

int rand();

Returns a pseudorandom number in the range from 0 to 32767.

8.4.5.196 Function random

Declaration:

int random(int num);

Description

-1.

8.4.5.197 Function randomize

Declaration:

void randomize();

Description

Initializes a random number generator by a random number.

8.4.5.198 Function read

Declaration:

int read(long handle, void buf[], int len);

Description

Reads from file.

read attempts to read len bytes from the file associated with handle into the buffer pointed to by
buf. For a file opened in text mode, then read removes the carriage returns and reports the end-of-
file, when it reaches Ctrl-Z. The handle file handle is obtained from the creat , open , dup ,
or dup2 call. On disk files, read begins reading at the current file pointer. When the reading is
complete, it increments the file pointer by the number of bytes read. On devices, the bytes are
read directly from the device.

Returned Value

On successful completion, read returns an integer indicating the number of bytes placed in the
buffer. If the file is opened in the text mode, then read does not count the carriage returns or Ctrl-Z
characters in the number of bytes read. On the end-of-file, read returns 0. On error, read returns -
1 and sets the errno global variable to one of the following two values:

EACCES Permission denied

EBADF Bad file number

285

275 315 279

279

362

Reference 329

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.199 Function Rectangle

Declaration:

void Rectangle(unsigned long handle, int x1, int y1, int x2, int y2);

Description

Draws an unpainted rectangle using the pen selected with the SelectPen function and paints it
using the brush selected with the SelectBrush function; (x1, y1) are the coordinates of the
upper left corner; (x2, y2) are the coordinates of the lower right corner.

8.4.5.200 Function RedrawScreen

Declaration:

void RedrawScreen();

Description

Updates all open windows of the name. Use this function, when the script file changes the
microcontroller resources and you want to view the result of the change. A script file cannot
update the screen on its own, because it takes significant time (as compared with the script file
execution speed).

Example:

 SetByte(addr, AS_DATA, 0x11);

 RedrawScreen();

8.4.5.201 Function ReloadProgram

Declaration:

void ReloadProgram();

Description

Reloads a program that was the last loaded into the microcontroller memory. It is equivalent to the
Re-Load program in the File menu.

8.4.5.202 Function RemoveButtons

Declaration:

void RemoveButtons(unsigned long handle);

Description

Removes all buttons from the window that were added by the AddButton function. This
function is useful, when a script file is restarted and the user window used by this script file
contains buttons generated by the script file during the previous run.

334

334

51

267

CPI2-Gx Device Programmers - CPI2-Gx330

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.203 Function rename

Declaration:

int rename(char oldname[], char newname[]);

Description

Renames a file.

rename changes the name of a file from oldname to newname

Directories in oldname and newname need not be the same, so rename can be used to move a
file from one directory to another. Wildcards are not allowed.

This function will fail (EACCES), if either file is currently open in any process.

Returned Value

On success, rename returns 0. On error (if the file cannot be renamed), it returns -1 and the
global variable is set to one of the following values:

EACCES Permission denied: filename already exists or the path is invalid

ENOENT No such file or directory

ENOTSAM Not same device

8.4.5.204 Function rewind

Declaration:

void rewind(unsigned long stream);

Description

Repositions the file pointer to the beginning of the stream.

rewind(stream) is equivalent to fseek (stream, 0L, SEEK_SET), except that rewind clears the
end-of-file and error indicators, while fseek clears the end-of-file indicator only. After rewind, the
next operation on the update file can be either input or output.

8.4.5.205 Function Right

Declaration:

void Right(int count=1);

Description

Move the cursor positions right. The same result can be achieved by incrementing the CurCol
built-in variable.

8.4.5.206 Function rmdir

Declaration:

int rmdir(char path[]);

Description

294

362

Reference 331

© 2021 Phyton, Inc. Microsystems and Development Tools

Removes a directory.

rmdir deletes the directory, whose path is given by path. The directory named by path:

must be empty

must not be the current working directory

must not be the root directory

Returned Value

rmdir will return 0, if the directory is successfully deleted. The returned value of -1 indicates an
error and the errno global variable contains one of the following values:

EACCES Permission denied

ENOENT Path or file function not found

8.4.5.207 Function SaveData

Declaration:

void SaveData(unsigned char file_name[], int format, int addr_space, unsigned long start_addr,
unsigned long end_addr);

Description

Saves the microcontroller memory area in the file.

Parameters:

file_name - the name of unloaded file.

format - the format of unloaded file. Character constants with

 the prefix SF_ declared in the system.h header file

 are provided for this parameter. To understand this better,

 open the Save file dialog and go through the

 format names.

addr_space - the microcontroller memory space, from where data is unloaded.

start_addr - the initial address of unloaded area.

end_addr - the final address of unloaded area (inclusive).

Example

SaveData("C:\\PROG\\TEST.HEX", SF_HEX, AS_CODE, 0, 0x3FFF);

8.4.5.208 Function SaveDesktop

Declaration:

362

CPI2-Gx Device Programmers - CPI2-Gx332

© 2021 Phyton, Inc. Microsystems and Development Tools

void SaveDesktop(char file_name[]);

Description

Saves the screen configuration in the specified file (see Configuration Files)

8.4.5.209 Function SaveFile

Declaration:

int SaveFile();

Description

Saves the file from the current window .

8.4.5.210 Function SaveOptions

Declaration:

void SaveOptions(char file_name[]);

Description

Saves the options in the specified file (see Configuration Files

8.4.5.211 Function scanf

Declaration:

int scanf(char format[], ...);

Description

The scanf function displays prompt to enter a character string. The string you enter is parsed in
accordance with the format line.

scanf scans a series of input fields one character at a time reading from a stream. After that, each
field is formatted in accordance with a format specifier passed to scanf in the format string
pointed to by format. Finally, scanf stores the formatted input at the address passed to it as the
argument following the format. The number of format specifiers and addresses must be the same
as the number of input fields.

Notes
1. Your arguments passed to this function shall match the format line. In case of mismatch, the

CPI2-Gx program may crash, because it cannot check the correspondence between the format
string and parameters passed. For details on format specifiers, see the scanf Format
Specifiers.

2. All arguments for this function shall be arrays, because only the array parameters are passed
by address to functions. Also, see example below.

scanf can stop scanning a particular field before it reaches the normal end-of-field character
(whitespace) or it can terminate entirely for a number of reasons. See scanf for a discussion
on possible causes.

Returned Value

scanf returns the number of input fields successfully scanned, converted and stored. The return
value does not include the scanned fields that were not stored. If no fields are stored, then 0 will
be returned.

52

187

52

332

332

Reference 333

© 2021 Phyton, Inc. Microsystems and Development Tools

Example

int i[1];

float f[1];

char name[64];

scanf("%d %f %s", i, f, name);

// If "123 4.56 String" is entered in the prompt, then:

// i[0] will assume value 123,

// name will be equal to the string "String".

8.4.5.212 Function Search

Declaration:

int Search(char text[], int in_block=0);

Description

Searches for text text. The search area is defined by the in_block parameter: if it is 0, the search
will be performed in the whole text, otherwise, in the marked block only.

The search is always performed from the cursor position.

The search options are defined by the CaseSensitive , WholeWords and
RegularExpressions built-in variables.

If text is found, then Search will return 1, otherwise it will return 0. The string that was found is
copied to the LastFoundString variable. This is because the found string may not be the same
as the search argument

8.4.5.213 Function searchpath

Declaration:

int searchpath(char file_name[], char path[]);

Description

Searches the operating system path for a file.

searchpath attempts to locate a file by searching along the operating system path specified by the
PATH=... directive in the environment. The complete path-name string is stored in path. First,
searchpath searches for the file in the current directory of the current drive. If the file is not found
there, the PATH environment variable will be fetched and each directory in the path will be
searched in turn until the file is found or the path is exhausted. If the file is located, the string with
the full path name will be copied to path. This string can be used in a call to access the file (for
example, with fopen).

searchpath returns TRUE on success, otherwise it returns FALSE.

362 365

364

363

289

CPI2-Gx Device Programmers - CPI2-Gx334

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.214 Function SearchReplace

Declaration:

unsigned long SearchReplace(char text[], char new_text[], int in_block=0, int replace_all=0);

Description

Searches for text and replaces. The replace_all parameter specifies, whether the search is
continued after the first occurence of text is replaced. If replace_all is 0, then only the first
occurence will be replaced, otherwise, all occurences.

SearchReplace returns the number of replaces

8.4.5.215 Function SelectBrush

 Declaration:

void SelectBrush(unsigned long handle, unsigned long color);

Description

Selects a brush for drawing with the specified color. By default, a brush with the standard color is
selected, when the window opens. Brushes are used for drawing painted figures such as circles,
rectangles, etc.

8.4.5.216 Function SelectFont

Declaration:

void SelectFont(unsigned long handle, char name[], int height);

Description

Selects a font for text output. As opposed to the SetWindowFont function, this font can be
proportional. It is used for displaying text with the DisplayTextF function anywhere in the
window.

name is the line with the font name; height specifies the font height.

8.4.5.217 Function SelectPen

Declaration:

void SelectPen(unsigned long handle, unsigned long color, int width=1, int style=PS_SOLID);

Description

Selects a pen for drawing with the specified parameters. The standard pen (a solid line with the
width of 1) and the standard color are selected by default, when the window opens. Pens are used
for drawing lines, circumferences, etc.

Parameters:

color

width - the pen width; certain videoadapters face problems while drawing lines

 with a width greater than 1;

style - the line type:

339

278

Reference 335

© 2021 Phyton, Inc. Microsystems and Development Tools

 PS_SOLID - solid

 PS_DOT - dotted

 PS_DASHDOT - dash-and-dot

 PS_DASHDOTDOT - dash-and-dot-and-dot

8.4.5.218 Function SetBkColor

Declaration:

void SetBkColor(unsigned long handle, unsigned long color);

Description

Sets up the window background color.

8.4.5.219 Function SetBkMode

Declaration:

void SetBkMode(unsigned long handle, int mode);

Description

Sets the text display mode for the window. For the mode parameter, the system.h system header
file contains two constants: OPAQUE and TRANSPARENT. When text is displayed (see
DisplayText , DisplayTextF) and the display mode is set to OPAQUE, then the rectangle
with text will be first filled with the background color. In the TRANSPARENT mode, the text
overlaps the previous output.

8.4.5.220 Function SetBreak

Declaration:

void SetBreak(unsigned long addr);

Description

Sets up the code breakpoint at the specified address

8.4.5.221 Function SetBreaksRange

Declaration:

void SetBreaksRange(unsigned long start_addr, unsigned long end_addr);

Description

Sets up the code breakpoints in the range from start_addr to end_addr inclusive.

8.4.5.222 Function SetByte

Declaration:

void SetByte(unsigned long addr, int addr_space, unsigned int value);

278 278

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

CPI2-Gx Device Programmers - CPI2-Gx336

© 2021 Phyton, Inc. Microsystems and Development Tools

Description

Writes value (byte) to the specified address in the specified memory area (the parameter).
Constants with the AS_ prefix for microcontroller memory areas (address spaces) are defined in
the system.h header file.

Example

SetByte(0x2000, AS_CODE, 0xFF);

8.4.5.223 Function SetCaption

Declaration:

void SetCaption(unsigned long handle, int set);

Description

Removes or restores the window's caption bar in accordance with the value of set.

8.4.5.224 Function setdisk

Declaration:

int setdisk(int drive);

Description

Sets the current drive number.

setdisk sets the current drive to the one associated with drive: 0 for A, 1 for B, 2 for C, and so on.

8.4.5.225 Function SetDword

Declaration:

void SetDword(unsigned long addr, int addr_space, unsigned long value);

Description

Writes a double word (32 bits) to the specified address in the specified memory area (the
addr_space parameter). Constants with the AS_ prefix for microcontroller memory areas
(address spaces) are defined in the system.h header file.

Example

SetDword(0x2000, AS_CODE, 0x12345678);

8.4.5.226 Function SetFileName

Declaration:

void SetFileName(char name[]);

Description

Sets the file name for the current Source 187

Reference 337

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.227 Function setftime

Declaration:

int setftime(long handle, unsigned long time);

Description

Sets the file date and time.

setftime sets the file date and time of the disk file associated with the open handle to the date and
time provided in the time parameter. The file must be open for writing; the EACCES error will
occur if the file is open for read-only access. The file must not be written to after the setftime call
or the changed information will be lost. setftime requires the file to be open for writing; an
EACCES error will occur if the file is open for read-only access. The time parameter has the
following layout:

Bits Value

0...4 two seconds

5...10 minutes

11...15 hours

16...20 days

21...24 months

25...31 year - 1980

Returned Value

setftime returns 0 on success. In the event of an error, -1 is returned and the errno global
variable is set to one of the following values:

EACCES Permission denied

EBADF Bad file number

EINVFNC Invalid function number

8.4.5.228 Function SetMark

Declaration:

void SetMark(int number);

Description

Sets the bookmark with the numberNumber shall be within 1...10.

8.4.5.229 Function setmem

Declaration:

void setmem(void s[], unsigned int length, char value, int index=0);

Description

362

CPI2-Gx Device Programmers - CPI2-Gx338

© 2021 Phyton, Inc. Microsystems and Development Tools

In the object specified by ssetmemvalue (and converted into the unsigned char).

Returned value

None.

8.4.5.230 Function SetMemory

Declaration:

void SetMemory(void src[], int n, unsigned long addr, int addr_space);

Description

Writes n-byte memory block to the specified address in the specified memory area (the
addr_space parameter) from the src array. Constants with the prefix for microcontroller memory
areas (address spaces) are defined in the system.h header file.

Example

SetMemory("12345678", 8, 0x20, AS_DATA);

8.4.5.231 Function setmode

Declaration:

int setmode(long handle, int amode);

Sets mode of an open file.

setmode sets the mode of the opened file associated with handle to either binary or text. The
amode argument must have the value of either O_BINARY or O_TEXT, never both. (These
symbolic constants are defined in system.h).

Returned Value

setmode returns the previous translation mode, if successful. On error, it returns -1 and sets the
errno global variable to

EINVAL Invalid argument

8.4.5.232 Function SetPixel

Declaration:

void SetPixel(unsigned long handle, int x, int y, unsigned long color);

Draws one point of the specified color in the specified place.

8.4.5.233 Function SetTextColor

Declaration:

void SetTextColor(unsigned long handle, unsigned long color);

Description

362

80

Reference 339

© 2021 Phyton, Inc. Microsystems and Development Tools

Sets up color of the text printed out by the wprintf function, or displayed by the DisplayText
and DisplayTextF functions. The color you set remains unchanged until SetTextColor is called
for the next time. The standard color is used by default.

Example

 unsigned long handle = OpenStreamWindow("Serial port");

 SetTextColor(handle, 0xFF);

 wprintf(handle, "Will be written in red color\n");

 SetTextColor(handle, 0xFF00);

 wprintf(handle, "Will be written in green color");

8.4.5.234 Function SetToolbar

Declaration:

void SetToolbar(unsigned long handle, int set);

Description

Removes or restores the window's toolbar in accordance with the value of set.

8.4.5.235 Function SetUpdateMode

Declaration:

void SetUpdateMode(unsigned long handle, int update);

Description

Sets up the window update mode. By default, all graphical output is immediately displayed in the
window. The SetUpdateMode function sets up a different update mode, when graphical output is
cached in the memory and drawing is carried out by calling the UpdateWindow function. Using
this, the drawing is performed faster. The update parameter can assume two values:

UM_IMMEDIATE - immediate drawing;

UM_ONREQUEST - drawing by calling the UpdateWindow function.

Example

 ulong handle = OpenUserWindow("Test");

 MoveTo(handle, 20, 20);

 LineTo(handle, 40, 40);

 LineTo(handle, 45, 45);

 UpdateWindow(handle);

8.4.5.236 Function SetWindowFont

Declaration:

80 359

278

353

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

CPI2-Gx Device Programmers - CPI2-Gx340

© 2021 Phyton, Inc. Microsystems and Development Tools

void SetWindowFont(unsigned long handle, char font_name[], int height);

Description

Sets up the font for the specified window.

The handle parameter is the window identifier produced by the call of the , and FindWindow
functions.

font_name is the string with the font name; is the font height.

Only monospaced fonts, such as Courier or Fixedsys, shall be used.

You can draw with any font, in the User window . To select the font, use the SelectFont
function.

Example

 unsigned long handle = OpenWindow(WIN_DUMP);

 SetWindowFont(handle, "Courier New", 12);

8.4.5.237 Function SetWindowSize

 Declaration:

void SetWindowSize(unsigned long handle, int w, int h);

Description

Sets up the new size for the specified window. The handle parameter is the window identifier
produced by the call of the OpenWindow , and FindWindow functions. w and are the new
width and height of the window (in pixels). The size also includes the non-user area of the window
(the frame and title).

The position of the window upper left corner does not change.

8.4.5.238 Function SetWindowSizeT

Declaration:

void SetWindowSizeT(unsigned long handle, int w, int h);

Description

Sets up the new size for the specified window in text units. Since almost all windows of CPI2-Gx
use the pseudotext mode, it can be useful to specify the window size only in terms of text.

The handle parameter is the window identifier produced by the call of the OpenWindow , and
FindWindow functions. w is the number of text characters in the line; h is the number of lines
in the window.

8.4.5.239 Function SetWord

Declaration:

void SetWord(unsigned long addr, int addr_space, unsigned int value);

Description

288

181 334

317 288

317

288

Reference 341

© 2021 Phyton, Inc. Microsystems and Development Tools

Writes a word (16 bits) to the specified address in the specified memory area (the addr_space
parameter). Constants with the AS_ prefix for microcontroller memory areas (address spaces)
are defined in the system.h header file.

Example

SetWord(0x2000, AS_CODE, 0xFFFF);

8.4.5.240 Function sin

Declaration:

float sin(float x);

Description

The sin function calculates the sine of the floating-point number x.

Returned value

The sin function returns the sine of x.

8.4.5.241 Function sprintf

Declaration:

void sprintf(char dest[], unsigned char format[], ...);

Description

The sprintf function displays the values of transferred parameters in the dest line in accordance
with the format line.

Note. Your arguments passed to this function shall match the format line. In case of mismatch,
the CPI2-Gx program may crash, because it cannot check the correspondence between the
format string and parameters passed.

Returned value

None.

8.4.5.242 Function sqrt

Declaration:

float sqrt(float x);

Description

The sqrt function calculates the square root of number x.

Returned value

The sqrt function returns the square root of x. The returned value for negative arguments is 0.

CPI2-Gx Device Programmers - CPI2-Gx342

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.243 Function srand

Declaration:

void srand(unsigned int seed);

Description

Initializes a random number generator by a specified number.

8.4.5.244 Function sscanf

Declaration:

int sscanf(char buf[], char format[], ...);

Description

The sscanf function parses the buf string in accordance with the format line.

sscanf scans a series of input fields one character at a time reading from a stream. After that,
each field is formatted in accordance with a format specifier passed to sscanf in the format string
pointed to by format. Finally, sscanf stores the formatted input at the address passed to it as the
argument following the format. The number of format specifiers and addresses must be the same
as the number of input fields.

Notes
1. Your arguments passed to this function shall match the format line. In case of mismatch, the

 CPI2-Gx program may crash, because it cannot check the correspondence between the
format string and parameters passed. For details on format specifiers, see the scanf Format
Specifiers.

2. All arguments for this function shall be arrays, because only the array parameters are passed
by address to functions. Also, see example for scanf .

sscanf can stop scanning a particular field before it reaches the normal end-of-field character
(whitespace) or it can terminate entirely for a number of reasons. See scanf for a discussion
on possible causes.

Returned Value

8.4.5.245 Function Step

Declaration:

void Step();

Description

Executes one machine instruction (the low-level step mode).

Note. The screen is not updated automatically after this function is called. To organize the automatic update,
use the RedrawScreen function at the appropriate moment.

8.4.5.246 Function Stop

Declaration:

332

332

332

329

Reference 343

© 2021 Phyton, Inc. Microsystems and Development Tools

void Stop();

Description

Stops the program under execution.

8.4.5.247 Function stpcpy

Declaration:

int stpcpy(char dest[], char src[], int dest_index=0, int src_index=0);

Description

The stpcpysrc line to the dest line and attaches the zero character.

Returned value

The stpcpy function returns the number of the last byte copied to dest

8.4.5.248 Function strcat

Declaration:

void strcat(char dest[], char src[], int dest_index=0, int src_index=0);

Description

The strcat function joins the line to the dest line and ends the dest line with zero.

Returned value

None.

8.4.5.249 Function strchr

Declaration:

int strchr(char s[], int c, int index=0);

Description

The strchr function searches the first entry of character cs. The zero characters also participate
in the search.

Returned function

The strchr function returns the number of the found character to s and returns -1, if there is no
such character there.

8.4.5.250 Function strcmp

Declaration:

int strcmp(char s1[], char s2[], int s1_index=0, int s2_index=0);

Description

The strcmps1 and s2 letter-by-letter and returns the result of the search.

Returned value

CPI2-Gx Device Programmers - CPI2-Gx344

© 2021 Phyton, Inc. Microsystems and Development Tools

The function returns the following values of comparison result:

 Value Meaning

 < 0 s1 is less than s2

 = 0 s1 is equal to s2

 > 0 s1 is greater than s2

8.4.5.251 Function strcmpi

Declaration:

int strcmpi(char s1[], char s2[], int s1_index=0, int s2_index=0);

The same as stricmp

8.4.5.252 Function strcpy

Declaration:

void strcpy(char dest[], char src[], int dest_index=0, int src_index=0);

Description

The strcpy function copies the contents of line src to line dest and attaches the zero character.

Returned value

None.

8.4.5.253 Function strcspn

Declaration:

int strcspn(char s1[], char s2[], int s1_index=0, int s2_index=0);

Description

The function searches any character from line s2 to line s1.

Returned value

The strcspn function returns the number of the first character in line s1 equal to any character
from line s2. Zero will be returned, if the first character in line s1 is equal to any character from line
s2. If there are no such characters there, then the length of line s1 will be returned (the zero
character is not taken into account).

8.4.5.254 Function stricmp

Declaration:

int stricmp(char s1[], char s2[], int s1_index=0, int s2_index=0);

Description

The stricmp function compares lines s1 and s2 letter-by-letter regardless of the character case
and returns the result of the search.

344

Reference 345

© 2021 Phyton, Inc. Microsystems and Development Tools

Returned value

The stricmp function returns the following comparison results:

 Value Meaning

 < 0 s1 is less than s2

 = 0 s1 is equal to s2

 > 0 s1 is greater than s2

8.4.5.255 Function strlen

Declaration:

int strlen(char s[], int index=0);

Description

The strlen function calculates the length of line src in bytes. The last zero character is not
counted.

Returned value

The strlen function returns the length of line src.

8.4.5.256 Function strlwr

Declaration:

void strlwr(char s[], int index=0);

Description

The strlwr function converts line s to the lower case.

Returned value

None.

8.4.5.257 Function strncat

Declaration:

void strncat(char dest[], char src[], int n, int dest_index=0, int src_index=0);

Description

The strncat function attaches the maximum of n characters from line scr to line dest and ends
dest with the zero character. If there are less than n characters in line , then the whole line src
together with the zero character will be copied.

Returned value

None.

CPI2-Gx Device Programmers - CPI2-Gx346

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.258 Function strncmp

Declaration:

int strcmp(char s1[], char s2[], int s1_index=0, int s2_index=0);

Description

The strcmp function compares lines s1 and s2 letter-by-letter and returns the result of the search.

Returned value

The strcmp function returns the following values of comparison result:

 Value Meaning

 < 0 s1 is less than s2
 = 0 s1 is equal to s2
 > 0 s1 is greater than s2

8.4.5.259 Function strncmpi

 Declaration:

int strncmpi(char dest[], char src[], int n, int dest_index=0, int src_index=0);

Description

The strncmpi function compares the first n bytes of lines s1 and s2 letter-by-letter regardless of
the character case and returns the comparison result.

Returned value

The strncmpi function returns the following values of the lines s1 and s2

 --

 < 0 s1 is less than s2

 = 0 s1 is equal to s2

 > 0 s1 is greater than s2

8.4.5.260 Function strncpy

Declaration:

void strncpy(char dest[], char src[], int n, int dest_index=0, int src_index=0);

Description

The strncpy function copies the maximum of n characters from line scrn characters in line src,
then the zero characters will be added to line dest to extend it up to the size of n.

Returned value

None.

Reference 347

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.261 Function strnicmp

Declaration:

int strnicmp(char dest[], char src[], int n, int dest_index=0, int src_index=0);

The same as strncmpi .

8.4.5.262 Function strnset

Declaration:

void strnset(char s[], int c, int n, int index=0);

Description

The strnset function sets the maximum of n characters from line s to zero.

Returned value

None.

8.4.5.263 Function strpbrk

Declaration:

int strpbrk(char s1[], char s2[], int s1_index=0, int s2_index=0);

Description

Function strpbrk searches for the first occurrence of any character from line s2 in line s1. The
zero character is not the search element.

Returned value

The strpbrk function returns the number of the found character in line s1. If line s1 does not
contain any characters from line s2, then -1 will be returned.

8.4.5.264 Function strrchr

Declaration:

int strchr(char s[], int c, int index=0);

Description

The strchr function searches the first entry of character c in line s. The zero characters also participate in the
search.

Returned function

The strchr function returns the number of the found character to s and returns -1, if there is no such character
there.

346

CPI2-Gx Device Programmers - CPI2-Gx348

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.265 Function strrev

Declaration:

void strrev(char s[], int index=0);

Description

The strrev function reverses the byte order in line s. For example, if we write:

char s[] = "1234"; strrev(s);

then the lines will contain "4321".

Returned value

8.4.5.266 Function strset

Declaration:

void strset(char s[], int c, int index=0);

Description

The strset function sets all characters in line s to the value of c.

Returned value

None.

8.4.5.267 Function strspn

Declaration:

int strspn(char s1[], char s2[], int s1_index=0, int s2_index=0);

The strspn function searches in the line s21 for symbols, which are absent in line s2.

Returned value

The strspn function returns the number of the first character in line s1, which is known to be
absent in line s2. If there are no such symbols in line s1, then the length of line s1 will be returned
(the zero character is not taken into account).

8.4.5.268 Function strstr

 Declaration:

int strstr(char s1[], char s2[], int s1_index=0, int s2_index=0);

Description

The strstr function searches for the first occurrence of the string from s2 in line s1 (the zero
character is not taken into account).

Reference 349

© 2021 Phyton, Inc. Microsystems and Development Tools

Returned value

The strstr function returns the number of the first byte of the string from s2, or returns -1, if there
is no such string there.

8.4.5.269 Function strtol

Declaration:

long strtol(char s[], int endptr[], int radix, int index=0);

Converts an ASCII-string (the s parameter; index specifies shift in the line) into a long number.
The radix parameter is the radix used for conversion (2...36).

String s may include the following components:

[ws] [sn] [0] [x] [ddd]

[ws] - Optional spaces or tabulation symbols

[sn] - Optional sign (+ or -)

[0] - Optional zero (0)

[x] - Optional x or X

 - Optional digits

endptr array contains that character number).

If radix is equal to 0, then radix will be selected by the first few characters of the s string:

First character Second character String interpretation

 0 1 - 7 Octal

 0 x or X Hexadecimal

 1 - 9 Decimal

Returned value

The converted long integer number.

8.4.5.270 Function strtoul

Declaration:

unsigned long strtoul(char s[], int endptr[], int radix, int index=0);

Description

The strtoul function is the same as strtol , except that it returns the unsigned long integer.349

CPI2-Gx Device Programmers - CPI2-Gx350

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.271 Function strupr

Declaration:

void strupr(char s[], int index=0);

Description

The strupr function converts line s to the upper case.

Returned value

None.

8.4.5.272 Function tan

Declaration:

float tan(float x);

Description

The tan function calculates the tangent of the floating-point number x.

Returned value

The tan function returns the tangent of argument x.

8.4.5.273 Function tanh

Declaration:

float tanh(float x);

Description

The tanh function calculates the hyperbolic tangent of the floating-point number x. The argument should range
from -88.72280 to 88.72280.

Returned function

The tanh function returns the hyperbolic tangent of argument x.

8.4.5.274 Function tell

Declaration:

long tell(long handle);

Description

Gets the current position of the file pointer.

tell gets the current position of the file pointer associated with handle and expresses it as the
number of bytes from the beginning of the file.

Returned Value

tell returns the current file pointer position. Returned -1 (long) indicates an error, and the errno
global variable is set to

362

Reference 351

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.275 Function TerminateAllScripts

Declaration:

void TerminateAllScripts();

Description

Stops execution of all script files (except the script called by this function).

8.4.5.276 Function TerminateScript

Declaration:

void TerminateScript(char file_name[]);

Description

Stops execution of the specified script file and unloads it from the memory, if possible. The file
name parameter is the script file name without path and extension.

8.4.5.277 Function Text

Declaration:

void Text(char text[]);

Description

text text from the cursor position, as if it were typed from the keyboard.

8.4.5.278 Function toascii

Declaration:

int toascii(unsigned char c);

Description

The toascii function cuts off the high bit of parameter c.

Returned value

The toascii function returns the value of c cut down to 7 bits

8.4.5.279 Function Tof

 Declaration:

void Tof();

Description

CPI2-Gx Device Programmers - CPI2-Gx352

© 2021 Phyton, Inc. Microsystems and Development Tools

Move the cursor to the top of the file (position (1:1)).

8.4.5.280 Function tolower

Declaration:

int tolower(unsigned char c);

Description

tolower function converts character c to the lower case. If c is not an alphabetic character, then it
will not be converted.

Returned value

The tolower function returns character c in the lower case.

8.4.5.281 Function toupper

Declaration:

int toupper(unsigned char c);

Description

The toupper function converts character c to the upper case. If c is not an alphabetic character,
then it will not be converted.

Returned value

The toupper function returns character c in the upper case.

8.4.5.282 Function ultoa

Declaration:

void ultoa(unsigned long value, char string[], int radix);

Description Converts an unsigned long integer (value) into the character string (string). The radix
parameter is the radix used for conversion (2...36).

8.4.5.283 Function unlink

Declaration:

int unlink(char file_name[]);

Description

Deletes a file.

unlink deletes the file specified by file_name. Any drive, path, and file name can be used as the
filename. Wildcards are not allowed. This call cannot delete read-only files.

Note. If your file is open, be sure to close it before unlinking it.

Returned Value

On success, unlink returns 0. On error, it returns -1 and sets the errno global variable to one of
the following values:

362

Reference 353

© 2021 Phyton, Inc. Microsystems and Development Tools

EACCES Permission denied

ENOENT Path or file name not found

8.4.5.284 Function unlock

Declaration:

int unlock(long handle, long offset, long length);

Description

Releases file-sharing locks.

unlock provides interface to the operating system file-sharing mechanism. unlock removes a lock
previously placed with a call to lock . To avoid error, all locks must be removed before closing a
file. The program must release all locks before completing.

Returned Value

On success, unlock returns 0. On error, it returns -1.

8.4.5.285 Function Up

Declaration:

void Up(int count=1);

Description

Move the cursor count lines up. The same result can be achieved by decrementing the
CurLine built-in variable.

8.4.5.286 Function UpdateWindow

Declaration:

void UpdateWindow(unsigned long handle);

Description

Draws an image in the specified window. The image is cached in the memory during graphical output function
calls. Calling this function makes sense only when selecting the mode of drawing with the
SetUpdateMode function call with the UM_ONREQUEST parameter

8.4.5.287 Function Wait

Declaration:

void Wait(unsigned long microseconds);

Description

Suspends execution of the script file until the specified interval of the time is up.

The <%CM%> cannot trace extremely short time intervals, because some time is needed for data
transmission through the serial channel.

360

362

339

CPI2-Gx Device Programmers - CPI2-Gx354

© 2021 Phyton, Inc. Microsystems and Development Tools

Example:

while (1) // endless cycle
{
 Wait(100); // to wait for 100 microseconds.
 $P1 ^= 1; // to invert bit 0 in port P1
}

 }

8.4.5.288 Function WaitExprChange

Declaration:

void WaitExprChange(char str[]);

Description

Suspends execution of the script file until the expression specified in the str line changes its value.

The peculiarities of this function for the CPI2-Gx are the same as for .

Note that you should not precede the variable names with '$' sign in the expression string.

Example:

while (1) // the endless cycle

{

 WaitExprChange("P1 & 2"); // to wait until value of bit 1

 // of port P1 changes

 P2 |= P1 & 2; // to execute certain action

}

8.4.5.289 Function WaitExprTrue

Declaration:

void WaitExprTrue(char str[]);

Description

Suspends execution of the script file until the expression specified in the str line becomes True as the result
of executing.

The expression operands should be available in the continuous emulation mode, otherwise the expression is
always False.

An operand value poll is executed within the specified time interval. Therefore, the expression should remain
True during this interval, otherwise the programmer cannot trace the moment, when the expression becomes
True.

Note. You should not precede the variable names with '$' sign in the expression string.

Example:

while (1) // the endless cycle
{

Reference 355

© 2021 Phyton, Inc. Microsystems and Development Tools

 WaitExprTrue("Counter > 200"); // to wait for the condition to
become True
 Stop(); // to stop the program
 printf("Counter overflow at %04X", $PC); // to display the message
}

8.4.5.290 Function WaitGetMessage

Declaration:

void WaitGetMessage(int id);

Description

WaitSendMessage

8.4.5.291 Function WaitMemoryAccess

Declaration:

void WaitMemoryAccess(unsigned long addr, int addr_space, int num_bytes, int
flags);

Description

Suspends execution of the script file until the processor (the program being executed) accesses the specified
memory area. Parameters:

 addr - the memory area address.
 addr_space - the address space. Constants with prefix AS_
 are given in the system.h file.
 num_bytes - the amount of bytes in the memory area.
 flags - the flags that define the type of memory access:
 MA_READ - reading, MA_WRITE - writing,
 MA_READ | MA_WRITE - both reading and writing.

This function does not work in the emulators.

After return from the function, the built-in variables contain information on the latest traced memory access:

LastMemAccAddr the memory address

LastMemAccAddrSpace the type of address space

LastMemAccLen the amount of bytes

LastMemAccType the type of access (MA_READ, MA_WRITE).

Example:

while (1) // endless cycle
{
 WaitMemoryAccess(0x80, AS_DATA, 1, MA_WRITE);
 // to wait for write to the data memory cell with the address of
0x80 (bytes).
 $P1 ^= 1; // to invert bit 0 in port P1
}

356

363

363

363

363

CPI2-Gx Device Programmers - CPI2-Gx356

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.292 Function WaitSendMessage

Declaration:

void WaitSendMessage(int id, unsigned int int_data, unsigned long long_data);

Description

The WaitSendMessage and WaitGetMessage functions provide a mechanism for message
exchange between two copies of the CPI2-Gx program (or other Phyton products) running
simultaneously. These functions are used mostly for simulators and allow simulation of multi-
processor systems that exchange data with each other.

To simulate, say, a two programmers system, you should launch two copies CPI2-Gx and set up
the exchange of data between them. You can start the second copy of CPI2-Gx by copying the
UprogNT2.EXE file to a file with another name and then starting it.

The WaitSendMessage function "sends a message" to another copy of CPI2-Gx and waits until
the message is "delivered", i.e. the receiver copy of CPI2-Gx calls the WaitGetMessage function. If
the receiver has already called WaitGetMessage and is waiting for an incoming message, the
WaitSendMessage function returns immediately, otherwise it will return, when a period of model
time is passed. The model time flows, when the simulated program runs.

When calling WaitSendMessage and WaitGetMessage, you supply the id parameter that identifies
the message. The message will be delivered to the copy of CPI2-Gx that is waiting for message
with the same id.

The int_data and long_data parameters are the user data. You may set these parameters to any
values you wish. When the receiver's WaitGetMessage returns the control, the transmitter's
int_data value is copied to the receiver's LastMessageInt built-in variable and long_data is
copied to LastMessageLong .

Note that CPI2-Gx uses its own internal means for message exchange, not the message
mechanism of Windows.

Example

#define SecondCopyMsg 0

#define InitExchange 0

#define InitExchangeOk 0

 Run(); // start model time

 WaitSendMessage(SecondCopyMsg, InitExchange, 0);

 WaitGetMessage(SecondCopyMsg);

 if (LastMessageInt != InitExchangeOk)

 {

 printf("Exchange failed");

 return;

 }

355

364

364

Reference 357

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.293 Function WaitStop

Declaration:

void WaitStop();

Description

Suspends execution of the script file until the program stops. The program can be stopped either by a
breakpoint or manually.

8.4.5.294 Function WaitWindowEvent

Declaration:

void WaitWindowEvent(unsigned long handle);

Description

Allows to organize interaction between user and the User window and the окно Поток

ввода/вывода . The function waits for an event associated with the specified window and
returns control to the script file, when the event occurs. The function locates type of the occurred
event and places relevant data into the internal variables accessible with the following functions:

LastEvent

LastEventInt{1...4}

Example

ulong handle = OpenUserWindow("Interactive Window");

while (1)

{

 WaitWindowEvent(handle);

 switch (LastEvent(handle))

 {

 case WE_CLOSE: return; // window is closed, script file is being completed

 case WE_REDRAW: Redraw(handle); // to call our function Redraw,

 case WE_MOUSEBUTTON: Change(handle); // to call our function Change,

 break; // that responds to the clicked

 // mouse button

}

8.4.5.295 Function wgetchar

Declaration:

181

181

306

307

CPI2-Gx Device Programmers - CPI2-Gx358

© 2021 Phyton, Inc. Microsystems and Development Tools

void wgetchar(unsigned long handle);

Description

Waits for pressing an alphanumeric key on the keyboard, when the specified window has input
focus, that is, is active. The pressed key code can be obtained with the LastChar function.

The entered character is automatically displayed in the window.

Example

 unsigned long handle = OpenStreamWindow("Serial port");

 wprintf(handle, "Press \"E\" for exit");

 wgetchar(handle);

 if (toupper(LastChar(handle)) == 'E') return

8.4.5.296 Function wgethex

Declaration:

void wgethex(unsigned long handle);

Description

Waits for two hexadecimal digits (a byte value) to be entered from the keyboard. The entered
number can be obtained with the LastChar function.

The entered characters are automatically displayed in the window. The Enter key moves the
window cursor to the beginning of the new line.

8.4.5.297 Function wgetstring

Declaration:

void wgetstring(unsigned long handle);

Description

Waits until the character string is ended by pressing the Enter key. The entered string can be
obtained with the LastString function.

The entered characters are automatically displayed in the window.

8.4.5.298 Function WindowHotkey

Declaration:

void WindowHotkey(unsigned long handle, int key);

Description

Sends the local menu command corresponding to the hot key (parameter key) to the specified
window. The local window menu lists the hot keys. key is the ASCII value of the key without
indicating Ctrl: for example, to imitate pressing Ctrl+T in the window, the key parameter shall be
equal to 'T'.

Example

306

306

307

Reference 359

© 2021 Phyton, Inc. Microsystems and Development Tools

 unsigned long handle = OpenWindow(WIN_WATCHES);

 WindowHotkey(handle, 'A'); // imitates pressing Ctrl+A

8.4.5.299 Function WordLeft

Declaration:

void WordLeft();

Description

Moves the cursor to the next word (on the right).

8.4.5.300 Function WordRight

Declaration:

void WordRight();

Description

Moves the cursor to the previous word (on the left).

8.4.5.301 Function wprintf

Declaration:

void wprintf(unsigned long handle, char format[], ...);

Displays the values of transferred parameters in the window in accordance with the format line.

Attention! You are responsible for matching the arguments transferred to wprintf function into the
line format. A mismatch may bring CPI2-Gx to failure.

Example

 unsigned long handle = OpenStreamWindow("Serial port");

 wprintf(handle, "SP = %04X", $SP\n");

8.4.5.302 Function write

Declaration:

int write(long handle, void buf[], int len);

Description

Writes to a file.

write writes the buffer of data to the file or device specified by handle. The handle file handle is
obtained from the creat open , dup , or dup2 call.

This function attempts to write bytes from the buffer pointed to by buf to the file associated with
handle. Except for the case, when write is used to write to a text file, the amount of bytes written to

275 315 279 279

CPI2-Gx Device Programmers - CPI2-Gx360

© 2021 Phyton, Inc. Microsystems and Development Tools

the file will be no more than the amount requested. On text files, when write sees a linefeed (LF)
character, it outputs a CR/LF pair.

If the amount of bytes actually written is less than that requested, the condition should be
considered an error and probably indicates a full disk. For disks or disk files, the writing always
proceeds from the current file pointer. For devices, bytes are sent directly to the device.

Returned Value

write returns the number of bytes written. A write to a text file does not count the generated
carriage returns. In case of error, write returns -1 and sets the errno global variable to one of
the following values:

EACCES Permission denied

EBADF Bad file number

8.4.5.303 lock

Declaration:

int lock(long handle, long offset, long length);

Description

Sets file-sharing locks. lock provides interface to the operating system file-sharing mechanism.
The lock can be placed on arbitrary, nonoverlapping regions of any file. A program attempting to
read or write into the locked region will retry the operation three times. If all three retries fail, then
the call will fail with error.

Returned Value

lock returns 0 on success. On error, lock returns -1 and sets the errno global variable to

EACCES Locking violation

8.4.5.304 Variable _fmode

Declaration:

extern int _fmode;

This is the file operation mode (text or binary).

8.4.5.305 Variable ApplName

Declaration:

extern char ApplName[];

This is the program name, i.e. the string of "CM-ARM".

Available only for reading.

362

362

Reference 361

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.306 Variable BlockCol1

Declaration:

int BlockCol1;

This is the number of the left column of block in the current window . BlockCol1 is zero for the
line blocks. If no block is marked, BlockCol1 will also be zero.

Also, see Text Editor Functions .

8.4.5.307 Variable BlockCol2

Declaration:

int BlockCol2;

This is the number of the right column of block in the current Source . BlockCol2 is zero for the
line blocks. If no block is marked, BlockCol2 will also be zero.

Also, see Text Editor Functions

8.4.5.308 Variable BlockLine1

Declaration:

int BlockLine1;

This is the number of the upper line of block in the current Source .

If no block is marked, BlockCol2 will be zero.

Also, see Text Editor Functions

8.4.5.309 Variable BlockLine2

Declaration:

int BlockLine2;

This is the number of the lower line of block in the current Source

If no block is marked, BlockCol2 will be zero.

Also, see Text Editor Functions

8.4.5.310 Variable BlockStatus

Declaration:

int BlockStatus;

This is the type of block in the current Source The system.h system header file contains
definitions of constants:

 EB_NONE - no block

 EB_LINE - line block

 EB_VERT - vertical block

187

251

187

251

187

251

187

251

187

CPI2-Gx Device Programmers - CPI2-Gx362

© 2021 Phyton, Inc. Microsystems and Development Tools

 EB_STREAM - stream block

Also, see Text Editor Functions .

8.4.5.311 Variable CaseSensitive

Declaration:

int CaseSensitive;

Source

Also, see Text Editor Functions.

8.4.5.312 Variable CurCol

Declaration:

int CurCol;

This is the number of the current column (the column the cursor is in) in the current Source .
Columns are numbered with 1.

If the cursor is beyond the line end, then CurCol will contain 0.

Assigning a value to CurCol changes the cursor position. Also, see functions GotoXY , Up ,
Down , Left Right , Tof , Eof Eol .

8.4.5.313 Variable CurLine

Declaration:

int CurLine;

Source . Lines are numbered with 1.

Assigning a value to CurLine changes the cursor position. Also, see functions GotoXY , Up ,
Down , , Right , Tof , Eof , Eol .

8.4.5.314 Variable DesktopName

Declaration:

extern char DesktopName[];

This string is the name of the current screen configuration file (see Configuration Files).

Available only for reading.

8.4.5.315 Variable errno

Declaration:

extern int errno;

This is the error code set up by some built-in functions such as read .

251

187

187

301 353

279 308 330 351 280 281

187

301 353

279 330 351 280 281

52

328

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 363

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.316 Variable InsertMode

Declaration:

int InsertMode;

This is the insert mode for the current Source . Assigning a value to InsertMode toggles the
insert mode for the window.

Also, see Text Editor Functions .

8.4.5.317 Variable LastFoundString

Declaration:

char LastFoundString[];

This is the string with the text that was last found in the current Source . Because the search
argument may contain regular expretion, the string found may not be the same as the search
argument.

Also, see Text Editor Functions .

8.4.5.318 Variable LastMemAccAddr

Declaration:

extern unsigned long LastMemAccAddr;

This is the microcontroller memory address accessed at the last return from the
WaitMemoryAccess function.

8.4.5.319 Variable LastMemAccAddrSpace

Declaration:

extern unsigned int LastMemAccAddrSpace;

This is the type of microcontroller address space accessed at the last return from the
WaitMemoryAccess function

8.4.5.320 Variable LastMemAccLen

Declaration:

extern int LastMemAccLen;

WaitMemoryAccess function.

8.4.5.321 Variable LastMemAccType

Declaration:

187

251

187

251

355

355

355

CPI2-Gx Device Programmers - CPI2-Gx364

© 2021 Phyton, Inc. Microsystems and Development Tools

extern int LastMemAccType;

This is the microcontroller memory access type that caused a return from the
WaitMemoryAccess function. For example, MA_READ, MA_WRITE or a combination of them.

8.4.5.322 Variable LastMessageInt

Declaration:

unsigned int LastMessageInt;

LastMessageInt keeps the 16-bit parameter received by the WaitGetMessage function.

8.4.5.323 Variable LastMessageLong

Declaration:

unsigned long LastMessageLong;

LastMessageInt keeps the 32-bit parameter received by the WaitGetMessage function.

8.4.5.324 Variable MainWindowHandle

Declaration:

extern unsigned long MainWindowHandle;

This is HWND of the main window of CPI2-Gx. It is only for experienced programmers.

8.4.5.325 Variable NumWindows

Declaration:

extern int NumWindows;

This is the number of windows opened in CPI2-Gx. Its value changes dynamically, as windows
are opened or closed.

8.4.5.326 Variable RegularExpressions

Declaration:

int RegularExpressions;

Sets up the use of regular expretions for the operation of search in the current Source .

Also, see Text Editor Functions .

355

355

187

251

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 365

© 2021 Phyton, Inc. Microsystems and Development Tools

8.4.5.327 Variable SelectedString

Declaration:

extern char SelectedString[];

This is the string selected from the menu at the last call of the built-in ExecMenu function.

8.4.5.328 Variable SystemDir

Declaration:

extern char SystemDir[];

This string is the name of the directory, where the CPI2-Gx package is installed.

Available only for reading.

8.4.5.329 Variable WholeWords

Declaration:

int WholeWords;

Sets up the whole words option for the operation of search in the current Source window .

Also, see Text Editor Functions .

8.4.5.330 Variable WindowHandles

Declaration:

extern unsigned long WindowHandles[];

This is the listing of the CPI2-Gx window handles organized as an array of the NumWindows size.
It is only for experienced programmers.

8.4.5.331 Variable WorkFieldHeight

Declaration:

extern unsigned int WorkFieldHeight;

This is the height of the CPI2-Gx window user area in pixels. It may be useful for locating windows
from script files.

Available only for reading.

8.4.5.332 Variable WorkFieldWidth

Declaration:

extern unsigned int WorkFieldWidth;

281

187 187

251

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

CPI2-Gx Device Programmers - CPI2-Gx366

© 2021 Phyton, Inc. Microsystems and Development Tools

This is the width of the CPI2-Gx window user area in pixels. It may be useful for locating windows
from script files.

Available only for reading.

8.5 ACI Fuctions and Structures

This section contains detailed descriptions of ACI functions and structures.

8.5.1 ACI Fuctions

This sections contains alphabetical list of all ACI functions.

8.5.1.1 ACI_AllProgOptionsDefault

ACI_FUNC ACI_AllProgOptionsDefault();

Description

This function sets default device-specific options and parameters specified in the Device and
Algorithm Parameters Editor window. These default parameter sets vary. They are defined by the
device manufacturers in the device data sheets.

Note! This function does not physically restore the default settings into the device being
programmed. It actually writes to some virtual memory locations in the host PC's RAM, associated
with physical locations in the target device's memory and registers. In order to complete programming
the device parameters and to physically fix them in the device's memory you should execute an
appropriate Program command (function) in the Device Parameters command group by means of
the ACI_ExecFunction or ACI_StartFunction with appropriate attributes.

8.5.1.2 ACI_BuffersDialog

ACI_BuffersDialog();

Description

This macro opens the Memory Dump Window Setup dialog. The dialog will be visible irrespective
of the ChipProg-02 main window status; the main window can remain closed but the Memory Dump
Window Setup dialog will appear on the computer screen to allow the buffer setup. See the dialog
example below.

93

368 379

98

98

Reference 367

© 2021 Phyton, Inc. Microsystems and Development Tools

8.5.1.3 ACI_ConnectionStatus

ACI_FUNC ACI_ConnectionStatus();

Description

CPI2-Gx Device Programmers - CPI2-Gx368

© 2021 Phyton, Inc. Microsystems and Development Tools

Get a current connection status. If the connection is active, i.e. the programmer or multiple
programmers set by the ACI_SetConnection function, is operable and responds requests sent via
ACI, the return code is ACI_ERR_SUCCESS. If, for any reason, the connection was broken the return
code is ACI_ERR_NOT_CONNECTED.

See also: ACI_SetConnection , ACI_GetConnection .

8.5.1.4 ACI_CreateBuffer

ACI_FUNC ACI_CreateBuffer(ACI_Buffer_Params * params);

Description

This function creates a buffer with the parameters specified by the ACI_Buffer_Params structure.
The ChipProg-02 program automatically assigns the buffer #0 so it is not necessary to create this
buffer by a separate command.

See also the ACI_Buffer_Params structure description.

8.5.1.5 ACI_ErrorString

ACI_FUNC ACI_ErrorString(ACI_ErrorString_Params * params);

Description

Get the string describing the result of the last ACI function call.

All ACI functions return the ACI_ERR_xxx error code but this is may not be enough to find out the exact
reason of the error. The string returned by ACI_ErrorString describes the error in detail.

8.5.1.6 ACI_ExecFunction

ACI_FUNC ACI_ExecFunction(ACI_Function_Params * params);

Description

This function launches one of the programming operation (Read, Erase, Verify, etc.) specified by the
ACI_Function_Params . During execution the ACI_ExecFunction does not allow calling any other
ACI function until the programming operation, initiated by the ACI_ExecFunction function, completes
the job. The ACI_ExecFunction from the ACI_StartFunction that returns control immediately after
it was called.

8.5.1.7 ACI_Exit

ACI_FUNC ACI_Exit();

Description

377

377 370

380

380

380

383

384

384

368 379

Reference 369

© 2021 Phyton, Inc. Microsystems and Development Tools

Call of this function stops the ChipProg-02 software. In most cases the programmer practically
immediately stops running. Sometimes, after calling the ACI_Exit function, it continues working for a
while to correctly complete an earlier launched process. After all, the CPI2-Gx will stop and quit itself
after finding that the controlling process has ended.

It is possible, however, that the ChipProg-02 software will keep running even after the control process
has completely stopped. This is an abnormal situation and, as a result, it will be impossible to re-
establish communication with the programmer hardware by launching the ACI_Launch function. In
this case you should manually close the ChipProg-02 program via the Windows Task Manager.

.

8.5.1.8 ACI_FileLoad

ACI_FUNC ACI_FileLoad(ACI_File_Params * params);

Description

This function loads a specified file into a specified buffer's layer. The control program running on the
host PC should not worry about the file's format settings - the ChipProg-02 software takes care of this.

8.5.1.9 ACI_FileSave

ACI_FUNC ACI_FileSave(ACI_File_Params * params);

Description

This function saves a specified file from a specified buffer's layer. The ChipProg-02 software enables
saving files in all popular formats: HEX, Binary, etc..

8.5.1.10 ACI_FillLayer

ACI_FUNC ACI_FillLayer(ACI_Memory_Params * params);

Description

This function fills a whole active layer of a specified memory buffer with a specified data pattern. This
function works much faster than the ACI_WriteLayer function which writes data to the buffer layer.

Note! This function fills the programmer's memory buffer with a specified data pattern but does not
physically write them to the device being programmed. In order to physically write data from the
buffer to the device execute the programmer command (function) Program by means of the
ACI_ExecFunction or ACI_StartFunction with appropriate attributes.

373

383

383

104

389

368 379

CPI2-Gx Device Programmers - CPI2-Gx370

© 2021 Phyton, Inc. Microsystems and Development Tools

8.5.1.11 ACI_GangStart

ACI_FUNC ACI_GangStart(ACI_GangStart_Params * params);

Description

This function is used to control multiple device programmers only when the ChipProg-02 program
was launched from the command line with the /gang key to drive a CPI2-Gx gang programmer or a
cluster of multiple programmers connected to one PC! See also the ACI_Launch function. For
controlling a single CPI2-Gx device programmer use ACI_StartFunction or ACI_ExecFunction .

The ACI_GangStart function launches Auto Programming on multiple CPI2-Gx device
programmers for the programming socket specified in the SiteNumber parameter of the
ACI_PStatus_Params structure. The function returns control immediately. In order to detect the
ending time of the ACI_GangStart execution, use the ACI_GetStatus function.

8.5.1.12 ACI_GangTerminateFunction

ACI_FUNC ACI_GangTerminateFunction(ACI_GangTerminate_Params * params);

Description

This function, similar to the ACI_TerminateFunction which is applicable for stopping a single device
programmer, is intended for terminating a current programming operation on one programming site
belonging to the multiprogramming cluster or a gang programmer. The programming site (or socket)
number is specified by the SiteNumber parameter from the ACI_GangTerminate_Params structure.

This function can be used only for the CPI2-Gx programmers launched in the gang mode (see
the /gang parameter among other Command line options for the ACI_Launch function). In order to
terminate an operation for a running single-site CPI2-Gx programmer use the
ACI_TerminateFunction .

When the ACI_GangTerminateFunction initiates stopping a current operation it returns the control either
when the operation was successfully stopped or with a delay defined by the Timeout parameter.

8.5.1.13 ACI_GetConnection

ACI_FUNC ACI_GetConnection(ACI_Connection_Params * params);

Description

This function allows getting the identifier of a current device programmer connection. If a number of
single CPI2-Gx programmers were launched, one after another, by multiple executions of the
ACI_Launch function, then executing the ACI_GetConnection function returns a current
ConnectionId parameter as a part of theACI_Launch_Params structure.

See also ACI_SetConnection .

8.5.1.14 ACI_GetDevice

ACI_FUNC ACI_GetDevice(ACI_Device_Params * params);

385

198

373

379 368

108

397

372

386

379

198

121 373

379

382

373 370

382 386

377

382

Reference 371

© 2021 Phyton, Inc. Microsystems and Development Tools

Description

This function gets the device's part number (name) and the name of the manufacturer of the device
being programmed now (for example: M25P32VME, Micron; MC9S08DN60AMLC, NXP, etc.).

8.5.1.15 ACI_GetLayer

ACI_FUNC ACI_GetLayer(ACI_Layer_Params * params);

Description

This function gets the parameters of a specified memory buffer and buffer's layer.

See also the ACI_Layer_Params structure description.

8.5.1.16 ACI_GetMUXMode

ACI_FUNC ACI_GetMUXMode(ACI_MUXMode_Params * params);

Description

This function gets a status of the demultiplexers that are the parts of CPI2-GM1 modules installed in a
CPI2-Gx device programmer.The mode is defined by the ACI_MM_xx constants.

The Mode field in the ACI_MUXMode_Params structure returns a mode of the demultiplexer. For
example: provide programming via Channel B only or via Channel A first, then via channel B. If de-
multiplexing is disabled because the license CPI2-MUX is not locked on the programmer Mode =
UINT_MAX. Call the ACI_GetMUXMode function for any other device programmer - for example a CPI2-
B1 causes the same result.

The ActiveMode field in the ACI_MUXMode_Params structure returns a currently active
demultiplexer channel. If the site, defined by the SiteNumber parameter, is currently in the Idle mode
(does not work) the ActiveMode returns UNIT_MAX. Otherwise it returns either ACI_MM_A or
ACI_MM_B.

8.5.1.17 ACI_GetProgOption

ACI_FUNC ACI_GetProgOption(ACI_ProgOption_Params * params);

Description

This function gets current settings from the Device and Algorithm Parameters Editor window. As an
example see this window for one of the microcontrollers below.

387

387

390

390

390

390

CPI2-Gx Device Programmers - CPI2-Gx372

© 2021 Phyton, Inc. Microsystems and Development Tools

Note! This function does not physically read the specified information from the device being
programmed. It reads from some virtual memory locations in the host PC's RAM, associated with
physical locations in the target device's memory and registers. If the option that you would like to
check is a property of the device's memory or registers, then first you have to execute the
programmer command (function) Read in the command group Device Parameters by means of the
ACI_ExecFunction or ACI_StartFunction with appropriate attributes. Then you can read the
execute the ACI_GetProgOption function.

See also the ACI_ProgOption_Params structure description.

8.5.1.18 ACI_GetProgrammingParams

ACI_FUNC ACI_GetProgrammingParams(ACI_Programming_Params * params);

Description

This function gets current programming parameters specified in the tab Option of the Program
Manager window (memory buffer configurations, programming options, test of the device insertion,
etc.).

See the ACI_Programming_Params structure description.

8.5.1.19 ACI_GetStatus

ACI_FUNC ACI_GetStatus(ACI_PStatus_Params * params);

Description

This function gets the programmer status that includes:

368 379

390

395

108

105

395

397

Reference 373

© 2021 Phyton, Inc. Microsystems and Development Tools

1) The status of the programming operation initiated by the ACI_StartFunction call (whether it
has completed or it is still in progress);
2) The device insertion status (certainly if this option is enabled in the tab Option of the Program
Manager window).

8.5.1.20 ACI_Launch

ACI_FUNC ACI_Launch(ACI_Launch_Params * params);

Description

This function launches the ChipProg-02 software. Optionally this ACI function can launch the
programmer with a specified Command line options and load the file that will configure the CPI2-
Gx hardware.

Note! This ACI function must always be called before any other ACI function !

8.5.1.21 ACI_LoadConfigFile

ACI_FUNC ACI_LoadConfigFile(ACI_Config_Params * params);

Description

This function loads the CPI2-Gx configuration parameters that include all the settings available via the
ChipProg-02 dialogs (memory buffer configurations, programming options, test of the device insertion,
etc.).

The ChipProg-02 program automatically saves some programming options and settings, including the
type of selected device, the device parameters, the start and end addresses of the device being
programmed, the buffer start address, and a set of the Auto Programming commands. Then it
automatically restores these parameters when the user changes the device type.

See also: ACI_SetProgrammingParams , ACI_SetProgOption , ACI_GetProgrammingParams ,
ACI_GetProgOption , ACI_SaveConfigFile

8.5.1.22 ACI_LoadFileDialog

ACI_LoadFileDialog();

Description

This macro opens the Load File dialog. The dialog will be visible irrespective of the ChipProg-02
main window status; the main window can remain closed but the Load File dialog will appear on the
computer screen. See the dialog example below.

379

108

105

386

121 52

382

108

379 378 372

371 375

102

102

CPI2-Gx Device Programmers - CPI2-Gx374

© 2021 Phyton, Inc. Microsystems and Development Tools

8.5.1.23 ACI_LoadProject

ACI_FUNC ACI_LoadProject(ACI_Project_Params * params);

Description

Load the project. The path to the project file is specified in the ProjectName member of the
ACI_Project_Params structure. The project must be previously prepared and saved manually in the
programmer shell application.

Using this function is convenient because loading a project automatically performs the following:

· The programmer shell settings are loaded;

· The device chosen in the project is loaded;

· The programming options are set to the values specified in the project;

· Files specified in the project are loaded to the buffers;

· Settings for the Checksum, SerialNumber, Shadow areas, etc. are loaded.

Loading a project with ACI_LoadProject() is the same as loading a project in the programmer shell.

397

Reference 375

© 2021 Phyton, Inc. Microsystems and Development Tools

8.5.1.24 ACI_ReadLayer

ACI_FUNC ACI_ReadLayer(ACI_Memory_Params * params);

Description

This function reads data from a specified memory buffer. The data size is limited by 16M Bytes.

Note! This function reads the data from the programmer's memory buffer but does not physically
read out the content of the selected target device. In order to physically read out the device
memory content, execute the programmer command (function) Read by means of the
ACI_ExecFunction or ACI_StartFunction with appropriate attributes.

8.5.1.25 ACI_ReallocBuffer

ACI_FUNC ACI_ReallocBuffer(ACI_Buffer_Params * params);

Description

This function changes the size of the layer #0 in the memory buffer specified in the
ACI_Buffer_Params structure.

See also the ACI_Buffer_Params structure description.

8.5.1.26 ACI_SaveConfigFile

ACI_FUNC ACI_SaveConfigFile(ACI_Config_Params * params);

Description

This function saves the CPI2-Gx options specified in the tab Option of the Program Manager
window (memory buffer configurations, programming options, test of the device insertion, etc.).

The ChipProg-02 program automatically saves some programming options and settings including a
type of the selected device, the device parameters, the start and end addresses of the device being
programmed, the buffer start address, and a set of the Auto Programming commands and then
automatically restores these parameters when the user changes the device type.

См. также: ACI_SetProgrammingParams , ACI_SetProgOption ,
ACI_GetProgrammingParams , ACI_GetProgOption , ACI_LoadConfigFile

8.5.1.27 ACI_SaveFileDialog

ACI_SaveFileDialog();

Description

389

368 379

380

380

380

382

108 105

108

379 378

372 371 373

CPI2-Gx Device Programmers - CPI2-Gx376

© 2021 Phyton, Inc. Microsystems and Development Tools

This macro sends a command that opens the Save File dialog. The dialog will be visible
irrespective of the ChipProg-02 main window status; the main window can remain closed but the Save
File dialog will appear on the computer screen. See the dialog example below.

8.5.1.28 ACI_SelectDeviceDialog

ACI_SelectDeviceDialog();

Description

This macro sends a command that opens the Select Device dialog. The dialog will appear on the
screen irrespective of the ChipProg-02 main window status; the main window can remain closed but
the Select Device dialog will appear on the computer screen.

104

104

58

58

Reference 377

© 2021 Phyton, Inc. Microsystems and Development Tools

8.5.1.29 ACI_SerializationDialog

ACI_SerializationDialog();

Description

This macro sends a command that opens the Serialization, Checksum, and Log Dialog .

8.5.1.30 ACI_SetConnection

ACI_FUNC ACI_SetConnection(ACI_Connection_Params * params);

Description

This function identifies a current device programmer connection. Use this function when you control a
number of device programmers by means of multiple calls of the ACI_Launch function. Each
connection gets its own unique identifier. Executing of the ACI_Launch function returns the
ConnectionId as part of the ACI_Launch_Params structure.

After establishing the connection, all the ACI functions following the ACI_SetConnection function will
work exclusively with the established connection. If, for example a CPI2-Gx has 6 programming
modules inside but the ACI_SetConnection function has specified only one particular module inside
of this gang programmer, then this connection will control one module, not a whole gang programmer
with 6 modules.

The ConnectionId can be always checked by executing the function ACI_GetConnection .

8.5.1.31 ACI_SetDevice

ACI_FUNC ACI_SetDevice(ACI_Device_Params * params);

Description

This function chooses the device to be programmed. Along with the device type, the function
automatically loads the device parameters, start and end addresses and the buffer start address. Also,
it restores the Auto Programming command list if the selected device type has ever been selected
earlier, but the parameters listed above were changed during the programming session.

8.5.1.32 ACI_SetMUXMode

ACI_FUNC ACI_SetMUXMode(ACI_MUXMode_Params * params);

Description

This function sets a mode of the demultiplexers either for all CPI2-Gx programming sites or only for a
particular specified site. The mode is defined by the ACI_MM_xx constants.

The Mode field in the ACI_MUXMode_Params structure sets a mode of the demultiplexer. For
example: provide programming via Channel B only or via Channel A first, then via channel B.

The SiteNumber field in the ACI_MUXMode_Params structure sets a particular site (programming
module) which demultiplexer will be enabled. Setting SiteNumber = -1 (minus one) sets identical modes
for all sites of the CPI2-Gx.

63

382

373

373

382 386

377

370

382

108

390

390

390

CPI2-Gx Device Programmers - CPI2-Gx378

© 2021 Phyton, Inc. Microsystems and Development Tools

 If the site, defined by the SiteNumber parameter, is currently in the Idle mode (does not work) the
ActiveMode returns UNIT_MAX. Otherwise it returns either ACI_MM_A or ACI_MM_B.

ACI_SetMUXMode returns error if:

· a specified site is performing a programming operation;

· a connected device programmer is not a CPI2-Gx;

· a CPI2-MUX license is not locked on a CPI2-Gx being under control.

8.5.1.33 ACI_SetProgOption

ACI_FUNC ACI_SetProgOption(ACI_ProgOption_Params * params);

Description

This function sets device-specific options and parameters, which are specified in the Device and
Algorithm Parameters Editor window. As an example see this window for one of the
microcontrollers below.

Note! This function does not physically write the specified information into the device being
programmed. It actually writes to some virtual memory locations in the host PC's RAM, associated
with physical locations in the target device's memory and registers. In order to complete programming
the device parameters and to physically program them into the device's memory you should execute
an appropriate Program command (function) in the command group Device Parameters, by means
of the ACI_ExecFunction or ACI_StartFunction with appropriate attributes.

See also the ACI_ProgOption_Params structure description.

390

93

368 379

390

Reference 379

© 2021 Phyton, Inc. Microsystems and Development Tools

8.5.1.34 ACI_SetProgrammingParams

ACI_FUNC ACI_SetProgrammingParams(ACI_Programming_Params * params);

Description

This function sets programming parameters specified in the tab Option of the Program Manager
window (memory buffer configurations, programming options, test of the device insertion, etc.).

See also the ACI_Programming_Params structure description.

8.5.1.35 ACI_SettingsDialog

ACI_SettingsDialog();

Description

This macro opens the Configure > Preferences setting dialog. The dialog will be visible
irrespective of the ChipProg-02 main window status; the main window can remain closed but the
Configure > Preferences setting dialog will appear on the computer screen, thus allowing
manipulations in the dialog.

8.5.1.36 ACI_StartFunction

ACI_FUNC ACI_StartFunction(ACI_Function_Params * params);

Description

This function launches one of the programming operation (Read, Erase, Verify, etc.) specified by the
ACI_Function_Params and immediately returns control to the external application no matter whether
the programming operation, initiated by the ACI_StartFunction, has or has not completed. The
ACI_StartFunction is different from the ACI_ExecFunction . It is possible to check if the
operation has completed by the ACI_GetStatus function call. This allows monitoring the execution
of programming operations if they last for a long time.

8.5.1.37 ACI_TerminateFunction

ACI_FUNC ACI_TerminateFunction();

Description

This function terminates a current programming operation initiated by the ACI_StartFunction call.

395

108 105

395

77

77

384

384

379 368

372

379

CPI2-Gx Device Programmers - CPI2-Gx380

© 2021 Phyton, Inc. Microsystems and Development Tools

8.5.1.38 ACI_WriteLayer

ACI_FUNC ACI_WriteLayer(ACI_Memory_Params * params);

Description

This function writes data to a specified memory buffer. The data size is limited by 16M Bytes.

Note! This function writes the data to the programmer's memory buffer but does not physically
program the device. In order to physically write data from the buffer to the device's memory, execute
the programmer command (function) Program by means of the ACI_ExecFunction or
ACI_StartFunction with appropriate attributes.

8.5.2 ACI Structures

This sections contains alphabetical list of all ACI structures.

8.5.2.1 ACI_Buffer_Params

typedef struct tagACI_Buffer_Params
{
 UINT Size; // (in) Size of structure, in bytes
 DWORD Layer0SizeLow; // (in/out) Low 32 bits of layer 0 size, in bytes
 DWORD Layer0SizeHigh; // (in/out) High 32 bits of layer 0 size, in bytes
 // Layer size is rounded up to a nearest value supported by programmer.
 LPCSTR BufferName; // (in) Buffer name
 UINT BufferNumber; // For ACI_CreateBuffer(): out: Created buffer number
 // For ACI_ReallocBuffer(): in: Buffer number to realloc
 UINT NumBuffers; // (out) Total number of currently allocated buffers
 UINT NumLayers; // (out) Total number of layers in a buffer
} ACI_Buffer_Params;

Layer0SizeLow,
Layer0SizeHigh

This structure member represents buffer layer #0's size in Bytes. This

size lies in the range between 128K Bytes and 32G Bytes (may be

changed in the future). The ChipProg-02 allows assigning buffers with

fixed sizes only (see the list on the picture below). Any intermediate value

will be automatically rounded up to one of the reserved buffer sizes. For

example, if you enter '160000' the programmer will assign a 1MB buffer

layer.

BufferName

Since it is used with the ACI_CreateBuffer function this structure

member represents the name of the buffer that will be created. If used

with the ACI_ReallocBuffer function will be ignored.

BufferNumber

After calling the ACI_CreateBuffer function this structure member
returns the created buffer's number. After calling the

389

368

379

368

375

368

Reference 381

© 2021 Phyton, Inc. Microsystems and Development Tools

Layer0SizeLow,
Layer0SizeHigh

This structure member represents buffer layer #0's size in Bytes. This

size lies in the range between 128K Bytes and 32G Bytes (may be

changed in the future). The ChipProg-02 allows assigning buffers with

fixed sizes only (see the list on the picture below). Any intermediate value

will be automatically rounded up to one of the reserved buffer sizes. For

example, if you enter '160000' the programmer will assign a 1MB buffer

layer.

ACI_ReallocBuffer function - the number of the buffer, size of which
should be changed (re-allocate).

NumBuffers This structure member represents the current number of memory buffers
being opened.

NumLayers This structure member represents the number of layers in memory
buffers. This value is the same for all opened buffers.

See also: ACI_CreateBuffer , ACI_ReallocBuffer

375

368 375

CPI2-Gx Device Programmers - CPI2-Gx382

© 2021 Phyton, Inc. Microsystems and Development Tools

8.5.2.2 ACI_Config_Params

typedef struct tagACI_Config_Params
{
 UINT Size; // (in) Size of structure, in bytes
 LPCSTR FileName; // (in) Options file name to load/save configuration
} ACI_Config_Params;

FileName This is the name of the file that configures the
programmer.

See also: ACI_LoadConfigFile , ACI_SaveConfigFile

8.5.2.3 ACI_Connection_Params

typedef struct tagACI_Connection_Params
{
 UINT Size; // (in) Size of structure, in bytes
 LPVOID ConnectionId; // ACI_SetConnection(): (in), ACI_GetConnection(): (out)
 // Connection identifier
} ACI_Connection_Params;

ConnectionId An identifier of the connection with a particular device programmer. This is an
abstract, internally used, ACI parameter.

See also: ACI_SetConnection , ACI_GetConnection .

8.5.2.4 ACI_Device_Params

typedef struct tagACI_Device_Params
{
 UINT Size; // (in) Size of structure, in bytes
 CHAR Manufacturer[64]; // (in || out) Device Manufacturer
 CHAR Name[64]; // (in || out) Device Name
} ACI_Device_Params;

Manufacturer The manufacturer of the device being programmed

Name The device part number as it is displayed in the
programmer's device list

See also: ACI_SetDevice , ACI_GetDevice

373 375

377 370

377 370

Reference 383

© 2021 Phyton, Inc. Microsystems and Development Tools

8.5.2.5 ACI_ErrorString_Params

typedef struct tagACI_ErrorString_Params
{
 UINT Size; // (in) Size of structure, in bytes
 CHAR ErrorString[256]; // (out) Error string describing error code ACI_ERR_... returned by the last
 // call to ACI function
} ACI_ErrorString_Params;

ErrorString String describing the error returned by the last ACI function call.

See also: ACI_ErrorString

8.5.2.6 ACI_File_Params

typedef struct tagACI_File_Params
{
 UINT Size; // (in) Size of structure, in bytes
 LPCSTR FileName; // (in) File name
 UINT BufferNumber; // (in) Buffer number
 UINT LayerNumber; // (in) Layer number
 UINT Format; // (in) File format: see ACI_PLF_... and ACI_PSF_xxx constants
 DWORD StartAddressLow; // (in) Low 32 bits of start address for ACI_FileSave().
 // For ACI_FileLoad(): Ignored if Format != ACI_PLF_BINARY
 DWORD StartAddressHigh; // (in) High 32 bits of start address for ACI_FileSave().
 // For ACI_FileLoad(): Ignored if Format != ACI_PLF_BINARY
 DWORD EndAddressLow; // (in) ACI_FileSave(): Low 32 bits of end address
 DWORD EndAddressHigh; // (in) ACI_FileSave(): High 32 bits of end address
 DWORD OffsetLow; // (in) Low 32 bits of address offset for ACI_FileLoad()
 DWORD OffsetHigh; // (in) High 32 bits of address offset for ACI_FileLoad()
} ACI_File_Params;

FileName The name of the file to be loaded to the CPI2-Gx buffer.

BufferNumber The ordinal number of the destination buffer. Buffer numbers begins from
zero.

LayerNumber The ordinal number of the memory layer in the buffer. Layer numbers begins
from zero.

Format The loadable file's format. See the description of the ACI_PLF_XXX*
constants in the aciprog.h header file (see below).

StartAddressLow,
StartAddressHigh

1) If used with the ACI_FileSave function this parameter specifies the first
(start) address in the source memory layer, from which the file will be
saved.
2) If used with the ACI_FileLoad function, but only when it loads a file in
the binary format (Format == ACI_PLF_BINARY), this parameter specifies
the first (start) address of the destination memory layer, in which the file will
be loaded. Binary images do not carry any addresses for the file loading.

368

369

369

CPI2-Gx Device Programmers - CPI2-Gx384

© 2021 Phyton, Inc. Microsystems and Development Tools

EndAddressLow,
EndAddressHigh

If used with the ACI_FileSave function this parameter defines the last

(end) address of the source memory layer, from which the file will be saved.

OffsetLow,
OffsetHigh

The address offset that shifts the file position in the destination memory
layer. The offset can be negative as well as positive.

This is the bit definition from the aciprog.h header file:

*// ACI File formats for ACI_FileLoad()
#define ACI_PLF_INTEL_HEX 0 // Standard/Extended Intel HEX
#define ACI_PLF_BINARY 1 // Binary image
#define ACI_PLF_MOTOROLA_S 2 // Motorola S-record
#define ACI_PLF_POF 3 // POF
#define ACI_PLF_JEDEC 4 // JEDEC
#define ACI_PLF_PRG 5 // PRG
#define ACI_PLF_OTP 6 // Holtek OTP
#define ACI_PLF_SAV 7 // Angstrem SAV
#define ACI_PLF_ASCII_HEX 8 // ASCII Hex
#define ACI_PLF_ASCII_OCTAL 9 // ASCII Octal

See also: ACI_FileLoad , ACI_FileSave .

8.5.2.7 ACI_Function_Params

typedef struct tagACI_Function_Params
{
 UINT Size; // (in) Size of structure, in bytes
 LPCSTR FunctionName; // (in) Name of a function to execute. If a function is under a sub-menu, use '^' to separate menu name from function name, e.g. "Lock Bits^Bit 0"
 // To execute Auto Programming, set FunctionName to NULL, empty string or "Auto Programming".
 UINT BufferNumber; // (in) Buffer number to use
 BOOL Silent; // (in) On error, do not display error message box, just copy error string to ErrorMessage
 CHAR ErrorMessage[512]; // (out) Error message string if ACI_ExecFunction() fails
} ACI_Function_Params;

FunctionName

The name of the CPI2-Gx function is one of those listed in the window Functions
of the ChipProg-02 Program Manager tab . They are divided in two group (see
the picture below): (1) the main functions applicable to a majority of the target
devices (Blank Check, Erase, Read, Program, Verify) and (2) the device-
specific lower level functions accessible through expandable sub-menus (for
example, Program Device Parameters, Erase Sectors, Lock Bits > Program
Lock Bit 1, EEPROM > Read, etc.). For such device-specific functions the
FunctionName should be specified in the following way: <List
name>^<Function name> (for example, Device Parameters^Program).

To launch the AutoProgramming batch set the FunctionName either to NULL, a
blank string, or the "Auto Programming".

There is no restrictions in use of uppercase and lowercase characters in the
function names.

369

369 369

106

Reference 385

© 2021 Phyton, Inc. Microsystems and Development Tools

BufferNumber The ordinal number of the buffer the function operates with.

Silent

If this parameter is TRUE, then the error message dialog will be suppressed, the
function execution will be terminated and will return the
ACI_ERR_FUNCTION_FAILED code, and the error message will be copied to
the ErrorMessage.

ErrorMessage The destination of the error message that will be issued if the function fails.

See also: ACI_ExecFunction , ACI_StartFunction , ACI_GetStatus

8.5.2.8 ACI_GangStart_Params

typedef struct tagACI_GangStart_Params
{
 UINT Size; // (in) Size of structure, in bytes
 UINT SiteNumber; // (in) Site number to start auto programming at
 UINT BufferNumber; // (in) Buffer number to use
 BOOL Silent; // (in) On error, do not display error message box. Use ACI_GetStatus() to get error message string
} ACI_GangStart_Params;

SiteNumber

The number of the device programmer socket in the gang programmer or in
a programming cluster comprised of multiple CPI2-Gx programmers for
which the ACI_GangStart function is launched. The site (socket) numbers
begin from #0.

368 379 372

370

CPI2-Gx Device Programmers - CPI2-Gx386

© 2021 Phyton, Inc. Microsystems and Development Tools

BufferNumber
The ordinal number of the memory buffer , content of which is required by
the ACI_GangStart function. Numbers of CPI2-Gx memory buffers begin
from #0.

Silent

If this parameter is TRUE, then the error message dialog will be suppressed,
the function execution will be terminated and the
ACI_ERR_FUNCTION_FAILED code will be returned.. Use the
ACI_GetStatus function to receive the error message.

See also: ACI_GangStart , ACI_GetStatus

8.5.2.9 ACI_GangTerminate_Params

typedef struct tagACI_GangTerminate_Params
{
 UINT Size; // (in) Size of structure, in bytes
 INT SiteNumber; // (in) Site number to terminate operation (-1 == all sites)
 INT Timeout; // (in) Timeout in milliseconds (-1 == infinite) to wait for operation break
 BOOL SiteStopped; // (out) TRUE if operation was stopped, FALSE if timeout occurred
} ACI_GangTerminate_Params;

SiteNumber

The site (socket) number you want terminating a current operation on. Socket
numbers begin from 0 (zero). If you specify SiteNumber = -1 (minus one) this will
terminate operations on all sites of the gang machine.

Timeout

A time interval in milliseconds, during of which the ACI_GangTerminateFunction
holds expecting an acknowledgment of the successful operation termination. The
function will return control either upon getting such an acknowledgment or upon
expiring a specified Timeout.

If you specify the Timeout = -1 (minus one) it will never expire.

SiteStopped

This parameter indicates whether the ACI_GangTerminateFunction succeeded.
In case of successful termination an operation before expiring the Timeout the
SiteStopped parameter sets TRUE. Otherwise, it will be set FALSE.

See also: ACI_GangTerminateFunction , ACI_TerminateFunction .

8.5.2.10 ACI_Launch_Params

typedef struct tagACI_Launch_Params
{
 UINT Size; // (in) Size of structure, in bytes
 LPCSTR ProgrammerExe; // (in) Programmer executable file name
 LPCSTR CommandLine; // (in) Optional programmer command-line parameters
 UINT DebugMode; // (in) Debug mode. See DM_xxx constants
 UINT NumSites; // (out) For Gang mode: Number of sites

95

370

372

370 372

370

370

370 379

Reference 387

© 2021 Phyton, Inc. Microsystems and Development Tools

 LPVOID ConnectionId; // (out) Connection identifier
 CHAR ProgrammerName[64]; // (out) Programmer name
} ACI_Launch_Params;

ProgrammerExe

This is the name of the programmer executable file. If the parameter does not
include a full path then the program will search for the UprogNT2.EXE file
into the folder where the ACI.DLL resides.

The target folder name, where the the UprogNT2.EXE file resides, is defined
by the parameter "Folder" of the ""HKLM\SOFTWARE\Phyton\Phyton
ChipProg-02 Programmer\x.yy.zz" key. It is supposed that multiple ChipProg-
02 versions can be installed on the host computer.

CommandLine

This structure member specifies the Command line options . One of the
option is NULL (no keys). If the host computer drives a cluster of multiple
programmers then the only way to launch a certain programmer is to specify
the /N<serial number> for the CommandLine structure member.

DebugMode

The following options can be set for this parameter in accordance to the
declaration in the ACIProg.h file:

DM_GUI_HIDDEN - makes the CPI2-Gx GUI invisible. The software stops
issue the messages that are normally visible in the GUI except the messages
about critical system errors (for example, if a PC looses connection with the
CPI2-Gx hardware).

DM_GUI_VISIBLE - makes the CPI2-Gx GUI visible. This constant
enables to manipulate with the CPI2-Gx programmer in between of the ACI
function calls. These manipulations includes, but not limited to, opening and
resizing windows, watching and modifying data in buffers, executing
commands, etc.

DM_GUI_NONE - completely disables any operation with the GUI that
becomes invisible. No messages, even those which warn about very critical
system errors, will be issued to the computer screen. The user's application,
that controls the programmer via the ChipProg-ISP2 ACI, should completely
handle all the errors issued by the ACI functions.

NumSites After return the NumSites indicates the number of programming sites in the
CPI2-Gx gang device programmer.

ConnectionId
After return with the ACI_ERR_SUCCESS code this field contains the
connection identifier - see the ACI_SetConnection and
ACI_GetConnection functions..

ProgrammerName After return with the ACI_ERR_SUCCESS code this field contains a string
with the device programmer name, here CPI2-B1.

See also: ACI_Launch

8.5.2.11 ACI_Layer_Params

typedef struct tagACI_Layer_Params
{
 UINT Size; // (in) Size of structure, in bytes

121

198

48

48

377

370

373

CPI2-Gx Device Programmers - CPI2-Gx388

© 2021 Phyton, Inc. Microsystems and Development Tools

 UINT BufferNumber; // (in) Number of buffer of interest, the first buffer number is 0
 UINT LayerNumber; // (in) Number of layer of interest, the first layer number is 0
 DWORD LayerSizeLow; // (out) Low 32 bits of layer size, in bytes
 DWORD LayerSizeHigh; // (out) High 32 bits of layer size, in bytes
 DWORD DeviceStartAddrLow; // (out) Low 32 bits of device start address for this layer
 DWORD DeviceStartAddrHigh; // (out) High 32 bits of device start address for this layer
 DWORD DeviceEndAddrLow; // (out) Low 32 bits of device end address for this layer
 DWORD DeviceEndAddrHigh; // (out) High 32 bits of device end address for this layer
 DWORD DeviceBufStartAddrLow; // (out) Low 32 bits of device memory start address in buffer for this layer
 DWORD DeviceBufStartAddrHigh; // (out) High 32 bits of device memory start address in buffer for this layer
 UINT UnitSize; // (out) Size of layer unit, in bits (8, 16 or 32)
 BOOL FixedSize; // (out) Size of layer cannot be changed with ACI_ReallocBuffer()
 CHAR BufferName[64]; // (out) Buffer name
 CHAR LayerName[64]; // (out) Layer name, cannot be changed
 UINT NumBuffers; // (out) Total number of currently allocated buffers
 UINT NumLayers; // (out) Total number of layers in a buffer
} ACI_Layer_Params;

BufferNumber
The ordinal number of the memory buffer , content of which is required
by the ACI_GetLayer function. Numbers of CPI2-Gx memory buffers
begin from #0.

LayerNumber
The ordinal number of the layer in the memory buffer , the content of
which is required by the ACI_GetLayer function. The layer numbers
begins from #0.

LayerSizeLow,
LayerSizeHigh

Here the function returns the range of the memory layer's addresses in
bytes.

DeviceStartAddrLow
,
DeviceStartAddrHig
h

Here the function returns the device's start address for the selected

memory layer. This address is the device's property and strictly depends

on the device type; usually this value is zero. Do not mix it up with the start

address of a programming operation that can be shifted by a certain offset

value.

DeviceEndAddrLow,
DeviceEndAddrHigh

Here the function returns the device's end address for the selected

memory layer. This address is the device's property and strictly depends

on the device type. Do not mix it up with the end address of a

programming operation editable in the setup dialog. The selected layer's

address range can be defined as a difference between the end address

and the start address plus 1.

DeviceBufStartAddr
Low,
DeviceBufStartAddr
High

Here the function returns the start address for the selected memory
buffer - usually this value is zero.

UnitSize This structure member specifies formats of the data in a memory layer: 8
for the 8-bit devices, 16 - for 16-bit devices and 32 for 32-bit devices.

FixedSize
This flag, if TRUE, disables resizing the memory layer by the
ACI_ReallocBuffer function. There is one restriction on use of this flag:

95

371

95

371

95

375

Reference 389

© 2021 Phyton, Inc. Microsystems and Development Tools

BufferNumber
The ordinal number of the memory buffer , content of which is required
by the ACI_GetLayer function. Numbers of CPI2-Gx memory buffers
begin from #0.

since the layer #0 is always resizeable the FixedSize is always FALSE
for the layer #0.

BufferName The name of the memory buffer as it was defined in the CPI2-Gx interface
or by the ACI_CreateBuffer function call.

LayerName Reserved name of the memory buffer's layer. It cannot be changed by the
ACI.DLL user.

NumBuffers The number of the assigned memory buffers.

NumLayers The number of layers in the programmer's memory buffers. This is a pre-
defined device-specific value that is the same for all memory buffers.

See also: ACI_GetLayer

8.5.2.12 ACI_Memory_Params

typedef struct tagACI_Memory_Params
{
 UINT Size; // (in) Size of structure, in bytes
 UINT BufferNumber; // (in) Number of buffer of interest, the first buffer number is 0
 UINT LayerNumber; // (in) Number of layer of interest, the first layer number is 0
 DWORD AddressLow; // (in) Low 32 bits of address, in layer units (natural to device address)
 DWORD AddressHigh; // (in) High 32 bits of address, in layer units (natural to device address)
 PVOID Data; // (in || out) Buffer to data to read to or write from
 DWORD DataSize; // (in) Size of data to read or write, in layer units, max. 16 MB (0x1000000)
 DWORD FillValue; // (in) Value to fill buffer with, used by ACI_FillLayer() only
} ACI_Memory_Params;

BufferNumber The ordinal number of the buffer to read from or to write into. The buffer
numerical order begins from zero.

LayerNumber The ordinal number of the memory buffer's layer to read from or to write into.
The layer numerical order begins from zero.

AddressLow,
AddressHigh

The start address in the memory layer to read from or to write into
represented in the units specified by the chosen device manufacturer - Bytes,
Words, Double Words. This structure member is ignored in case of use with
the ACI_FillLayer function.

Data

Since these are used with different ACI functions this structure member has

different meanings.In case of use with the ACI_ReadLayer function it

represents the pointer to the data read out from the CPI2-Gx buffer's layer. In

case of use with the ACI_WriteLayer - the pointer to the data to be written

to the CPI2-Gx buffer's layer. The Data is ignored if it is used with the

ACI_FillLayer function.

DataSize
This structure member represents the data format given in memory units
specified by the device manufacturer (Bytes, Words or Double Words). The

95

371

368

371

369

375

380

369

CPI2-Gx Device Programmers - CPI2-Gx390

© 2021 Phyton, Inc. Microsystems and Development Tools

program ignores the DataSize if it is used with the ACI_FillLayer function.

FillValue

This is the data pattern that fills an active CPI2-Gx buffer's layer by means of
the ACI_FillLayer function. If, for example, the FillValue is presented in the
DWORD format then the 8-bit memory layers will be filled with the lower byte
of the FillValue pattern, the 16-bit layers - with the lower 16-bit word and the
32-bit layers - with a whole FillValue pattern.

See also: ACI_ReadLayer , ACI_WriteLayer , ACI_FillLayer

8.5.2.13 ACI_MUXMode_Params

typedef struct tagACI_MUXMode_Params
{
 UINT Size; // (in) Size of structure, in bytes
 INT SiteNumber; // (in) Site number to get/set MUX mode. ACI_SetMUXMode(): if SiteNumber == -1,
 // set MUX mode for all sites
 UINT Mode; // (in/out) MUX mode. See ACI_MM_xxx constants
 UINT ActiveMode; // (out) ACI_GetMUXMode(): If a function is in progress, ActiveMode will be
 // currently active MUX channel (ACI_MM_A or ACI_MM_B). Otherwise, it
 // will be UINT_MAX.
} ACI_MUXMode_Params;

SiteNu
mber

A number of the device programmer's site (channel) which you need to get (or to set) de-
multiplexing mode. This number begins from 0. Setting SiteNumber = -1 (minus one)
enables the identical Mode parameter for all sites (channels) of the CPI2-Gx upon calling
the ACI_SetMUXMode function.

Mode

It defines a sequence of working A and B CPI2-Gx channels (sites). The modes are defined
by the ACI_MM_xx values. For example, if xx=AB, i.e. ACI_MM_AB then a ChipProg-ISP2
will programs devices connected to the demultiplexers of the A channel, then to the B
channel (Channel A first, channel B - second).

ActiveM
ode

Here the ACI_GetMUXMode returns a currently active demultiplexer channel: A or B. If
the site, defined by the SiteNumber parameter, is currently in the Idle mode (does not work)
the ActiveMode returns UNIT_MAX. Otherwise it returns either ACI_MM_A or ACI_MM_B.

См. также ACI_GetMUXMode , ACI_SetMUXMode .

8.5.2.14 ACI_ProgOption_Params

typedef struct tagACI_ProgOption_Params
{
 UINT Size; // (in) Size of structure, in bytes
 LPCSTR OptionName; // (in) Name of the option. For lists, it should be in the form "List array name^List Name", e.g. "Configuration Bits^Oscillator"
 CHAR Units[32]; // (out) Option measurement units ("kHz", "V", etc.)
 CHAR OptionDescription[64]; // (out) Description of the option
 CHAR ListString[64]; // (out) For ACI_PO_LIST option: Option string for Value.ListIndex
 UINT OptionType; // (out) Option type: see ACI_PO_xxx constants
 BOOL ReadOnly; // (out) Option is read-only

369

375 380 369

377

371

371 377

Reference 391

© 2021 Phyton, Inc. Microsystems and Development Tools

 union // (in || out) Option value
 {
 LONG LongValue; // (in || out) Value for ACI_PO_LONG option
 FLOAT FloatValue; // (in || out) Value for ACI_PO_FLOAT option
 LPSTR String; // (in || out) Pointer to string for ACI_PO_STRING option
 ULONG CheckBoxesValue; // (in || out) Value for ACI_PO_CHECKBOXES option
 UINT StateIndex; // (in || out) State index for ACI_PO_LIST option
 LPBYTE Bitstream; // (in || out) Pointer to bitstream data for ACI_PO_BITSTREAM option
 } Value;

 UINT VSize; // For ACI_SetProgOption():
 // in: Size of Bitstream if OptionType == ACI_PO_BITSTREAM
 // For ACI_GetProgOption():
 // in: Size of buffer pointed by Bitstream if OptionType == ACI_PO_BITSTREAM
 // in: Size of buffer pointed by String if OptionType == ACI_PO_STRING
 // out: Size of buffer needed for storing Bitstream data if OptionType == ACI_PO_BITSTREAM.
 // Set Value.Bitstream to NULL to get buffer size without setting the bitstream data
 // out: Size of buffer needed for storing String if OptionType == ACI_PO_STRING, including the terminating NULL character.
 // Set Value.String to NULL to get buffer size without setting the string
 UINT Mode; // (in) For ACI_SetProgOption(): SEE ACI_PP_MODE_... constants
} ACI_ProgOption_Params;

OptionName

The name of the programming option - for example "Vcc". For the ACI_PO_LIST -
type options, where the options are grouped into a list, you should specify both the
list name and the option name in the following way: <List name>^<Option name>
(For example, Configuration_bitŝ Generator. There are no restrictions on use of
uppercase and lowercase characters in the option names.

Units
After executing the ACI_GetProgOption function this structure member returns
an abbreviation of the units, in which the programmer represents or measures the
OptionName. For example, for the Vcc structure member, Units = "V".

OptionDescription After executing the ACI_GetProgOption function this structure member returns
the option description.

ListString

After executing the ACI_GetProgOption function for the ACI_PO_LIST - type
options this structure member returns a string that describes the current option's
value or status. For example, XT - Standard Crystal for the option Configuration
bitŝ Generator.

OptionType
After executing the ACI_GetProgOption function this structure member returns
the option's presentation format - for example: integer, floating point, list, bitstream,
etc.. See the ACI_PO_xxx* constant description in the aciprog.h header file below.

ReadOnly Setting ReadOnly=TRUE disables modification of the option specified by the
ACI_GetProgOption function.

Value

Use of this union depends on the ACI_PO_LONG* option type as it is shown in the
matrix below:

Option type Use of the Value union

ACI_PO_LONG The option is in the Value.LongValue

ACI_PO_FLOAT The option is in the Value.FloatValue

ACI_PO_STRING The option is represented as a string, the pointer on which
is in the Value.String. See the note below .

371

371

371

371

371

393

CPI2-Gx Device Programmers - CPI2-Gx392

© 2021 Phyton, Inc. Microsystems and Development Tools

ACI_PO_CHECKBOXES The option represents a 32-bit integer word, in which you
can individually toggle each bit that represents a particular
flag in the option setting dialog. The option is in the
Value.CheckBoxesValue. See, for example, the Fuse
setting dialog for the ATtiny45 MCU implemented as an
array of check boxes .

ACI_PO_LIST It represents a list of alternative choices. Only one of them
can be selected at a time, so the parameter changes its
value in a range 0, 1, 2 to N. The option is in the
Value.CheckStateIndex. See, for example, the Oscillators
setting dialog for the PIC12F509 MCU implemented as an
alternatively chosen radio buttons

ACI_PO_BITSTREAM Stream of bits. This option type is not in use yet but can be
used for future applications.

VSize Size of the buffer assigned for storing the string if the option type is the
ACI_PO_STRING. See the note below .

Mode

Mode of using of the structure member Value (See the description of the
ACI_PP_xxx** constants in the aciprog.h<) header file:

The Mode setting (value) Use of the parameter Value

ACI_PP_MODE_VALUE 1) For measuring (getting): use the Value in order to get an
actual Option value;
2) For setting: use the Value to set a particular Option
value.

ACI_PP_MODE_DEFAUL
T_VALUE

1) If used with the ACI_GetProgOption function it

issues a command to put the default Option value into the

Value.

2) If used with the ACI_SetProgOption function, the

Value will be ignored; the Option will be set to the default

level defined in the CPI2-Gx hardware.

ACI_PP_MODE_MIN_VAL
UE

1)If used with the ACI_GetProgOption function it
commands to put the minimal Option value into the Value.
2) If used with the ACI_SetProgOption function the
Value will be ignored; the Option will be set to the minimal
level defined in the CPI2-Gx hardware, if it is possible for
the Option of this type.

ACI_PP_MODE_MAX_VA
LUE

1) If used with the ACI_GetProgOption function it
commands to put the maximal Option value into the Value.
2) If it is used with the ACI_SetProgOption function the
Value will be ignored; the Option will be set to the maximal
level defined in the CPI2-Gx hardware, if it is possible for
the Option of this type.

This is the bit definition from the aciprog.h header file:

*// ACI Programming Options defines
#define ACI_PO_LONG 0 // Signed integer option
#define ACI_PO_FLOAT 1 // Floating point option
#define ACI_PO_STRING 2 // String option
#define ACI_PO_CHECKBOXES 3 // 32-bit array of bits
#define ACI_PO_LIST 4 // List (radiobuttons)
#define ACI_PO_BITSTREAM 5 // Bit stream - variable size bit array

393

395

393

371

378

371

378

371

378

Reference 393

© 2021 Phyton, Inc. Microsystems and Development Tools

**// ACI Programming Option Mode constants for ACI_GetProgOption()/ACI_SetProgOption()
#define ACI_PP_MODE_VALUE 0 // Get/set value specified in Value member of the
ACI_ProgOption_Params structure
#define ACI_PP_MODE_DEFAULT_VALUE 1 // Get/set default option value, ignore Value member
#define ACI_PP_MODE_MIN_VALUE 2 // Get/set minimal option value, ignore Value member
#define ACI_PP_MODE_MAX_VALUE 3 // Get/set maximal option value, ignore Value
member

Note for use of the ACI_GetProgOption:
In order to get the buffer size necessary for storing the Option ACI_PO_STRING, you should make the
first call of the ACI_GetProgOption function with the Value.String= NULL. Then the function will return
the VSize equal to the buffer size, including zero at the string's end. In your program, assign the buffer
of this size, put the Value.String into the buffer pointer and call the ACI_GetProgOption again.

CPI2-Gx Device Programmers - CPI2-Gx394

© 2021 Phyton, Inc. Microsystems and Development Tools

Reference 395

© 2021 Phyton, Inc. Microsystems and Development Tools

See also: ACI_GetProgOption , ACI_SetProgOption

8.5.2.15 ACI_Programming_Params

typedef struct tagACI_Programming_Params
{
 UINT Size; // (in) Size of structure, in bytes
 BOOL InsertTest; // (in || out) Test if device is attached
 BOOL CheckDeviceId; // (in || out) Check device identifier
 BOOL ReverseBytesOrder; // (in || out) Reverse bytes order in buffer
 BOOL BlankCheckBeforeProgram; // (in || out) Perform blank check before programming
 BOOL VerifyAfterProgram; // (in || out) Verify after programming
 BOOL VerifyAfterRead; // (in || out) Verify after read
 BOOL SplitData; // (in || out) Split data: see ACI_SP_xxx constants
 BOOL DeviceAutoDetect; // (in || out) Auto detect device in socket (not all of the programmers provide this feature)
 BOOL DialogBoxOnError; // (in || out) On error, display dialog box
 UINT AutoDetectAction; // (in || out) Action to perform on device autodetect or 'Start' button, see ACI_AD_xxx constants
 DWORD DeviceStartAddrLow; // (in || out) Low 32 bits of device start address for programming operation
 DWORD DeviceStartAddrHigh; // (in || out) High 32 bits of device start address for programming operation
 DWORD DeviceEndAddrLow; // (in || out) Low 32 bits of device end address for programming operation
 DWORD DeviceEndAddrHigh; // (in || out) High 32 bits of device end address for programming operation
 DWORD DeviceBufStartAddrLow; // (in || out) Low 32 bits of device memory start address in buffer for programming operation
 DWORD DeviceBufStartAddrHigh; // (in || out) High 32 bits of device memory start address in buffer for programming operation
} ACI_Programming_Params;

InsertTest

(Irrelevant for CPI2-Gx)

This is the command to check the device insertion before starting any programming
operations on the device. The procedure will check if every chip leads have good
contact in the programming socket.

371 378

CPI2-Gx Device Programmers - CPI2-Gx396

© 2021 Phyton, Inc. Microsystems and Development Tools

CheckDeviceId
This is the command to check a unique internal device identifier before the device
programming.

ReverseBytesOrder

This is the command to reverse the byte order in 16-bit words when programming the
device, reading it or verifying the data. This structure member does not effect the data
value in the CPI2-Gx memory buffers - these data remain the same as they were
loaded.

BlankCheckBeforePro
gram

This is the command to check whether the device is blank before executing the
Program command.

VerifyAfterProgram
This is the command to verify the data written into the device every time after
executing the Program command.

VerifyAfterRead
This is the command to verify the data written into the device every time after
executing the Read command.

SplitData

This is the command to split data in accordance with the value of the constants
ACI_SP_xxx* in the aciprog.h file (see below). This allows 8-bit memory devices to
be cascaded in multiple memory chips to be used in the systems with 16- and 32-bit
address and data buses.

DeviceAutoDetect

(Irrelevant for CPI2-Gx)

This is the command to scan all the device's leads in a process of the device
insertion into the programming socket. If the DeviceAutoDetect is TRUE the
programmer will check whether all of the device's leads are reliably gripped by the
programmer socket's sprung contacts. Only when the reliable device insertion is
acknowledged, the program launches a chosen programming operation, script or
a batch of single operations programmed in the Auto Programming dialog.
(Irrelevant for CPI2-Gx)

DialogBoxOnError
If this structure member is TRUE then any error that occurs in any programming
operation will generate error messages and will open associated dialogs. If this
attribute is FALSE the error messages will not be issued.

AutoDetectAction

(Irrelevant for CPI2-Gx)

If the DeviceAutoDetect is TRUE then values of the ACI_AD_xxx** constants in the
aciprog.h file define a particular action triggered either on manual pushing the Start
button or upon auto detection of reliable insertion of the device into the programmer's
socket (see below). (Irrelevant for CPI2-Gx)

AutoDetectAction
value

What to do (action)

ACI_AD_EXEC_FUN
CTION

Launch the programming operation (function) currently highlighted
in the Program Manager tab .

ACI_AD_EXEC_AUT
O

Launch a batch of single operations programmed in the Auto
Programming dialog.

ACI_AD_EXEC_SCR
IPT

Perform the script specified in the Script File dialog.

ACI_AD_DO_NOTHI
NG

Do not act (ignore). Then it is possible to resume operations only
by executing either the ACI_ExecFunction or
ACI_StartFunction .

DeviceStartAddrLow,
DeviceStartAddrHigh

This structure member defines a physical start address of the device to perform a

specified programming operation (function). For example: "...read the chip content

beginning at the address 7Fh". Not all the functions use this parameter.

DeviceEndAddrLow,
DeviceEndAddrHigh

This parameter defines a physical end address, beyond which a specified

programming operation (function) will not proceed. For example: "...program the chip

until the address 0FFh". Not all the programmer functions use this parameter.

195

196

198

196

198

196

109

177

108

106

108

179

368

379

Reference 397

© 2021 Phyton, Inc. Microsystems and Development Tools

DeviceBufStartAddrL
ow,
DeviceBufStartAddrH
igh

This structure member defines the buffers layer's start address from which to perform

a specified programming operation (function). For example: "...read the chip and

move the data to the buffer beginning at the address 10h". Not all the programmer

functions use this parameter.

This is the bit definition from the aciprog.h header file:

* // ACI Data Split defines
#define ACI_SP_NONE 0
#define ACI_SP_EVEN_BYTE 1
#define ACI_SP_ODD_BYTE 2
#define ACI_SP_BYTE_0 3
#define ACI_SP_BYTE_1 4
#define ACI_SP_BYTE_2 5
#define ACI_SP_BYTE_3 6

** // ACI Device Auto-Detect or 'Start' button action
#define ACI_AD_EXEC_FUNCTION 0 // Execute the function currently selected in the list
#define ACI_AD_EXEC_AUTO 1 // Execute the Auto Programming command
#define ACI_AD_EXEC_SCRIPT 2 // Execute the script chosen in the programmer Script File
dialog
#define ACI_AD_DO_NOTHING 3 // Do nothing

See also: ACI_SetProgrammingParams , ACI_GetProgrammingParams

8.5.2.16 ACI_ProjectParams

typedef struct tagACI_Project_Params
{
 UINT Size; // (in) Size of structure, in bytes
 LPCSTR ProjectName; // (in) Project file name
} ACI_Project_Params;

ProjectName Project file name with extension.

See also: ACI_LoadProject .

8.5.2.17 ACI_PStatus_Params

typedef struct tagACI_PStatus_Params
{
 UINT Size; // (in) Size of structure, in bytes
 UINT SiteNumber; // (in) For the Gang mode: site number to get status of, otherwise ignored
 BOOL Executing; // (out) The function started by ACI_StartFunction() is executing
 UINT PercentComplete; // (out) Percentage of the function completion, valid id Executing != FALSE
 UINT DeviceStatus; // (out) Device/socket status, see the ACI_DS_XXX constants
 BOOL NewDevice; // (out) New device inserted, no function has been executed yet. Valid if DeviceAutoDetect is ON.
 BOOL FunctionFailed; // (out) TRUE if last function failed

379 372

374

CPI2-Gx Device Programmers - CPI2-Gx398

© 2021 Phyton, Inc. Microsystems and Development Tools

 CHAR FunctionName[128]; // (out) Name of a function being executed if Executing != FALSE. If a function is under a sub-menu, function name will be like this: "Lock Bits^Bit 0"
 CHAR ErrorMessage[512]; // (out) Error message string if FunctionFailed != FALSE
} ACI_PStatus_Params;

SiteNumber

If the ChipProg-02 was launched in the Gang mode (with the command line

key /gang) and controls either the gang programmer or a cluster of single

programming machines, then before starting the ACI_GetStatus function the

SiteNumber parameter must contain the ordinal number of the programming site

(socket) for which the status is required. The site numbers begin from #0.

Executing This parameter is TRUE while the CPI2-Gx operation, launched by the
ACI_StartFunction , is in progress.

PercentCompl
ete

While the Executing == TRUE this parameter represents a percentage of the
function completion - from 0 to 100.

DeviceStatus
(Irrelevant for CPI2-
Gx)

This structure member defines insertion of the device into the programmer ZIF
socket if the device insertion auto detection function is enabled. See the description
of the ACI_DS_XXX* constants in the aciprog.h file. See the matrix below:

Status Description

ACI_DS_OK The device is in the socket and the device's leads are reliably gripped
by the programmer's ZIF socket's sprung contacts.

ACI_DS_OUT_OF_SOCK
ET

There is no device in the programmer's ZIF socket.

ACI_DS_SHIFTED The device's leads are reliably inserted into the socket but the device

is incorrectly positioned in the socket (shifted or inserted upside

down). The same status may indicate that the device type selected in

the Select Device does not correspond to the type of chip in the

programmer's socket.

ACI_DS_BAD_CONTACT The device's leads are not reliably gripped by the socket's sprung

contacts. In most cases this is an intermediate situation while an

operator is inserting the chip to the socket or is removing it.

ACI_DS_UNKNOWN It is impossible to detect the status because the device insertion auto

detection feature is disabled or this feature is not supported by this

programmer at all.

NewDevice
(Irrelevant for CPI2-
Gx)

This structure member is a flag that acknowledges replacing a programmed device

in the programmer's socket by a new, presumably a blank device. It works only

when the device insertion auto detection function is enabled. The NewDevice ==

FALSE while the already programmed chip is still in the socket and has not been

replaced by a new one. After removing the programmed device from the socket the

NewDevice toggles to TRUE.

FunctionFail
ed

This is an indicator of the function execution's result. It is set to FALSE when the

ACI_StartFunction launches a programming operation and remains FALSE

372

379

58

379

Reference 399

© 2021 Phyton, Inc. Microsystems and Development Tools

while the operation is in progress. If the programming operation fails and the

parameter Executing becomes FALSE the FunctionFailed flag toggles to TRUE.

FunctionName
This is either the name of the programming operation (function) being currently

executed or the name of the failed function, if the FunctionFalied == TRUE.

ErrorMessage The destination of the error message if the function fails, i.e. the FunctionFalied
== TRUE.

This is the bit definition from the aciprog.h header file:

*// ACI Device Status
#define ACI_DS_OK 0 // Device detected, pin contacts are ok
#define ACI_DS_OUT_OF_SOCKET 1 // No device in the socket
#define ACI_DS_SHIFTED 2 // Wrong device insertion is detected (shifted or inserted
upside down)
#define ACI_DS_BAD_CONTACT 3 // Bad pin contact(s)
#define ACI_DS_UNKNOWN 4 // Unknown (Auto Detect is probably off)

See also: ACI_ExecFunction , ACI_StartFunction , ACI_GetStatus368 379 372

CPI2-Gx Device Programmers400

© 2021 Phyton, Inc. Microsystems and Development Tools

Index
- _ -
_ff_attrib 265

_ff_date 265

_ff_name 265

_ff_size 266

_ff_time 266

_fmode 360

_fullpath 266

_GetWord 266

_printf 267

- A -
About

software version 90

abs 267

ACI 169, 173

DLL 159

External application 159

External control 159

ACI examples 166

ACI functions

ACI structures 161

ACI structures

ACI functions 165

acos 267

ActivateWindow 267

Add Watch

dialog 185

AddButton 267

AddrExpr 268

AddWatch 268

Algorithm Parameters 93

AllProgOptionsDefault 239

Alphabetical List of Script Language Built-in Functions
and Variables 257
Alternate Forms for printf Conversion 323

Angstrem SAV 103

API 269

Application Control Interface

ACI 159

ACI functions 159

ACI header 159

ACI structures 159

DLL 159

External application 159

External control 159

Programming automation 159

Application Control Interface exaples 166

ApplName[] 360

Arrays 228

ASCII Hex 103

asin 269

atan 269

ATE control 29

atof 269

atoi 270

Auto Programming 108

Automatic Word Completion 190

AutoWatches
pane 183

AutoWatches pane 183

- B -
BackSpace 270

Backspace unindents 83

Basic Data Types 210

Basic Types 228

Binary image 103

Blank 244

Blank Check 244

Block Operations 188

BlockBegin 270

BlockCol1 361

BlockCol2 361

BlockCopy 270

BlockDelete 270

BlockEnd 271

BlockFastCopy 271

BlockLine1 361

BlockLine2 361

BlockMove 271

BlockOff 271

BlockPaste 271

Blocks 83, 188

copying / moving 188

line blocks 188

non-persistent blocks 188

persistent 83

Index 401

© 2021 Phyton, Inc. Microsystems and Development Tools

Blocks 83, 188

persistent blocks 188

standard blocks 188

vertical 83

vertical blocks 188

BlockStatus 361

Buffer 18, 244

Buffer access functions 233

Buffer Configuration

dialog 61

Buffer Dump

window 95

Buffer layer 18

Buffers 61

dialog 61

memory allocation 61

- C -
Calculator

dialog 87

CallLibraryFunction 271

CaseSensitive 362

ceil 272

Character constants 210

Character operation functions 248

chdir 272

Check 244

Check Blank 195

Check Sum 244

CheckSum 69, 233, 244, 272

ChipProg
main menu 50

ChipProg-ISP2 19

chsize 272

ClearAllBreaks 273

ClearBreak 273

ClearBreaksRange 273

clearerr 273

ClearWindow 274

CLI 18

close 274

CloseWindow 274

Colors 80

tab 80

Command line 18, 169, 170

Command Line Interface 18

Command Line Keys 120, 121

Command Line Mode 18

Command line options 121, 125

Command Line Parameters 121

Commands

menu 86

Commands Menu 86

Comments 207

Composite operator 221

Condensed Mode 189

Condensed Mode Setup
dialog 195

Conditional Compilation 232

Conditional Operator If-Else 223

Configurating Editor

dialog 83

Configuration 57

buffer 61

editor Options 57

environment 57

Configuration Files 52

Configuration Menu 57

Configure the device to be programmed 197

Configuring a Buffer

dialog 97

Confirm Replace

dialog 193

Connector TARGET 25

Console

window 104

Window Console 104

cos 275

CPI2-Gx 19

software characteristics 22

CPI2-G-xxxx
hardware characteristics 21

CPI2-G-xxxx major features

brief characteristics 20

Cr 275

creat 275

creatnew 276

creattemp 276

CurChar 277

CurCol 362

Curcuit 277

CurLine 362

Custom signature 246

Cycle Operator Do-While 225

Cycle Operator For 226

CPI2-Gx Device Programmers402

© 2021 Phyton, Inc. Microsystems and Development Tools

Cycle Operator While 225

- D -
Data byte order 211

data caching 134

Debug shell control functions 253

Declaration: 286

Define Font 80

Define key 81

Definitions

adapter 17

buffer 17

memory buffer 17

sub-level 17

delay 277

DelChar 277

DelLine 278

Description 286

Description of Script Language 206

Descriptions 228

DesktopName[] 362

Device and Algorithm Parameters

window 93

Device Information

window 92

Device Parameters 93

Device programming control functions 238

Device serialization 68

Difference Between the Script Language and the C
Language 206

difftime 278

Directives of the Script Language Preprocessor
231
Discard device 68

Discard serial numbers 68

Display from address

dialog 100

Display from Line Number

dialog 195

Display Watches Options
dialog 184

DisplayText 278

DisplayTextF 278

DLL 169, 173

Down 279

dup 279

dup2 279

DUT 25

DUT connection 25

- E -
Edit Information to be programmed 197

Edit Key Command

dialog 86

Editor Key Mapping

tab 85

Editor window 187

Ellipse 280

Environment

dialog 79

eof 280

Eol 281

Erase 196

errno 362

Ethernet 25, 74

Ethernet settings Gx 123

Even byte 109

Event Wait Functions 256

Examples of ACI use 166

Examples of Expressions 205

exec 281

ExecFunction 239

ExecMenu 281

ExecScript 282

exit 282

ExitProgram 283

exp 283

Expr 283

Expressions 203

External Object Description 230

- F -
fabs 283

fclose 283

fdopen 284

feof 284

ferror 285

fflush 285

fgetc 285

fgets 286

File format 103

File Menu

Index 403

© 2021 Phyton, Inc. Microsystems and Development Tools

File Menu

overview 51

FileChanged 286

filelength 286

filelength returns the length (in bytes) of the file
associated with handle. 286

fileno 286

FillRect 287

findfirst 287

findnext 287

FindWindow 288

FirstWord 288

FloatExpr 288

Floating-point constants 209

floor 288

fmod 289

fnmerge 264

fnsplit 289

Fonts 80
tab 80

fopen 289

Format 207

Format and nesting 221

Formatted input-output functions 251

ForwardTill 290

ForwardTillNot 290

fprintf 290

fputc 291

fputs 291

FrameRect 291

fread 292

FreeLibrary 292

freopen 292

frexp 293

fscanf 293

fseek 294

ftell 294

Functions for file and directory operation 248

fwrite 295

- G -
GangExecute 240

GangGetError 240

GangStatus 240

GangWaitComplete 240

General Editor

settings 83

General syntax of the script file language 207

GetBadDeviceCount 241

GetByte 234, 295

getc 295

getcurdir 296

getcwd 296

getdate 296

getdfree 297

getdisk() 297

GetDword 234, 300

getenv 297

GetFileName 297

getftime 297

GetGoodDeviceCount 241

GetLine 298

GetMark 298

GetMemory 234, 298

GetProgOptionBits 241

GetProgOptionFloat 241

GetProgOptionList 241

GetProgOptionLong 242

GetProgOptionString 242

Gets file size in bytes. 286

GetScriptFileName 299

gettime 299

getw 300

GetWindowHeight 300

GetWindowWidth 300

GetWord 235

Global Variable Definition 229

GotoXY 301

Graphical output functions 254

GUI 48

- H -
Help

menu 89

On-line 32

Highlight
multi-line Comments 83

Highlight Active Tabs 82

Highlighting

Syntax 83, 190

History file 52

Holtek OTR 103

Hot Keys 81

How to Get On-line Help 32

CPI2-Gx Device Programmers404

© 2021 Phyton, Inc. Microsystems and Development Tools

How to start a script file 178

How to write a script file 185

HStep 301

- I -
I/O Stream

window 181

I/O Stream window operation functions 255

ICP 17

Identifier Change (#define) 231

Identifiers 208

Inclusion of Files (#include) 231

inport 302

inportb 302

InsertMode 363

Inspect 302

Install ChipProg 35

Install the ChipProg Software 35

Integer constants 208

Introduction 17

InvertRect 302

isalnum 303

isalpha 303

isascii 303

isatty 303

iscntrl 304

isdigit 304

isgraph 304

islower 304

ISP

ISP HV Mode 17

ISP Mode 17

isprint 305

ispunct 305

isspace 305

isupper 305

isxdigit 305

itoa 306

- J -
JEDEC 103

Job 134

- L -
LabVIEW 169, 170, 173, 174

LabVIEW Integration 174

LAN 25, 74

LastChar 306

LastEvent 306

LastEventInt{1...4} 307

LastFoundString 363

LastMemAccAddr 363

LastMemAccAddrSpace 363

LastMemAccLen 363

LastMemAccType 363

LastMessageInt 364

LastMessageLong 364

LastString 307

layer 18, 61

Left 308

LineTo 307

Load file

dialog 102

Load session 52

Load the file into the buffer 196

LoadDesktop 307

LoadLibrary 308

LoadOptions 308

LoadProgram 235, 308

LoadProject 309

Local Variable Definition 229

lock 360

locking 309

log 310

Log file 72

log10 310

long filelength(long handle); 286

Long integer constants 209

lseek 310

ltoa 311

- M -
Main menu

commands 50

Main menu bar 50

MainWindowHandle 364

Mapping

Index 405

© 2021 Phyton, Inc. Microsystems and Development Tools

Mapping

hot keys 81

Mathematical functions 246

MaxAddr 236, 311

memccpy 311

memchr 311

memcmp 312

memcpy 312

memicmp 312

memmove 313

Memory Dump Window Setup

dialog 98

Memory Blocks

operations 100

Memory layer 18

memset 313

Menu

Project 52

View 52

Menu File 51

load file 51

save file 51

Menu Help 89

Menu Script 88

Message box

always display 82

MessageBox 313

MessageBoxEx 313

Messages

tab 82

MinAddr 236, 314

Miscellaneous Settings 82

mkdir 314

Modify Address
dialog 100

Modify Memory

dialog 100

Motorola S-record 103

MoveTo 315

MoveWindow 315

movmem 315

mprintf 242

Multi-File Search Results

dialog 193

Multi-programming mode 198

- N -
NumWindows 364

- O -
Odd byte 109

On success

EBADF Bad file number 286

On-line Help 32

On-the-Fly

On-the-Fly Command Line Options 127

On-the-Fly Options 127

On-the-Fly Control

Example 132

On-the-Fly Control utility 126

On-the-Fly utility return codes

return codes 131

open 315

Open Project 54
dialog 54

OpenEditorWindow 316

OpenProject 242

OpenStreamWindow 316

OpenUserWindow 317

OpenWindow 317

Operands 205

Operations and Expressions
About 211

Arithmetic Conversions in Expressions 220

Arithmetic Operations 212

Array Operations 217

Assignment Operations 213

Bit Operations 217

Logical Operations 216

Operand Execution Order 220

Operand Metadesignation 212

Operation Execution Priorities and Order 219

Other Operations 218

Operations with Expressions 203

Operations with Memory Blocks 100

Operator Break 222

Operator Continue 223

Operator Goto 223

Operator label 221

Operator Return 223

CPI2-Gx Device Programmers406

© 2021 Phyton, Inc. Microsystems and Development Tools

Operator-expression 222

Operators 221

Options

dialog 77

Options&split

dialog 108

Other Various Functions 256

outport 318

outportb 318

Overview
User Interface 48

- P -
Packages/Adapters 58

peek 318

peekb 318

POF 103

poke 318

pokeb 319

Polyline 319

pow 319

pow10 319

Predefined Symbols in the Script File Compilation
232
Preferances 77

PRG 103

printf 320

printf Conversion Type Characters 320

ProgOptionDefault 242

Program a Device 196

Program Manager 106
Auto Programming 106

dialog 106

Operation Progress 106

window 105

Programmer 17

work with 195

Programming

check blank 195

configure the device 197

edit Information 197

erase 196

load the file 196

program a Device 196

read a device 196

save the data 198

verify 198

write Information into the Device 197

Programming automation 159

Programming channels

Channel A 23

Channel B 23

Demultiplexer 23

Project 47

Project Menu 52

Project Options 47, 53

dialog 53

Project Repository

dialog 56

Projects 47

pscanf 326

putc 327

putenv 327

putw 327

- Q -
Quick Start 32

Quick Watch

enabled 82

Quick Watch Function 191

- R -
rand 328

random 328

randomize 328

read 328

Read a Device 196

ReadShadowArea 242

Rectangle 329

RedrawScreen 329

Regular Expressions

search for 194

RegularExpressions 364

Relation Operations 215

ReloadProgram 236, 329

Remote control 120

RemoveButtons 329

rename 330

Replace Text

dialog 192

Repository 56

Response files 125

Index 407

© 2021 Phyton, Inc. Microsystems and Development Tools

Returned Value 286

rewind 330

Right 330

rmdir 330

Run ChipProg 34

- S -
Save file from buffer

dialog 104

Save session 52

Save the data read out from a device 198

SaveData 236, 331

SaveDesktop 331

SaveFile 332

SaveOptions 332

scanf 332

Script 177, 179, 206

menu 88

Script file manipulation functions 251

Script Files 177, 206

dialog 179

Script Language Built-in Functions 232

Script Language Built-in Variables 257

Script source window

open 179

SD card 134

Search 333

Search for Regular Expressions 194

Search for Text

dialog 191

Search mask 58

searchpath 333

SearchReplace 334

Select color 80

Select device 58

dialog 58

SelectBrush 334

SelectedString[] 365

SelectFont 334

SelectPen 334

Serial number 68

Serialization 69

Serialization, Checksum, Log file

dialog 63

Set/Retrieve Bookmark

dialog 194

SetBkColor 335

SetBkMode 335

SetBreak 335

SetBreaksRange 335

SetByte 237, 335

SetCaption 336

SetDevice 237

setdisk 336

SetDword 237, 336

SetFileName 336

setftime 337

SetMark 337

setmem 337

SetMemory 238, 338

setmode 338

SetPixel 338

SetProgOption 243

SetTextColor 338

SetToolbar 339

SetUpdateMode 339

SetWindowFont 339

SetWindowSize 340

SetWindowSizeT 340

SetWord 238, 340

Signature 246

Signature String 70

Simple example of a script file 177

sin 341

Sounds 77

Split data 109

sprintf 341

sqrt 341

srand 342

sscanf 342

Standalone 133, 134

Stand-Alone 133

Standalone Mode 133

Standalone Operation 133

Standard/Extended Intel HEX 103

Start Address 244

Startup 42

Static IP address 74

Statistics
dialog 110

Step 342

Stop 342

stpcpy 343

strcat 343

strchr 343

CPI2-Gx Device Programmers408

© 2021 Phyton, Inc. Microsystems and Development Tools

strcmp 343

strcmpi 344

strcpy 344

strcspn 344

Stream file functions 250

stricmp 344

String operation functions 247

strlen 345

strlwr 345

strncat 345

strncmp 346

strncmpi 346

strncpy 346

strnicmp 347

strnset 347

strpbrk 347

strrchr 347

strrev 348

strset 348

strspn 348

strstr 348

strtol 349

strtoul 349

strupr 350

Sub-Layer 61

additional 61

main 61

Sub-Layer 'Code' 61

Sub-layer 'ID location' 61

Syntax Highlighting 190

System Requirements 34

SystemDir[] 365

- T -
Tab Size 83

tan 350

tanh 350

target device 25

tell 350

TerminateAllScripts 351

TerminateScript 351

Terminology 17

Terminology and Definitions 17

Text 351

Text Edit 187

Text editor functions 251

toascii 351

Tof 351

tolower 352

Toolbar

tab 82

toupper 352

- U -
ultoa 352

Undo Count 83

unlink 352

unlock 353

Up 353

UpdateWindow 353

USB 25

User
window 181

User Interface 48

overview 48

- V -
Verify programming 198

View 52

View Menu 52

- W -
Wait 353

WaitExprChange 354

WaitExprTrue 354

WaitGetMessage 355

WaitMemoryAccess 355

WaitSendMessage 356

WaitStop 357

WaitWindowEvent 357

Watches

window 183

Watches Window

add Watch 185

display Watches Options 184

WE_* constants 306

wgetchar 357

wgethex 358

wgetstring 358

WholeWords 365

Window

Index 409

© 2021 Phyton, Inc. Microsystems and Development Tools

Window

menu 89

Menu Window 89

Window Device Information 92

Window Dump Setup

dialog 98

Window Editor 187

Window I/O Stream 181

Window Program Manager 105

Window User 181

Window Watches 183

WindowHandles[] 365

WindowHotkey 358

Windows 92

Windows operation functions and other system
functions 254

Wizard 42

Word Completion 190

WordLeft 359

WordRight 359

Work with Programmer 195

WorkFieldHeight 365

WorkFieldWidth 365

wprintf 359

write 359

Write Information into the Device 197

WriteShadowArea 243

Back Cover

	Introduction
	Terminology
	CPI2-Gx device programmer
	Features Overview
	Hardware characteristics
	Software features
	Programming channels
	Communication Interfaces
	Connector TARGET
	Connector CONTROL
	Gang- and Single-site programming

	Installation and Launching
	Getting Assistance
	Hardware installation
	System Requirements
	Software Installation
	Launching device programmers
	Setup Wizard and Startup Dialog

	Control Interfaces
	Using Projects
	Graphical User Interface
	User Interface Overview
	Toolbars
	Menus
	The File Menu
	Configuration Files

	The View Menu
	The Project Menu
	The Project Options Dialog
	The Open Project Dialog
	Export and Import Project Dialogs
	Project Repository

	The Configure Menu
	The Select Device Dialog
	The Buffers Dialog
	The Buffer Configuration Dialog

	The Serialization, Checksum, and Log Dialog
	Shadow Areas
	General settings
	Device Serialization
	Checksum
	Signature string
	Custom Shadow Areas
	Log file

	The Sata Caching, Standalone... Dialog
	IP Address Setting Dialog
	Simplified User Interface Editor
	The Preferences Dialog
	The Environment Dialog
	Fonts
	Colors
	Mapping Hot Keys
	Toolbar
	Messages
	Miscellaneous Settings

	The Editor Otions Dialog
	The General Tab
	The Key Mappings Tab
	The Edit Key Command Dialog

	The Commands Menu
	Calculator

	The Script Menu
	The Window Menu
	The Help Menu
	License Management Dialog

	Windows
	The Device Information Window
	The Device and Algorithm Parameters Window
	The Buffer Dump Window
	The 'Configuring a Buffer' dialog
	The 'Buffer Setup' dialog
	The 'Display from address' dialog
	The 'Modify Data' dialog
	The 'Memory Blocks' dialog
	The 'Load File' dialog
	File Formats

	The 'Save File' dialog

	The Console Window
	The Program Manager Window
	The Program Manager tab
	Auto Programming

	The Options tab
	Split data

	The Statistics tab

	The Memory Card Window
	Windows for Scripts

	Simplified User Interface
	Settings of Simplified User Interface
	Operations with Simplified User Interface

	Command Line Interface
	Command Line Options
	Command Line Option Files

	On-the-Fly Control Interface
	On-the-Fly Command Line Options
	On-the-Fly utility return codes
	On-the-Fly Control Examples

	Standalone Operation Mode
	Preparing Standalone Mode Jobs
	Data Caching
	Standalone Jobs
	Standalone mode settings
	Device serialization
	Permissions and setting limits
	SD card window

	Switching to Standalone Mode
	Standalone Mode Monitor
	Example of Setting Up Standalone Mode

	Software Development Kit (SDK)
	ACI Components
	Using ACI
	ACI Functions
	ACI Structures
	Examples
	API Explorer

	Integration with NI LabVIEW
	LabVIEW Integration Using Command Line
	LabVIEW Integration Using ACI
	LabVIEW Integration Examples

	Scripting
	Scripting Overview
	Simple example

	The Startup Script
	Running Scripts
	The Script Files Dialog
	The User Window
	The I/O Stream Window

	Debugging a Script
	The Script Window
	Menu and Toolbar
	The AutoWatches Pane

	The Watches Window
	The Display Watches Options Dialog
	The Add Watch Dialog

	Script Editor
	The File Menu
	The Edit Menu
	Block Operations
	Condensed Mode
	Syntax Highlighting
	Automatic Word Completion
	The Quick Watch Function
	Dialogs
	The Search for Text Dialog
	The Replace Text Dialog
	The Confirm Replace Dialog
	The Multi-File Search Results Dialog
	Search for Regular Expressions
	The Set/Retrieve Bookmark Dialogs
	The Condensed Mode Setup Dialog
	The Display from Line Number Dialog

	Reference
	How to ...
	How to check if device is blank
	How to erase a device
	How to read data from device
	How to program a device
	How to load a file into a buffer
	How to edit data before programming
	How to configure target device
	How to write information into the device

	How to verify programming
	How to save data to disc
	Multi-Target Programming

	Error Messages
	Error Load/ Save File
	Error Addresses
	Error sizes
	Error command-line option
	Error Programming option
	Error DLL
	Error USB
	Error programmer hardware
	Error internal
	Error confiquration
	Error device
	Error check box
	Error mix
	Warning

	Expressions
	Operations
	Operands
	Expression Examples

	Scripting Reference
	Scripting Language Description
	Difference Between Scripting and C Languages
	Scripting Language Syntax
	Format
	Comments
	Identifiers
	Reserved words
	Integer constants
	Long integer constants
	Floating-point constants
	Character constants
	String constants

	Basic Data Types
	Data byte order
	Operations and Expressions
	Operand Metadesignation
	Arithmetic Operations
	Assignment Operations
	Relation Operations
	Logical Operations
	Array Operations
	Bit Operations
	Other Operations
	Operation Execution Priorities and Order
	Operand Execution Order
	Arithmetic Conversions in Expressions

	Operators
	Format and nesting
	Operator label
	Composite operator
	Operator-expression
	Operator Break
	Operator Continue
	Operator Return
	Operator Goto
	Conditional Operator If-Else
	Cycle Operator While
	Cycle Operator Do-While
	Cycle Operator For

	Functions
	Function Definition
	Function Call
	The main Function

	Descriptions
	Basic Types
	Arrays
	Local Variable Definition
	Global Variable Definition
	Variable Initialization
	External Object Description

	Directives of the Script Language Preprocessor
	Identifier Change (#define)
	Inclusion of Files (#include)
	Conditional Compilation

	Predefined Symbols in the Script File Compilation

	Built-in Functions by Group
	Buffer access functions
	CheckSum
	GetByte
	GetDword
	GetMemory
	GetWord
	LoadProgram
	MaxAddr
	MinAddr
	ReloadProgram
	SaveData
	SetByte
	SetDevice
	SetDword
	SetMemory
	SetWord

	Device programming control functions and variables
	Function AllProgOptionsDefault
	Function ExecFunction
	Function GangExecute
	Function GangGetError
	Function GangStatus
	Function GangWaitComplete
	Function GetBadDeviceCount
	Function GetGoodDeviceCount
	Function GetProgOptionBits
	Function GetProgOptionFloat
	Function GetProgOptionList
	Function GetProgOptionLong
	Function GetProgOptionString
	Function mprintf
	Function OpenProject
	Function ProgOptionDefault
	Function ReadShadowArea
	Function SetProgOption
	Function WriteShadowArea
	Variable BlankCheck
	Variable BufferStartAddr
	Variable Checksum
	Variable ChipEndAddr
	Variable ChipStartAddr
	Variable DeviceBatchSize
	Variable DialogOnError
	Variable GangMode
	Variable InsertTest
	Variable LastErrorMessage[]
	Variable NumSites
	Variable ReverseBytesOrder
	Variable SerialNumber
	Variable Signature
	Variable VerifyAfterProgram
	Variable VerifyAfterRead

	Mathematical functions
	String operation functions
	Character operation functions
	Functions for file and directory operation
	Stream file functions
	Formatted input-output functions
	Script File Manipulation Functions
	Text editor functions
	Debug shell control functions
	Windows operation functions and other system functions
	Graphical output functions
	I/O Stream window operation functions
	Event Wait Functions
	Other Various Functions

	Built-in Variables by Group
	List of Built-in Functions and Variables
	Scripting Functions
	fnmerge
	Function _ff_attrib
	Function _ff_date
	Function _ff_name
	Function _ff_size
	Function _ff_time
	Function _fullpath
	Function _GetWord
	Function _printfv
	Function abs
	Function acos
	Function ActivateWindow
	Function AddButton
	Function AddrExpr
	Function AddWatch
	Function API
	Function asin
	Function atan
	Function atof
	Function atoi
	Function BackSpace
	Function BlockBegin
	Function BlockCopy
	Function BlockDelete
	Function BlockEnd
	Function BlockFastCopy
	Function BlockMove
	Function BlockOff
	Function BlockPaste
	Function CallLibraryFunction
	Function ceil
	Function chdir
	Function CheckSum
	Function chsize
	Function ClearAllBreaks
	Function ClearBreak
	Function ClearBreaksRange
	Function clearerr
	Function ClearWindow
	Function close
	Function CloseProject
	Function CloseWindow
	Function cos
	Function Cr
	Function creat
	Function creatnew
	Function creattemp
	Function CurChar
	Function Curcuit
	Function delay
	Function DelChar
	Function DelLine
	Function difftime
	Function DisplayText
	Function DisplayTextF
	Function Down
	Function dup
	Function dup2
	Function Ellipse
	Function eof
	Function Eof
	Function Eol
	Function exec
	Function ExecMenu
	Function ExecScript
	Function exit
	Function ExitProgram
	Function exp
	Function Expr
	Function fabs
	Function fclose
	Function fdopen
	Function feof
	Function ferror
	Function fflush
	Function fgetc
	Function fgets
	Function FileChanged
	Function filelength
	Function fileno
	Function FillRect
	Function findfirst
	Function findnext
	Function FindWindow
	Function FirstWord
	Function FloatExpr
	Function floor
	Function fmod
	Function fnsplit
	Function fopen
	Function ForwardTill
	Function ForwardTillNot
	Function fprintf
	Function fputc
	Function fputs
	Function FrameRect
	Function fread
	Function FreeLibrary
	Function freopen
	Function frexp
	Function fscanf
	Function fseek
	Function ftell
	Function fwrite
	Function GetByte
	Function getc
	Function getcurdir
	Function getcwd
	Function getdate
	Function getdfree
	Function getdisk()
	Function getenv
	Function GetFileName
	Function getftime
	Function GetLine
	Function GetMark
	Function GetMemory
	Function GetScriptFileName
	Function gettime
	Function getw
	Function GetWindowHeight
	Function GetWindowWidth
	Function GetWord
	Function GetWord
	Function GotoXY
	Function HStep
	Function inport
	Function inportb
	Function Inspect
	Function InvertRect
	Function isalnum
	Function isalpha
	Function isascii
	Function isatty
	Function iscntrl
	Function isdigit
	Function isgraph
	Function islower
	Function isprint
	Function ispunct
	Function isspace
	Function isupper
	Function isxdigit
	Function itoa
	Function LastChar
	Function LastEvent
	Function LastEventInt{1...4}
	Function LastString
	Function LineTo
	Function LoadDesktop
	Function Left
	Function LoadLibrary
	Function LoadOptions
	Function LoadProgram
	Function LoadProject
	Function locking
	Function log
	Function log10
	Function lseek
	Function ltoa
	Function MaxAddr
	Function memccpy
	Function memchr
	Function memcmp
	Function memcpy
	Function memicmp
	Function memmove
	Function memset
	Function MessageBox
	Function MessageBoxEx
	Function MinAddr
	Function mkdir
	Function MoveTo
	Function MoveWindow
	Function movmem
	Function open
	Function OpenEditorWindow
	Function OpenStreamWindow
	Function OpenUserWindow
	Function OpenWindow
	Function outport
	Function outportb
	Function peek
	Function peekb
	Function poke
	Function pokeb
	Function Polyline
	Function pow
	Function pow10
	Function printf
	printf Conversion Type Characters
	printf Flag Characters
	printf Format Specifier Conventions
	%e or %E Conversions
	%f Conversions
	%g or %G Conversions
	%x or %X Conversions
	Alternate Forms for printf Conversion

	printf Format Specifiers
	printf Format String
	printf Input-size Modifiers
	printf Precision Specifiers
	printf Width Specifiers

	Function pscanf
	Function putc
	Function putenv
	Function putw
	Function rand
	Function random
	Function randomize
	Function read
	Function Rectangle
	Function RedrawScreen
	Function ReloadProgram
	Function RemoveButtons
	Function rename
	Function rewind
	Function Right
	Function rmdir
	Function SaveData
	Function SaveDesktop
	Function SaveFile
	Function SaveOptions
	Function scanf
	Function Search
	Function searchpath
	Function SearchReplace
	Function SelectBrush
	Function SelectFont
	Function SelectPen
	Function SetBkColor
	Function SetBkMode
	Function SetBreak
	Function SetBreaksRange
	Function SetByte
	Function SetCaption
	Function setdisk
	Function SetDword
	Function SetFileName
	Function setftime
	Function SetMark
	Function setmem
	Function SetMemory
	Function setmode
	Function SetPixel
	Function SetTextColor
	Function SetToolbar
	Function SetUpdateMode
	Function SetWindowFont
	Function SetWindowSize
	Function SetWindowSizeT
	Function SetWord
	Function sin
	Function sprintf
	Function sqrt
	Function srand
	Function sscanf
	Function Step
	Function Stop
	Function stpcpy
	Function strcat
	Function strchr
	Function strcmp
	Function strcmpi
	Function strcpy
	Function strcspn
	Function stricmp
	Function strlen
	Function strlwr
	Function strncat
	Function strncmp
	Function strncmpi
	Function strncpy
	Function strnicmp
	Function strnset
	Function strpbrk
	Function strrchr
	Function strrev
	Function strset
	Function strspn
	Function strstr
	Function strtol
	Function strtoul
	Function strupr
	Function tan
	Function tanh
	Function tell
	Function TerminateAllScripts
	Function TerminateScript
	Function Text
	Function toascii
	Function Tof
	Function tolower
	Function toupper
	Function ultoa
	Function unlink
	Function unlock
	Function Up
	Function UpdateWindow
	Function Wait
	Function WaitExprChange
	Function WaitExprTrue
	Function WaitGetMessage
	Function WaitMemoryAccess
	Function WaitSendMessage
	Function WaitStop
	Function WaitWindowEvent
	Function wgetchar
	Function wgethex
	Function wgetstring
	Function WindowHotkey
	Function WordLeft
	Function WordRight
	Function wprintf
	Function write
	lock
	Variable _fmode
	Variable ApplName
	Variable BlockCol1
	Variable BlockCol2
	Variable BlockLine1
	Variable BlockLine2
	Variable BlockStatus
	Variable CaseSensitive
	Variable CurCol
	Variable CurLine
	Variable DesktopName
	Variable errno
	Variable InsertMode
	Variable LastFoundString
	Variable LastMemAccAddr
	Variable LastMemAccAddrSpace
	Variable LastMemAccLen
	Variable LastMemAccType
	Variable LastMessageInt
	Variable LastMessageLong
	Variable MainWindowHandle
	Variable NumWindows
	Variable RegularExpressions
	Variable SelectedString
	Variable SystemDir
	Variable WholeWords
	Variable WindowHandles
	Variable WorkFieldHeight
	Variable WorkFieldWidth

	ACI Fuctions and Structures
	ACI Fuctions
	ACI_AllProgOptionsDefault
	ACI_BuffersDialog
	ACI_ConnectionStatus
	ACI_CreateBuffer
	ACI_ErrorString
	ACI_ExecFunction
	ACI_Exit
	ACI_FileLoad
	ACI_FileSave
	ACI_FillLayer
	ACI_GangStart
	ACI_GangTerminateFunction
	ACI_GetConnection
	ACI_GetDevice
	ACI_GetLayer
	ACI_GetMUXMode
	ACI_GetProgOption
	ACI_GetProgrammingParams
	ACI_GetStatus
	ACI_Launch
	ACI_LoadConfigFile
	ACI_LoadFileDialog
	ACI_LoadProject
	ACI_ReadLayer
	ACI_ReallocBuffer
	ACI_SaveConfigFile
	ACI_SaveFileDialog
	ACI_SelectDeviceDialog
	ACI_SerializationDialog
	ACI_SetConnection
	ACI_SetDevice
	ACI_SetMUXMode
	ACI_SetProgOption
	ACI_SetProgrammingParams
	ACI_SettingsDialog
	ACI_StartFunction
	ACI_TerminateFunction
	ACI_WriteLayer

	ACI Structures
	ACI_Buffer_Params
	ACI_Config_Params
	ACI_Connection_Params
	ACI_Device_Params
	ACI_ErrorString_Params
	ACI_File_Params
	ACI_Function_Params
	ACI_GangStart_Params
	ACI_GangTerminate_Params
	ACI_Launch_Params
	ACI_Layer_Params
	ACI_Memory_Params
	ACI_MUXMode_Params
	ACI_ProgOption_Params
	ACI_Programming_Params
	ACI_ProjectParams
	ACI_PStatus_Params

